JPH09309727A - Lithium titanate, its production and lithium battery using the same - Google Patents

Lithium titanate, its production and lithium battery using the same

Info

Publication number
JPH09309727A
JPH09309727A JP9082323A JP8232397A JPH09309727A JP H09309727 A JPH09309727 A JP H09309727A JP 9082323 A JP9082323 A JP 9082323A JP 8232397 A JP8232397 A JP 8232397A JP H09309727 A JPH09309727 A JP H09309727A
Authority
JP
Japan
Prior art keywords
lithium titanate
lithium
compound
titanate
hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9082323A
Other languages
Japanese (ja)
Other versions
JP3894614B2 (en
Inventor
Tokuo Fukita
徳雄 吹田
Yoshiki Kinoshita
義樹 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP08232397A priority Critical patent/JP3894614B2/en
Publication of JPH09309727A publication Critical patent/JPH09309727A/en
Application granted granted Critical
Publication of JP3894614B2 publication Critical patent/JP3894614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/122

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain lithium titanate having many voids and controlled in particle size and shape by heating and dehydrating lithium titanate hydrate obtained by reacting a titanic acid compound with a lithium compound in water. SOLUTION: A titanium compound is reacted with an ammonium compound in water at 0-50 deg.C to afford a titanic acid compound. The titanic acid compound is reacted with a lithium compound at >=50 deg.C, as necessary, in water containing 0.01-5mol/L ammonium compound to provide lithium titanate hydrate. The lithium titanate hydrate is dried at 30-200 deg.C and heated at 200-800 deg.C and dehydrated to provide the lithium titanate having a laminate structure, 1-300m<2> /g specific surface area and 0.1-50μm longest particle diameter and having voids in particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム電池の負
極材料などに有用な化合物であるチタン酸リチウムおよ
びその製造方法ならびにそれを用いてなるリチウム電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to lithium titanate, which is a compound useful as a negative electrode material for lithium batteries, a method for producing the same, and a lithium battery using the same.

【0002】[0002]

【従来の技術】チタン酸リチウムは一般式LiX TiY
4 で表される化合物であり、代表的化合物としてはL
2.67Ti1.334 、LiTi2 4 、Li1.33Ti
1.674、Li1.14Ti1.714 などがある。このチタ
ン酸リチウムを得るには、酸化チタンとリチウム化合物
との混合物を700〜1600℃の温度で熱処理する方
法が用いられている(特開平6−275263号を参
照)。
2. Description of the Related Art Lithium titanate has the general formula Li X Ti Y.
A compound represented by O 4 , and a typical compound is L
i 2.67 Ti 1.33 O 4 , LiTi 2 O 4 , Li 1.33 Ti
1.67 O 4 , Li 1.14 Ti 1.71 O 4, and the like. To obtain this lithium titanate, a method of heat-treating a mixture of titanium oxide and a lithium compound at a temperature of 700 to 1600 ° C. is used (see JP-A-6-275263).

【0003】[0003]

【発明が解決しようとする課題】前記の従来技術の方法
で得られるチタン酸リチウムは、粒子間の焼結が不均一
に起こった焼結体であるため、粒子の大きさや形状が制
御できないという問題がある。さらには、チタン酸リチ
ウムを得る反応が酸化チタン粉末とリチウム化合物粉末
との固固反応であるため、高温度の熱処理を行っても反
応性が悪く、原料粉末が多く残存するという問題もあ
る。一方、酸化チタンとリチウム化合物との混合物を7
00℃以下の低い温度で熱処理しても、反応が進まずチ
タン酸リチウムを得られないという問題がある。
Since the lithium titanate obtained by the above-mentioned prior art method is a sintered body in which sintering between particles has occurred unevenly, the size and shape of the particles cannot be controlled. There's a problem. Furthermore, since the reaction for obtaining lithium titanate is a solid-solid reaction between the titanium oxide powder and the lithium compound powder, the reactivity is poor even if heat treatment is performed at a high temperature, and there is also a problem that a large amount of raw material powder remains. On the other hand, a mixture of titanium oxide and a lithium compound
Even if it heat-processes at a low temperature of 00 degreeC or less, there exists a problem that reaction will not progress and lithium titanate cannot be obtained.

【0004】[0004]

【課題を解決するための手段】本発明者らは、リチウム
電池の負極材料などに有用なチタン酸リチウムを得るべ
く種々検討した結果、特定の方法で得られたチタン酸リ
チウム水和物を加熱脱水すると多くの空隙を有するチタ
ン酸リチウムが得られること、しかも、粒子の大きさや
形状が制御されたチタン酸リチウムであることなどを見
出し、その後さらに検討して、本発明を完成した。
As a result of various studies to obtain lithium titanate useful as a negative electrode material for lithium batteries, the present inventors have heated lithium titanate hydrate obtained by a specific method. It was found that lithium titanate having a large number of voids can be obtained by dehydration, and that lithium titanate in which the size and shape of particles are controlled, and the like were further studied, and the present invention was completed.

【0005】すなわち、本発明は、粒子内に多くの空隙
を有するチタン酸リチウム、さらには、粒子の大きさや
形状が制御されたチタン酸リチウムを提供することにあ
る。また、本発明は、前記のチタン酸リチウムを効率よ
く得る方法を提供することにある。さらに、本発明は、
前記のチタン酸リチウムを用いたリチウム電池用負極、
さらには、それを用いたリチウム電池を提供することに
ある。
That is, the present invention is to provide lithium titanate having many voids in the particles, and further lithium titanate in which the size and shape of the particles are controlled. The present invention also provides a method for efficiently obtaining the lithium titanate. Further, the present invention provides
A negative electrode for a lithium battery using the above lithium titanate,
Further, it is to provide a lithium battery using the same.

【0006】[0006]

【発明の実施の形態】本発明は、一般式LiX TiY
4 で表されるチタン酸リチウムに関するものであって、
チタン酸リチウムの単一相であってもチタン酸リチウム
と酸化チタンとの混合物であってもよい。前記一般式中
のX、Yの値は、X/Yの値で表して0.5〜2の範囲
が好ましい組成物となる値である。本発明のチタン酸リ
チウムは、その粒子内に空隙を有することを特徴とす
る。チタン酸リチウム粒子の内部に空隙が存在すると、
比表面積が上がり、その結果より多くのリチウムなどの
物質やイオンを捕捉することができるため、リチウム電
池用負極などの特性に優れたものとなる。この空隙の存
在は、空隙量を測定することにより確認することがで
き、空隙量が0.005ml/g以上であれば粒子内に
空隙を有すると認めることができる。リチウム電池の負
極材料などに用いる際の特性に優れていることから、空
隙量は0.01〜1.5ml/gの範囲が好ましく、よ
り好ましくは0.01〜0.7ml/gである。また、
比表面積は1〜300m2 /gの範囲が好ましく、より
好ましくは5〜300m2 /gであり、もっとも好まし
くは10〜300m2 /gである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has the general formula Li X Ti Y O
Relating to lithium titanate represented by 4 ,
It may be a single phase of lithium titanate or a mixture of lithium titanate and titanium oxide. The values of X and Y in the above general formula are expressed by the value of X / Y, and the range of 0.5 to 2 is a value that gives a preferable composition. The lithium titanate of the present invention is characterized by having voids in its particles. If voids exist inside the lithium titanate particles,
The specific surface area is increased, and as a result, more substances and ions such as lithium can be captured, so that the characteristics of the negative electrode for lithium batteries and the like are excellent. The presence of the voids can be confirmed by measuring the void amount. If the void amount is 0.005 ml / g or more, it can be recognized that the particles have voids. The void volume is preferably in the range of 0.01 to 1.5 ml / g, and more preferably 0.01 to 0.7 ml / g because of its excellent properties when used as a negative electrode material of a lithium battery. Also,
The specific surface area is preferably in the range of 1 to 300 m 2 / g, more preferably 5 to 300 m 2 / g, and most preferably 10 to 300 m 2 / g.

【0007】本発明のチタン酸リチウムの制御された好
ましい粒子形状は積層構造であって、その層間に空隙を
多量に確保することができる。積層構造とは、板状ある
いは薄片状のチタン酸リチウム粒子が2以上積み重なっ
た構造をいい、このような積層構造は電子顕微鏡観察に
より確認することができる。
A preferable controlled particle shape of the lithium titanate of the present invention is a laminated structure, and a large amount of voids can be secured between the layers. The laminated structure refers to a structure in which two or more plate-shaped or flaky lithium titanate particles are stacked, and such a laminated structure can be confirmed by observation with an electron microscope.

【0008】また、本発明の好ましいチタン酸リチウム
は微粒子状に大きさが制御されたものである。その粒子
径(最長径)は適宜設計することができるが、リチウム
電池の負極材料などに用いる際の特性に優れていること
から、0.1〜50μmが好ましい範囲であり、0.2
〜30μmがより好ましい範囲である。
Further, the preferable lithium titanate of the present invention is a fine particle whose size is controlled. The particle diameter (longest diameter) can be appropriately designed, but 0.1-50 μm is a preferable range because it has excellent characteristics when used as a negative electrode material of a lithium battery, and 0.2
˜30 μm is a more preferable range.

【0009】次に、本発明はチタン酸リチウムの製造方
法であって、チタン化合物とアンモニウム化合物とを
水中で反応させてチタン酸化合物を得る工程、該チタ
ン酸化合物とリチウム化合物とを水中で反応させてチタ
ン酸リチウム水和物を得る工程、該チタン酸リチウム
水和物を加熱脱水する工程からなることを特徴とする。
まず、前記の工程はチタン酸の化合物を得る工程であ
って、それに用いるチタン化合物としては、硫酸チタ
ン、硫酸チタニル、塩化チタンなどの無機チタン化合物
やチタンアルコキシドなどの有機チタン化合物を用いる
ことができ、特に、チタン酸リチウム内の不純物残量を
少なくできる塩化チタンが好ましい。また、アンモニウ
ム化合物としては、アンモニア水、炭酸アンモニウム、
硫酸アンモニウム、硝酸アンモニウムなどを用いること
ができる。このアンモニウム化合物に代えて、ナトリウ
ム化合物、カリウム化合物などのアルカリ金属化合物を
用いると、得られるチタン酸化合物内にナトリウムやカ
リウムの元素が残留し、その後の工程の加熱脱水の際に
粒子間の焼結を引き起こし、粒子の大きさや形状を不均
一にしやすいため好ましくない。前記のチタン化合物と
アンモニウム化合物とを水中で混合することにより反応
が進み、オルトチタン酸(H4 TiO4 )またはその水
素イオンがアンモニウムイオンに置換されたH4-n (N
4 n TiO4 で表される化合物であるチタン酸化合
物が得られる。H4-n (NH4 n TiO4 のアンモニ
ウムイオンの置換量は、反応の際のアンモニウムイオン
濃度、遊離水酸基濃度、水素イオン濃度や反応温度など
の条件を調整することにより任意に変えられる。得られ
るチタン酸化合物の粒子径はその後の工程で得られるチ
タン酸リチウムの粒子径に影響を及ぼすため、前記の反
応温度を0〜50℃の範囲に設定して行うと微粒子状の
チタン酸化合物が得られ、さらには、微粒子状のチタン
酸リチウムが得られるため好ましく、より好ましい温度
範囲は5〜40℃であり、もっとも好ましい温度範囲は
10〜30℃である。
Next, the present invention is a method for producing lithium titanate, which comprises a step of reacting a titanium compound and an ammonium compound in water to obtain a titanic acid compound, wherein the titanic acid compound and the lithium compound are reacted in water. And a step of obtaining lithium titanate hydrate by heating and dehydrating the lithium titanate hydrate by heating.
First, the above-mentioned step is a step of obtaining a compound of titanic acid, and as the titanium compound used therefor, an inorganic titanium compound such as titanium sulfate, titanyl sulfate or titanium chloride, or an organic titanium compound such as titanium alkoxide can be used. In particular, titanium chloride is preferable because it can reduce the residual amount of impurities in lithium titanate. Further, as the ammonium compound, ammonia water, ammonium carbonate,
Ammonium sulfate, ammonium nitrate and the like can be used. When an alkali metal compound such as a sodium compound or a potassium compound is used in place of the ammonium compound, the elements of sodium and potassium remain in the obtained titanic acid compound, and inter-particle burning occurs in the subsequent dehydration by heating. It is not preferable because it causes binding and tends to make the size and shape of the particles non-uniform. The reaction proceeds by mixing the titanium compound and the ammonium compound in water, and orthotitanic acid (H 4 TiO 4 ) or H 4 -n (N 4 N in which its hydrogen ion is replaced with ammonium ion)
H 4) titanate compound is a compound represented by n TiO 4 can be obtained. The replacement amount of ammonium ions in H 4-n (NH 4 ) n TiO 4 can be arbitrarily changed by adjusting conditions such as ammonium ion concentration, free hydroxyl group concentration, hydrogen ion concentration and reaction temperature during the reaction. Since the particle size of the obtained titanic acid compound affects the particle size of lithium titanate obtained in the subsequent step, if the reaction temperature is set in the range of 0 to 50 ° C., the fine particle titanate compound is obtained. Is more preferable, and fine particulate lithium titanate can be obtained. A more preferable temperature range is 5 to 40 ° C, and the most preferable temperature range is 10 to 30 ° C.

【0010】このようにして得られたチタン酸化合物
を、必要に応じて、濾過したり、洗浄したり、酸洗浄し
たり、あるいは乾燥したりしてもよい。
The titanic acid compound thus obtained may be filtered, washed, acid washed, or dried, if necessary.

【0011】次のの工程は、前記の工程で得られた
チタン酸化合物を用いてチタン酸リチウム水和物を得る
工程であって、該チタン酸化合物とリチウム化合物とを
水中で反応させる工程である。前記のリチウム化合物と
しては、水酸化リチウム、炭酸リチウム、硝酸リチウ
ム、硫酸リチウムなどの水可溶性リチウム化合物を用い
ることができる。このリチウム化合物とチタン酸化合物
とを水中で混合することにより反応が進む。この反応の
温度を50℃以上にすると、結晶性の優れたチタン酸リ
チウム水和物が得られるため好ましい。より好ましい温
度範囲は100℃以上であり、さらに好ましい温度範囲
は100〜250℃であり、もっとも好ましい温度範囲
は130〜200℃である。100℃以上の温度で反応
を行う場合には、リチウム化合物とチタン酸化合物とを
オートクレーブに入れ、飽和蒸気圧下または加圧下で水
熱処理するのが好ましい。この水熱処理をアンモニウム
化合物の存在下で行うと、より低い水熱処理温度でも結
晶性のよい形状の整ったチタン酸リチウム水和物が得ら
れるため、より好ましい。水熱処理の際に存在させるア
ンモニウム化合物としては、アンモニア水、アンモニア
ガス、炭酸アンモニウム、硫酸アンモニウム、硝酸アン
モニウムなどを用いることができる。存在させるアンモ
ニウム化合物の量は0.01〜5モル/l程度であり、
好ましくは0.1〜3モル/lである。このような水熱
処理により、積層構造を有するチタン酸リチウム水和物
を得ることができる。
The next step is a step of obtaining a lithium titanate hydrate by using the titanic acid compound obtained in the above step, which is a step of reacting the titanic acid compound and the lithium compound in water. is there. As the lithium compound, a water-soluble lithium compound such as lithium hydroxide, lithium carbonate, lithium nitrate, and lithium sulfate can be used. The reaction proceeds by mixing the lithium compound and the titanate compound in water. When the temperature of this reaction is 50 ° C. or higher, lithium titanate hydrate having excellent crystallinity can be obtained, which is preferable. A more preferred temperature range is 100 ° C. or higher, an even more preferred temperature range is 100 to 250 ° C., and a most preferred temperature range is 130 to 200 ° C. When the reaction is carried out at a temperature of 100 ° C. or higher, it is preferable that the lithium compound and the titanate compound are placed in an autoclave and subjected to hydrothermal treatment under a saturated vapor pressure or under a pressure. It is more preferable that the hydrothermal treatment be performed in the presence of an ammonium compound, since a lithium titanate hydrate having good crystallinity and a well-formed shape can be obtained even at a lower hydrothermal treatment temperature. Ammonia water, ammonia gas, ammonium carbonate, ammonium sulfate, ammonium nitrate and the like can be used as the ammonium compound present during the hydrothermal treatment. The amount of the ammonium compound to be present is about 0.01 to 5 mol / l,
It is preferably 0.1 to 3 mol / l. By such a hydrothermal treatment, a lithium titanate hydrate having a laminated structure can be obtained.

【0012】このようにして得られたチタン酸リチウム
水和物を濾過し、必要に応じて洗浄したり、乾燥したり
してもよい。乾燥の温度は、チタン酸リチウム水和物が
結晶水を放出する温度以下の温度であれば適宜設定する
ことができ、30〜200℃程度の温度が適当である。
The lithium titanate hydrate thus obtained may be filtered and, if necessary, washed or dried. The drying temperature can be appropriately set as long as the temperature is lower than the temperature at which lithium titanate hydrate releases water of crystallization, and a temperature of about 30 to 200 ° C. is appropriate.

【0013】さらに次のの工程は、前記の工程で得
られたチタン酸リチウム水和物を加熱脱水してチタン酸
リチウムを得る工程である。加熱脱水の温度は、チタン
酸リチウム水和物が結晶水を放出する温度以上の温度か
ら、得られるチタン酸リチウムの空隙が消失する温度以
下の温度までである。この加熱脱水の温度範囲は、チタ
ン酸リチウム水和物の組成や結晶水の量などで異なる場
合があると考えられるが、概ね200〜800℃程度で
あり、空隙が多いチタン酸リチウムを得るうえでは、2
50〜700℃の範囲が好ましく、350〜650℃の
範囲がより好ましい。このようにして本発明のチタン酸
リチウムが得られる。
The next step is the step of heating and dehydrating the lithium titanate hydrate obtained in the above step to obtain lithium titanate. The temperature of the heat dehydration is from the temperature at which the lithium titanate hydrate releases the water of crystallization to the temperature at which the voids of the obtained lithium titanate disappear. It is considered that the temperature range of this heat dehydration may differ depending on the composition of the lithium titanate hydrate, the amount of crystal water, etc., but it is about 200 to 800 ° C., and in order to obtain lithium titanate with many voids. Then 2
The range of 50 to 700 ° C is preferable, and the range of 350 to 650 ° C is more preferable. Thus, the lithium titanate of the present invention is obtained.

【0014】次に、本発明は、前記のチタン酸リチウム
からなるリチウム電池用負極であり、さらには、その負
極を用いてなるリチウム電池である。リチウム電池用負
極は、本発明のチタン酸リチウムにカーボンブラックな
どの導電材とフッ素樹脂などのバインダとを加え、適宜
成形して得られる。また、リチウム電池は、前記の負極
と正極と電解液とを備える。正極には、リチウム含有二
酸化マンガン、コバルト酸リチウム、ニッケル酸リチウ
ム、五酸化バナジウムなどの常用の材料を用いることが
できる。また、電解液には、プロピレンカーボネート、
エチレンカーボネート、1、2−ジメトキシエタンなど
の溶媒にLiPF6 、LiClO4 、LiCF3
3 、LiN(CF3 SO2 2 、LiBF4 などのリ
チウム塩を溶解させたものなどの常用の電解液を用いる
ことができる。これらの材料をそれぞれ組み合わせてリ
チウム電池を構成することができる。
Next, the present invention is a lithium battery negative electrode comprising the above-mentioned lithium titanate, and further a lithium battery comprising the negative electrode. The negative electrode for a lithium battery can be obtained by appropriately adding a conductive material such as carbon black and a binder such as a fluororesin to the lithium titanate of the present invention and molding the mixture. Further, a lithium battery includes the above-mentioned negative electrode, positive electrode, and electrolytic solution. For the positive electrode, a commonly used material such as lithium-containing manganese dioxide, lithium cobalt oxide, lithium nickel oxide, or vanadium pentoxide can be used. In addition, the electrolytic solution, propylene carbonate,
LiPF 6 , LiClO 4 , LiCF 3 S in a solvent such as ethylene carbonate or 1,2-dimethoxyethane
A commonly used electrolytic solution such as one in which a lithium salt such as O 3 , LiN (CF 3 SO 2 ) 2 or LiBF 4 is dissolved can be used. These materials can be combined to form a lithium battery.

【0015】[0015]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れらの実施例に限定されるものではない。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited to these examples.

【0016】実施例1 (1)チタン酸化合物の合成 5l4ツ口フラスコに、28重量%のアンモニア水91
1mlと純水1339mlとを入れ、攪拌下、溶液の温
度が10〜15℃になるように氷冷しながら、1.25
モル/lの四塩化チタン水溶液2250mlを2時間か
けて加え、その後、1時間熟成して沈殿物を得た。熟成
後のpHは8.85であり、TiO2 濃度は50g/l
であり、遊離水酸基濃度は0.5モル/lであった。
Example 1 (1) Synthesis of titanic acid compound In a 5 l 4-neck flask, 28% by weight of ammonia water 91 was added.
1 ml and 1339 ml of pure water were added, and while stirring, ice-cooling was performed so that the temperature of the solution became 10 to 15 ° C., and 1.25
2250 ml of a mol / l titanium tetrachloride aqueous solution was added over 2 hours and then aged for 1 hour to obtain a precipitate. The pH after aging is 8.85 and the TiO 2 concentration is 50 g / l.
And the free hydroxyl group concentration was 0.5 mol / l.

【0017】次に、前記の熟成後のスラリーに、35重
量%の塩酸199mlを純水300mlで希釈した塩酸
水溶液を1時間かけて添加してpHを5.50に調整し
た後、そのpHを保持しながら1時間熟成した。その
後、沈殿物を濾過し、洗浄して、アンモニア、塩素イオ
ンを除去した後、得られた濾過ケーキをリパルプしてT
iO2 濃度50g/lのスラリーにした。次いで、氷冷
しながら、このスラリーに、35重量%の塩酸26ml
を純水104mlで希釈した塩酸水溶液を1時間かけて
添加してpHを5.50に調整した後、そのpHを保持
しながら1時間熟成し、次いで、沈殿物を濾過し、洗浄
して、チタン酸化合物を得た。
Next, an aqueous hydrochloric acid solution prepared by diluting 199 ml of 35% by weight hydrochloric acid with 300 ml of pure water was added to the above aged slurry over 1 hour to adjust the pH to 5.50, and then the pH was adjusted to 5.50. Aged for 1 hour while holding. Thereafter, the precipitate was filtered and washed to remove ammonia and chloride ions, and the obtained filter cake was repulped to T
A slurry having an iO 2 concentration of 50 g / l was obtained. Then, while cooling with ice, 26 ml of 35% by weight hydrochloric acid was added to the slurry.
After adjusting the pH to 5.50 by adding a hydrochloric acid aqueous solution diluted with 104 ml of pure water over 1 hour, the mixture was aged for 1 hour while maintaining the pH, and then the precipitate was filtered and washed, A titanic acid compound was obtained.

【0018】このようにして得られたチタン酸化合物少
量を50℃の温度で乾燥して、その物性を調べた。その
結果、このチタン酸化合物は、微細な粒子の集合体(不
定形)であり、X線的に非晶質であった。また、化学分
析によると、その成分割合は、Ti47.0重量%、N
4 1.44重量%、Cl 0.07重量%であり、そ
の組成はH3.92(NH4 0.08TiO4 であると推定さ
れる。さらに、DSC分析によると、111℃で脱水
し、440℃でアナターゼに結晶化することがわかっ
た。
A small amount of the titanic acid compound thus obtained was dried at a temperature of 50 ° C. and its physical properties were examined. As a result, this titanic acid compound was an aggregate of fine particles (amorphous form), and was amorphous in X-ray. According to the chemical analysis, the component ratio was 47.0% by weight of Ti, N
H 4 1.44 wt%, a Cl 0.07 wt%, the composition is estimated to H 3.92 (NH 4) a 0.08 TiO 4. Further, DSC analysis revealed that the polymer was dehydrated at 111 ° C. and crystallized into anatase at 440 ° C.

【0019】(2)チタン酸リチウム水和物の合成 前記(1)で得られたチタン酸化合物をリパルプしてT
iO2 濃度55.02g/lのスラリーを得た。このス
ラリーのpHは6.90であり、導電率は330μS/
cmであった。このスラリー3.64lを5l4ツ口フ
ラスコに仕込み、スラリーの温度が10〜15℃になる
ように氷冷しながら、84.97gの水酸化リチウム一
水塩を純水360mlに溶解した水溶液を1時間かけて
加え、その後、1時間熟成した。添加終了後のスラリー
のpHは12.1であり、TiO2 濃度は50g/lで
あった。また、添加したリチウム化合物は、Li/Ti
モル比が0.8であった。次に、このようにして得られ
たスラリーをオートクレーブに仕込み、190℃の温度
で2時間水熱処理した。水熱処理後のスラリーは、ペー
スト状に増粘しており、pHは13であり、アンモニア
臭がした。次いで、水熱処理後のスラリーを濾過した
後、洗浄せずに50℃の温度で乾燥して、チタン酸リチ
ウム水和物を得た。
(2) Synthesis of Lithium Titanate Hydrate The titanate compound obtained in (1) above is repulped to give T.
A slurry having an iO 2 concentration of 55.02 g / l was obtained. The pH of this slurry was 6.90 and the conductivity was 330 μS /
cm. 3.64 l of this slurry was charged into a 5-l4 neck flask, and while cooling the ice with ice so that the temperature of the slurry was 10 to 15 ° C, an aqueous solution in which 84.97 g of lithium hydroxide monohydrate was dissolved in 360 ml of pure water was added. It was added over time and then aged for 1 hour. After completion of the addition, the pH of the slurry was 12.1, and the TiO 2 concentration was 50 g / l. The added lithium compound is Li / Ti
The molar ratio was 0.8. Next, the slurry thus obtained was charged into an autoclave and hydrothermally treated at a temperature of 190 ° C. for 2 hours. The slurry after the hydrothermal treatment was thickened into a paste, had a pH of 13, and had an ammonia odor. Then, the hydrothermally treated slurry was filtered and then dried at a temperature of 50 ° C. without washing to obtain a lithium titanate hydrate.

【0020】このようにして得られたチタン酸リチウム
水和物の物性を調べた。その結果、このチタン酸リチウ
ム水和物は、電子顕微鏡観察により、長径が1μm、短
径が0.8μm、厚さ16nm程度の極薄い板状形状を
有する微粒子であって、厚み方向に4層程度重なった積
層構造を有し、その層間隔はおよそ4nmであることが
わかった。また、X線回折の回折パターンから、結晶性
に優れていることがわかった。さらに、化学分析による
と、その成分割合は、Ti45.6重量%、Li5.3
7重量%、NH4 <0.01重量%、Cl<0.005
重量%であり、その組成は熱処理による減量からLi
1.33Ti1.674 ・H2 Oであると推定される。さら
に、DSC分析によると、75℃で付着水が脱離し、2
15℃で結晶水を放出してLi1.33Ti1.674 に相転
移し、337℃で結晶化することがわかった。
The physical properties of the thus obtained lithium titanate hydrate were examined. As a result, the lithium titanate hydrate was fine particles having an ultrathin plate-like shape with a long diameter of 1 μm, a short diameter of 0.8 μm, and a thickness of about 16 nm as observed by an electron microscope, and had four layers in the thickness direction. It was found that the layers had a laminated structure with a certain degree of overlap, and the layer spacing was about 4 nm. Further, it was found from the diffraction pattern of X-ray diffraction that the crystallinity was excellent. Furthermore, according to the chemical analysis, the component ratios are Ti 45.6% by weight and Li 5.3.
7% by weight, NH 4 <0.01% by weight, Cl <0.005
% By weight, and its composition is
It is estimated to be 1.33 Ti 1.67 O 4 .H 2 O. Furthermore, according to the DSC analysis, the adhered water was desorbed at 75 ° C.
It was found that water of crystallization was released at 15 ° C., a phase transition was made to Li 1.33 Ti 1.67 O 4 , and crystallization was carried out at 337 ° C.

【0021】(3)チタン酸リチウムの合成 前記(2)で得られたチタン酸リチウム水和物を瑪瑙乳
鉢で粉砕した後、粉砕物15gをアルミナ坩堝に計り取
り、250、400、500、600、700℃の温度
に各々設定した電気炉に入れ、2時間大気中で加熱脱水
して、本発明のチタン酸リチウム(試料A〜E)を得
た。
(3) Synthesis of lithium titanate The lithium titanate hydrate obtained in (2) above was pulverized in an agate mortar, and then 15 g of the pulverized product was weighed into an alumina crucible, 250, 400, 500, 600. , Lithium titanate of the present invention (Samples A to E) was obtained by placing in an electric furnace set to a temperature of 700 ° C. and heating and dehydration in the atmosphere for 2 hours.

【0022】このようにして得られた試料A〜Eの物性
を調べた。その結果、このチタン酸リチウムは、電子顕
微鏡観察により、長径が1μm、短径が0.8μm、厚
さ10〜50nm程度の極薄い板状形状を有する微粒子
であって、厚み方向に4層程度重なった積層構造を有し
ていることがわかった。その層間隔は400℃の温度で
加熱脱水した試料Bがもっとも広く、400℃より高い
温度で加熱脱水した試料では、結晶成長と緻密化が起こ
り、層間隔が徐々に狭くなることがわかった。次に、B
ET方式による比表面積の測定結果と窒素吸着による空
隙量の測定結果を表1に示す。なお、空隙量の測定に
は、日本ベル社製、ベルソープ−28を用いた。この結
果から、試料A〜Eは、いずれも粒子内に空隙を有する
ことがわかった。また、X線回折の回折パターンから、
試料A〜EはLi1.33Ti1.674であること、さら
に、表2に示すように、加熱脱水の温度をあげると、面
間隔は徐々に狭くなり、ASTMカードに記載された面
間隔の値に近づくことがわかった。
The physical properties of the samples A to E thus obtained were examined. As a result, the lithium titanate is a fine particle having an ultrathin plate-like shape with a long diameter of 1 μm, a short diameter of 0.8 μm, and a thickness of 10 to 50 nm as observed by an electron microscope, and has about 4 layers in the thickness direction. It was found to have an overlapping layered structure. It was found that the layer spacing was widest in the sample B heat-dehydrated at a temperature of 400 ° C., and in the sample heat-dehydrated at a temperature higher than 400 ° C., crystal growth and densification occurred and the layer spacing gradually narrowed. Then B
Table 1 shows the measurement results of the specific surface area by the ET method and the measurement results of the void amount by nitrogen adsorption. In addition, Bell Soap 28 manufactured by Nippon Bell Co., Ltd. was used for the measurement of the void amount. From this result, it was found that each of Samples A to E had voids in the particles. In addition, from the diffraction pattern of X-ray diffraction,
Samples A to E were Li 1.33 Ti 1.67 O 4 , and as shown in Table 2, when the temperature of heat dehydration was raised, the interplanar spacing gradually became smaller, and the value of the interplanar spacing described in the ASTM card was obtained. Found to approach.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】実施例2 (1)チタン酸化合物の合成 前記実施例1の(1)に記載された方法に準じて、チタ
ン酸化合物を得た。 (2)チタン酸リチウム水和物の合成 前記(1)で得られたチタン酸化合物をリパルプしてT
iO2 濃度56.24g/lのスラリーを得た。このス
ラリー1.494lと純水0.208lを3l4ツ口フ
ラスコに仕込み、スラリーの温度が10〜15℃になる
ように氷冷しながら、3.075Nの水酸化リチウム水
溶液を1時間かけて加え、次いで、純水0.376lを
加えて1時間攪拌し熟成した。次に、このようにして得
られたスラリーをオートクレーブに仕込み、170℃の
温度で4時間水熱処理した。次いで、水熱処理後のスラ
リーを濾過した後、洗浄せずに110℃の温度で乾燥し
て、チタン酸リチウム水和物を得た。
Example 2 (1) Synthesis of Titanic Acid Compound A titanic acid compound was obtained according to the method described in (1) of Example 1 above. (2) Synthesis of lithium titanate hydrate The titanate compound obtained in (1) above is repulped to give T
A slurry having an iO 2 concentration of 56.24 g / l was obtained. 1.494 l of this slurry and 0.208 l of pure water were charged into a 3 l 4-neck flask, and an ice-cooled 3.075N lithium hydroxide aqueous solution was added over 1 hour while cooling the ice so that the temperature of the slurry was 10 to 15 ° C. Then, 0.376 l of pure water was added, and the mixture was stirred for 1 hour and aged. Next, the slurry thus obtained was charged into an autoclave and subjected to a hydrothermal treatment at a temperature of 170 ° C. for 4 hours. Next, the hydrothermally treated slurry was filtered and then dried at a temperature of 110 ° C. without washing to obtain a lithium titanate hydrate.

【0026】このようにして得られたチタン酸リチウム
水和物の物性を調べた。その結果、このチタン酸リチウ
ム水和物は、電子顕微鏡観察により、長径が0.8μ
m、短径が0.65μm、厚さ20nm程度の極薄い板
状形状を有していることがわかった。比表面積は11
9.2m2 /gであり、空隙量は0.408ml/gで
あった。なお、空隙量の測定には、日本ベル社製、ベル
ソープ−28を用いた。また、X線回折の回折パターン
から、結晶性に優れていることがわかった。さらに、化
学分析によると、その成分割合は、Ti43.1重量
%、Li4.85重量%、NH4 <0.01重量%、C
l<0.005重量%であり、X線回折からLi1.33
1.674 ・H2 Oの存在が確認された。さらに、DS
C分析によると、208℃で結晶水を放出してLi1.33
Ti1.674 に相転移し、345℃で結晶化することが
わかった。
The physical properties of the thus obtained lithium titanate hydrate were examined. As a result, this lithium titanate hydrate had a major axis of 0.8 μm as observed by an electron microscope.
It was found that it had an extremely thin plate-like shape with m, a minor axis of 0.65 μm, and a thickness of about 20 nm. Specific surface area is 11
It was 9.2 m 2 / g and the void volume was 0.408 ml / g. In addition, Bell Soap 28 manufactured by Nippon Bell Co., Ltd. was used for the measurement of the void amount. Further, it was found from the diffraction pattern of X-ray diffraction that the crystallinity was excellent. Further, according to the chemical analysis, the component ratios are as follows: Ti 43.1% by weight, Li 4.85% by weight, NH 4 <0.01% by weight, C
l <0.005% by weight, and X-ray diffraction shows that Li 1.33 T
The presence of i 1.67 O 4 .H 2 O was confirmed. Furthermore, DS
According to C analysis, water of crystallization was released at 208 ° C. to give Li 1.33
It was found to undergo a phase transition to Ti 1.67 O 4 and crystallize at 345 ° C.

【0027】(3)チタン酸リチウムの合成 前記(2)で得られたチタン酸リチウム水和物を瑪瑙乳
鉢で粉砕した後、粉砕物15gをアルミナ坩堝に計り取
り、550、590、630℃の温度に各々設定した電
気炉に入れ、2時間大気中で加熱脱水して、本発明のチ
タン酸リチウム(試料F〜H)を得た。
(3) Synthesis of lithium titanate The lithium titanate hydrate obtained in (2) above was crushed in an agate mortar, and 15 g of the crushed product was weighed into an alumina crucible at 550, 590 and 630 ° C. The lithium titanate of the present invention (Samples F to H) was obtained by placing in an electric furnace set to each temperature and heating and dehydrating in the atmosphere for 2 hours.

【0028】このようにして得られた試料F〜Hの物性
を調べた。その結果、このチタン酸リチウムは、電子顕
微鏡観察により、長径が0.2〜0.3μmの微粒子で
あり、極薄い板状形状を有していることがわかった。次
に、BET方式による比表面積の測定結果と窒素吸着に
よる空隙量の測定結果を表3に示す。なお、空隙量の測
定には、日本ベル社製、ベルソープ−28を用いた。こ
の結果から、試料F〜Hは、いずれも粒子内に空隙を有
するものであることがわかった。また、X線回折の回折
パターンから、試料F〜HはLi1.33Ti1.674 であ
ることを確認した。
The physical properties of the samples F to H thus obtained were examined. As a result, it was found by electron microscope observation that the lithium titanate was fine particles having a major axis of 0.2 to 0.3 μm and had an extremely thin plate shape. Next, Table 3 shows the measurement results of the specific surface area by the BET method and the measurement results of the void amount by nitrogen adsorption. In addition, Bell Soap 28 manufactured by Nippon Bell Co., Ltd. was used for the measurement of the void amount. From this result, it was found that each of Samples F to H had voids in the particles. In addition, from the diffraction patterns of X-ray diffraction, it was confirmed that Samples F to H were Li 1.33 Ti 1.67 O 4 .

【0029】[0029]

【表3】 [Table 3]

【0030】実施例3 実施例2において、水熱処理温度を150℃とすること
以外は実施例2と同様に処理して、チタン酸リチウム水
和物を得た。
Example 3 Lithium titanate hydrate was obtained in the same manner as in Example 2, except that the hydrothermal treatment temperature was 150 ° C.

【0031】このようにして得られたチタン酸リチウム
水和物の物性を調べた。その結果、このチタン酸リチウ
ム水和物は、電子顕微鏡観察により、長径が0.8μ
m、短径が0.65μm、厚さ20nm程度の極薄い板
状形状を有していることがわかった。比表面積は13
0.1m2 /gであり、空隙量は0.327ml/gで
あった。なお、空隙量の測定には、日本ベル社製、ベル
ソープ−28を用いた。また、X線回折の回折パターン
から、結晶性に優れていることがわかった。さらに、化
学分析によると、その成分割合は、Ti43.2重量
%、Li4.80重量%、NH4 <0.01重量%、C
l<0.005重量%であり、X線回折からLi1.33
1.674 ・H2 Oの存在が確認された。さらに、DS
C分析によると、206℃で結晶水を放出してLi1.33
Ti1.674 に相転移し、355℃で結晶化することが
わかった。
The physical properties of the lithium titanate hydrate thus obtained were examined. As a result, this lithium titanate hydrate had a major axis of 0.8 μm as observed by an electron microscope.
It was found that it had an extremely thin plate-like shape with m, a minor axis of 0.65 μm, and a thickness of about 20 nm. Specific surface area is 13
It was 0.1 m 2 / g, and the void volume was 0.327 ml / g. In addition, Bell Soap 28 manufactured by Nippon Bell Co., Ltd. was used for the measurement of the void amount. Further, it was found from the diffraction pattern of X-ray diffraction that the crystallinity was excellent. Further, according to the chemical analysis, the component ratios are as follows: Ti 43.2% by weight, Li 4.80% by weight, NH 4 <0.01% by weight, C
l <0.005% by weight, and X-ray diffraction shows that Li 1.33 T
The presence of i 1.67 O 4 .H 2 O was confirmed. Furthermore, DS
According to C analysis, water of crystallization was released at 206 ° C. to give Li 1.33
It was found to undergo a phase transition to Ti 1.67 O 4 and crystallize at 355 ° C.

【0032】(3)チタン酸リチウムの合成 前記のチタン酸リチウム水和物を瑪瑙乳鉢で粉砕した
後、粉砕物15gをアルミナ坩堝に計り取り、550、
590、630℃の温度に各々設定した電気炉に入れ、
2時間大気中で加熱脱水して、本発明のチタン酸リチウ
ム(試料I〜K)を得た。
(3) Synthesis of lithium titanate After pulverizing the lithium titanate hydrate described above in an agate mortar, 15 g of the pulverized product was weighed into an alumina crucible, 550,
Put them in an electric furnace set to 590 and 630 ° C.
It was heated and dehydrated in the atmosphere for 2 hours to obtain the lithium titanate of the present invention (Samples I to K).

【0033】このようにして得られた試料I〜Kの物性
を調べた。その結果、このチタン酸リチウムは、電子顕
微鏡観察により、長径が0.2〜0.3μmの微粒子で
あり、極薄い板状形状を有していることがわかった。次
に、BET方式による比表面積の測定結果と窒素吸着に
よる空隙量の測定結果を表4に示す。なお、空隙量の測
定には、日本ベル社製、ベルソープ−28を用いた。こ
の結果から、試料I〜Kは、いずれも粒子内に空隙を有
するものであることがわかった。また、X線回折の回折
パターンから、試料I〜KはLi1.33Ti1.674 であ
ることを確認した。
The physical properties of the samples I to K thus obtained were examined. As a result, it was found by electron microscope observation that the lithium titanate was fine particles having a major axis of 0.2 to 0.3 μm and had an extremely thin plate shape. Next, Table 4 shows the measurement results of the specific surface area by the BET method and the measurement results of the void amount by nitrogen adsorption. In addition, Bell Soap 28 manufactured by Nippon Bell Co., Ltd. was used for the measurement of the void amount. From this result, it was found that Samples I to K all had voids in the particles. Further, from the diffraction pattern of X-ray diffraction, it was confirmed that Samples I to K were Li 1.33 Ti 1.67 O 4 .

【0034】[0034]

【表4】 [Table 4]

【0035】実施例4 (1)チタン酸化合物の合成 前記実施例1の(1)に記載された方法に準じて、チタ
ン酸化合物を得た。 (2)チタン酸リチウム水和物の合成 前記(1)で得られたチタン酸化合物をリパルプしてT
iO2 濃度55.02g/lのスラリーを得た。このス
ラリーのpHは6.90であり、導電率は330μS/
cmであった。このスラリー3.64lを5l4ツ口フ
ラスコに仕込み、スラリーの温度が10〜15℃になる
ように氷冷しながら、84.97gの水酸化リチウム一
水塩を純水360mlに溶解した水溶液を1時間かけて
加え、その後、1時間熟成した。添加終了後のスラリー
のpHは12.1であり、TiO2 濃度は50g/lで
あった。また、添加したリチウム化合物は、Li/Ti
モル比が0.8であった。次に、このようにして得られ
たスラリーを95℃に昇温し、その温度で2時間反応さ
せた。次いで、得られた反応スラリーを冷却し、次い
で、濾過した後、洗浄せずに50℃の温度で乾燥して、
チタン酸リチウム水和物を得た。
Example 4 (1) Synthesis of Titanic Acid Compound A titanic acid compound was obtained according to the method described in (1) of Example 1 above. (2) Synthesis of lithium titanate hydrate The titanate compound obtained in (1) above is repulped to give T
A slurry having an iO 2 concentration of 55.02 g / l was obtained. The pH of this slurry was 6.90 and the conductivity was 330 μS /
cm. 3.64 l of this slurry was charged into a 5-l4 neck flask, and while cooling the ice with ice so that the temperature of the slurry was 10 to 15 ° C, an aqueous solution in which 84.97 g of lithium hydroxide monohydrate was dissolved in 360 ml of pure water was added. It was added over time and then aged for 1 hour. After completion of the addition, the pH of the slurry was 12.1, and the TiO 2 concentration was 50 g / l. The added lithium compound is Li / Ti
The molar ratio was 0.8. Next, the slurry thus obtained was heated to 95 ° C. and reacted at that temperature for 2 hours. The reaction slurry obtained is then cooled, then filtered and then dried without washing at a temperature of 50 ° C.,
Lithium titanate hydrate was obtained.

【0036】このようにして得られたチタン酸リチウム
水和物の物性を調べた。その結果、このチタン酸リチウ
ム水和物は、電子顕微鏡観察により、300nm程度の
微粒子の集合体であり、極薄い板状形状を有しているこ
とがわかった。また、化学分析によると、その成分割合
は、Ti44.1重量%、Li4.61重量%、NH4
0.02重量%、Cl<0.005重量%であり、X線
回折からLi1.33Ti1.674 ・H2 Oの存在が確認さ
れた。さらに、DSC分析によると、348℃で結晶水
を放出してLi1.33Ti1.674 に相転移し、476℃
で結晶化することがわかった。
The physical properties of the thus obtained lithium titanate hydrate were examined. As a result, it was found by electron microscope observation that the lithium titanate hydrate was an aggregate of fine particles of about 300 nm and had an extremely thin plate shape. Further, according to the chemical analysis, the component ratios thereof are Ti 44.1% by weight, Li 4.61% by weight, NH 4
It was 0.02% by weight and Cl <0.005% by weight, and the presence of Li 1.33 Ti 1.67 O 4 .H 2 O was confirmed by X-ray diffraction. Further, according to DSC analysis, water of crystallization was released at 348 ° C., and a phase transition to Li 1.33 Ti 1.67 O 4 occurred, resulting in 476 ° C.
It was found to crystallize at.

【0037】(3)チタン酸リチウムの合成 前記(2)で得られたチタン酸リチウム水和物を瑪瑙乳
鉢で粉砕した後、粉砕物15gをアルミナ坩堝に計り取
り、250、400、500、600℃の温度に設定し
た電気炉に入れ、2時間大気中で加熱脱水して、本発明
のチタン酸リチウム(試料L〜O)を得た。
(3) Synthesis of lithium titanate The lithium titanate hydrate obtained in (2) above was crushed in an agate mortar, and 15 g of the crushed product was weighed into an alumina crucible to obtain 250, 400, 500, 600. The lithium titanate of the present invention (Samples L to O) was obtained by heating in an electric furnace set to a temperature of ° C and dehydration by heating in the atmosphere for 2 hours.

【0038】このようにして得られたチタン酸リチウム
の物性を調べた。その結果、このチタン酸リチウムは、
電子顕微鏡観察により、1μmの微粒子であり、極薄い
板状形状を有していることがわかった。次に、BET方
式による比表面積の測定結果と窒素吸着による空隙量の
測定結果を表5に示す。この結果から、試料L〜Oは、
いずれも粒子内に空隙を有するものであることがわかっ
た。また、X線回折の回折パターンから、試料L〜Oは
Li1.33Ti1.674 であること、さらに、表6に示す
ように、加熱脱水の温度をあげると、面間隔は徐々に広
くなり、ASTMカードに記載された面間隔の値に近づ
くことがわかった。
The physical properties of the lithium titanate thus obtained were examined. As a result, this lithium titanate is
Observation with an electron microscope revealed that the particles were 1 μm fine particles and had an extremely thin plate shape. Next, Table 5 shows the measurement results of the specific surface area by the BET method and the measurement results of the void amount by nitrogen adsorption. From this result, the samples L to O are
It was found that each of them had voids in the particles. Further, from the diffraction pattern of X-ray diffraction, the samples L to O were Li 1.33 Ti 1.67 O 4 , and further, as shown in Table 6, when the temperature of heat dehydration was increased, the interplanar spacing gradually widened, It was found that the value of the surface spacing described on the ASTM card was approached.

【0039】[0039]

【表5】 [Table 5]

【0040】[0040]

【表6】 [Table 6]

【0041】実施例5 実施例2において、水酸化リチウム水溶液を1時間かけ
て加えた後、8.71Nのアンモニア水溶液0.138
lと純水0.238lを加えて1時間攪拌し熟成するこ
と以外は実施例2と同様に処理して、チタン酸リチウム
水和物を得た。なお、水熱処理時のアンモニウム化合物
の濃度は0.5モル/lである。
Example 5 In Example 2, after adding an aqueous lithium hydroxide solution over 1 hour, 0.138 aqueous ammonia solution of 0.138 was added.
Lithium titanate hydrate was obtained in the same manner as in Example 2, except that 1 liter of pure water and 0.238 liter of pure water were added and the mixture was stirred for 1 hour for aging. The concentration of the ammonium compound during the hydrothermal treatment is 0.5 mol / l.

【0042】このようにして得られたチタン酸リチウム
水和物の物性を調べた。その結果、このチタン酸リチウ
ム水和物は、電子顕微鏡観察により、長径が0.8μ
m、短径が0.65μm、厚さ20nm程度の極薄い板
状形状を有していることがわかった。比表面積は12
6.9m2 /gであり、空隙量は0.389ml/gで
あった。なお、空隙量の測定には、日本ベル社製、ベル
ソープ−28を用いた。また、X線回折の回折パターン
から、結晶性に優れていることがわかった。さらに、化
学分析によると、その成分割合は、Ti43.0重量
%、Li4.83重量%、NH4 0.05重量%、Cl
<0.005重量%であり、X線回折からLi1.33Ti
1.674 ・H2 Oの存在が確認された。さらに、DSC
分析によると、208℃で結晶水を放出してLi1.33
1.674 に相転移し、344℃で結晶化することがわ
かった。
The physical properties of the lithium titanate hydrate thus obtained were examined. As a result, this lithium titanate hydrate had a major axis of 0.8 μm as observed by an electron microscope.
It was found that it had an extremely thin plate-like shape with m, a minor axis of 0.65 μm, and a thickness of about 20 nm. Specific surface area is 12
It was 6.9 m 2 / g, and the void volume was 0.389 ml / g. In addition, Bell Soap 28 manufactured by Nippon Bell Co., Ltd. was used for the measurement of the void amount. Further, it was found from the diffraction pattern of X-ray diffraction that the crystallinity was excellent. Further, according to the chemical analysis, the component ratios are as follows: Ti 43.0 wt%, Li 4.83 wt%, NH 4 0.05 wt%, Cl
<0.005% by weight, and from the X-ray diffraction, Li 1.33 Ti
The presence of 1.67 O 4 .H 2 O was confirmed. In addition, DSC
According to the analysis, water of crystallization was released at 208 ° C. to give Li 1.33 T
It was found to undergo a phase transition to i 1.67 O 4 and crystallize at 344 ° C.

【0043】(3)チタン酸リチウムの合成 前記のチタン酸リチウム水和物を瑪瑙乳鉢で粉砕した
後、粉砕物15gをアルミナ坩堝に計り取り、550、
590、630℃の温度に各々設定した電気炉に入れ、
2時間大気中で加熱脱水して、本発明のチタン酸リチウ
ム(試料P〜R)を得た。
(3) Synthesis of lithium titanate The above lithium titanate hydrate was crushed in an agate mortar, and 15 g of the crushed product was weighed into an alumina crucible 550,
Put them in an electric furnace set to 590 and 630 ° C.
It was heated and dehydrated in the atmosphere for 2 hours to obtain the lithium titanate of the present invention (Samples P to R).

【0044】このようにして得られた試料P〜Rの物性
を調べた。その結果、このチタン酸リチウムは、電子顕
微鏡観察により、長径が0.2〜0.3μmの微粒子で
あり、極薄い板状形状を有していることがわかった。次
に、BET方式による比表面積の測定結果と窒素吸着に
よる空隙量の測定結果を表7に示す。なお、空隙量の測
定には、日本ベル社製、ベルソープ−28を用いた。こ
の結果から、試料P〜Rは、いずれも粒子内に空隙を有
するものであることがわかった。また、X線回折の回折
パターンから、試料P〜RはLi1.33Ti1.674 であ
ることを確認した。
The physical properties of the samples P to R thus obtained were examined. As a result, it was found by electron microscope observation that the lithium titanate was fine particles having a major axis of 0.2 to 0.3 μm and had an extremely thin plate shape. Next, Table 7 shows the measurement results of the specific surface area by the BET method and the measurement results of the void amount by nitrogen adsorption. In addition, Bell Soap 28 manufactured by Nippon Bell Co., Ltd. was used for the measurement of the void amount. From this result, it was found that each of Samples P to R had voids in the particles. Further, from the diffraction pattern of X-ray diffraction, it was confirmed that the samples P to R were Li 1.33 Ti 1.67 O 4 .

【0045】[0045]

【表7】 [Table 7]

【0046】実施例6 実施例2において、水酸化リチウム水溶液を1時間かけ
て加えた後、8.71Nのアンモニア水溶液0.276
lと純水0.1lを加えて1時間攪拌し熟成すること以
外は実施例2と同様に処理して、本発明のチタン酸リチ
ウム水和物を得た。なお、水熱処理時のアンモニウム化
合物の濃度は1.0モル/lである。
Example 6 In Example 2, an aqueous lithium hydroxide solution was added over 1 hour, and then an aqueous 8.71N ammonia solution 0.276 was added.
Lithium titanate hydrate of the present invention was obtained in the same manner as in Example 2 except that 1 l of pure water and 0.1 l of pure water were added and the mixture was stirred for 1 hour for aging. The concentration of the ammonium compound during the hydrothermal treatment is 1.0 mol / l.

【0047】このようにして得られたチタン酸リチウム
水和物の物性を調べた。その結果、このチタン酸リチウ
ム水和物は、電子顕微鏡観察により、長径が0.8μ
m、短径が0.65μm、厚さ20nm程度の極薄い板
状形状を有していることがわかった。比表面積は11
3.9m2 /gであり、空隙量は0.559ml/gで
あった。なお、空隙量の測定には、日本ベル社製、ベル
ソープ−28を用いた。また、X線回折の回折パターン
から、結晶性に優れていることがわかった。さらに、化
学分析によると、その成分割合は、Ti42.7重量
%、Li4.97重量%、NH4 0.05重量%、Cl
<0.005重量%であり、X線回折からLi1.33Ti
1.674 ・H2 Oの存在が確認された。さらに、DSC
分析によると、209℃で結晶水を放出してLi1.33
1.674 に相転移し、334℃で結晶化することがわ
かった。
The physical properties of the lithium titanate hydrate thus obtained were examined. As a result, this lithium titanate hydrate had a major axis of 0.8 μm as observed by an electron microscope.
It was found that it had an extremely thin plate-like shape with m, a minor axis of 0.65 μm, and a thickness of about 20 nm. Specific surface area is 11
It was 3.9 m 2 / g, and the void volume was 0.559 ml / g. In addition, Bell Soap 28 manufactured by Nippon Bell Co., Ltd. was used for the measurement of the void amount. Further, it was found from the diffraction pattern of X-ray diffraction that the crystallinity was excellent. Further, according to the chemical analysis, the component ratios are as follows: Ti 42.7 wt%, Li 4.97 wt%, NH 4 0.05 wt%, Cl
<0.005% by weight, and from the X-ray diffraction, Li 1.33 Ti
The presence of 1.67 O 4 .H 2 O was confirmed. In addition, DSC
According to the analysis, water of crystallization was released at 209 ° C. to give Li 1.33 T
It was found to undergo a phase transition to i 1.67 O 4 and crystallize at 334 ° C.

【0048】(3)チタン酸リチウムの合成 前記のチタン酸リチウム水和物を瑪瑙乳鉢で粉砕した
後、粉砕物15gをアルミナ坩堝に計り取り、550、
590、630℃の温度に各々設定した電気炉に入れ、
2時間大気中で加熱脱水して、本発明のチタン酸リチウ
ム(試料S〜U)を得た。
(3) Synthesis of lithium titanate The above lithium titanate hydrate was crushed in an agate mortar, and 15 g of the crushed product was weighed into an alumina crucible, 550,
Put them in an electric furnace set to 590 and 630 ° C.
It was heated and dehydrated in the atmosphere for 2 hours to obtain the lithium titanate of the present invention (Samples S to U).

【0049】このようにして得られた試料S〜Uの物性
を調べた。その結果、このチタン酸リチウムは、電子顕
微鏡観察により、長径が0.2〜0.3μmの微粒子で
あり、極薄い板状形状を有していることがわかった。次
に、BET方式による比表面積の測定結果と窒素吸着に
よる空隙量の測定結果を表8に示す。なお、空隙量の測
定には、日本ベル社製、ベルソープ−28を用いた。こ
の結果から、試料S〜Uは、いずれも粒子内に空隙を有
するものであることがわかった。また、X線回折の回折
パターンから、試料S〜UはLi1.33Ti1.674 であ
ることを確認した。
The physical properties of the samples S to U thus obtained were examined. As a result, it was found by electron microscope observation that the lithium titanate was fine particles having a major axis of 0.2 to 0.3 μm and had an extremely thin plate shape. Next, Table 8 shows the measurement results of the specific surface area by the BET method and the measurement results of the void amount by nitrogen adsorption. In addition, Bell Soap 28 manufactured by Nippon Bell Co., Ltd. was used for the measurement of the void amount. From this result, it was found that each of Samples S to U had voids in the particles. Further, from the diffraction pattern of X-ray diffraction, it was confirmed that Samples S to U were Li 1.33 Ti 1.67 O 4 .

【0050】[0050]

【表8】 [Table 8]

【0051】水熱処理の際にアンモニウム化合物を存在
させて得られた試料P〜U(実施例5、6)とアンモニ
ウム化合物を存在させずに得られた試料F〜H(実施例
2)とを比較すると、アンモニウム化合物を存在させた
試料P〜Uの方が空隙量が大きいか同程度であり、しか
も、同じ水熱処理温度では結晶性のよい形状の整ったチ
タン酸リチウムが得られることがわかった。
Samples P to U (Examples 5 and 6) obtained in the presence of the ammonium compound during the hydrothermal treatment and Samples F to H (Example 2) obtained in the absence of the ammonium compound were used. By comparison, it was found that Samples P to U in which the ammonium compound was present had larger or similar voids, and at the same hydrothermal treatment temperature, well-shaped lithium titanate having good crystallinity was obtained. It was

【0052】前記の実施例1〜6で得られた試料A〜U
を用いた場合には、所望のリチウム電池用負極、さらに
はリチウム電池が得られることを確認した。
Samples A to U obtained in Examples 1 to 6 above
It was confirmed that a desired negative electrode for a lithium battery and further a lithium battery can be obtained when the above method is used.

【0053】[0053]

【発明の効果】本発明は、その粒子内に空隙を有するこ
とを特徴とするチタン酸リチウムであって、その空隙内
にリチウムなどの物質やイオンを捕捉することができ、
さらに、リチウムイオンのドープ、脱ドープをすみやか
に行うことができるため、リチウム電池用負極などの特
性に優れたものとなる。また、本発明のチタン酸リチウ
ムは、粒子の大きさや形状が制御されているため、紫外
線吸収材などの種々の用途に利用できる有用な化合物で
ある。
INDUSTRIAL APPLICABILITY The present invention is a lithium titanate characterized by having voids in its particles, which can trap substances and ions such as lithium in the voids,
Furthermore, since doping and dedoping of lithium ions can be performed quickly, the characteristics of the negative electrode for lithium batteries and the like are excellent. Further, the lithium titanate of the present invention is a useful compound that can be used in various applications such as an ultraviolet absorber because the size and shape of particles are controlled.

【0054】また、本発明は、チタン化合物とアンモニ
ウム化合物とを水中で反応させてチタン酸化合物を得る
工程、該チタン酸化合物とリチウム化合物とを水中で反
応させてチタン酸リチウム水和物を得る工程、該チタン
酸リチウム水和物を加熱脱水する工程からなることを特
徴とするチタン酸リチウムの製造方法であって、前記の
チタン酸リチウムを効率よく得ることができる方法であ
る。
Further, in the present invention, a step of reacting a titanium compound and an ammonium compound in water to obtain a titanate compound, and reacting the titanate compound and a lithium compound in water to obtain a lithium titanate hydrate. A method for producing lithium titanate, comprising the steps of: dehydrating the lithium titanate hydrate by heating, wherein the lithium titanate can be efficiently obtained.

【0055】さらに、本発明は、前記のチタン酸リチウ
ムからなることを特徴とするリチウム電池用負極であ
り、さらには、その負極を用いてなることを特徴とする
リチウム電池であって、優れた電池特性を有し、一次電
池または二次電池として使用できる。
Furthermore, the present invention is a lithium battery negative electrode characterized by comprising the above-mentioned lithium titanate, and further a lithium battery characterized by using the negative electrode, which is excellent. It has battery characteristics and can be used as a primary battery or a secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られたチタン酸リチウム(試料
C)の粒子形状を示す電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing the particle shape of lithium titanate (Sample C) obtained in Example 1.

【図2】実施例1で得られたチタン酸リチウム(試料
C)のX線回折図形である。
2 is an X-ray diffraction pattern of lithium titanate (Sample C) obtained in Example 1. FIG.

【図3】実施例1で得られたチタン酸リチウム(試料
D)の粒子形状を示す電子顕微鏡写真である。
FIG. 3 is an electron micrograph showing the particle shape of lithium titanate (Sample D) obtained in Example 1.

【図4】実施例1で得られたチタン酸リチウム(試料
D)のX線回折図形である。
FIG. 4 is an X-ray diffraction pattern of the lithium titanate (Sample D) obtained in Example 1.

【図5】実施例4で得られたチタン酸リチウム(試料
N)の粒子形状を示す電子顕微鏡写真である。
5 is an electron micrograph showing the particle shape of lithium titanate (Sample N) obtained in Example 4. FIG.

【図6】実施例4で得られたチタン酸リチウム(試料
N)のX線回折図形である。
6 is an X-ray diffraction pattern of lithium titanate (Sample N) obtained in Example 4. FIG.

【図7】実施例4で得られたチタン酸リチウム(試料
O)の粒子形状を示す電子顕微鏡写真である。
FIG. 7 is an electron micrograph showing the particle shape of lithium titanate (Sample O) obtained in Example 4.

【図8】実施例4で得られたチタン酸リチウム(試料
O)のX線回折図形である。
8 is an X-ray diffraction pattern of lithium titanate (Sample O) obtained in Example 4. FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 6/16 H01M 6/16 Z 10/40 10/40 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication H01M 6/16 H01M 6/16 Z 10/40 10/40 Z

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 その粒子内に空隙を有することを特徴と
するチタン酸リチウム。
1. Lithium titanate having voids in its particles.
【請求項2】 1〜300m2 /gの範囲の比表面積を
有することを特徴とする請求項1に記載のチタン酸リチ
ウム。
2. The lithium titanate according to claim 1, which has a specific surface area in the range of 1 to 300 m 2 / g.
【請求項3】 積層構造を有することを特徴とする請求
項1に記載のチタン酸リチウム。
3. The lithium titanate according to claim 1, which has a laminated structure.
【請求項4】 0.1〜50μmの範囲の最長粒子径を
有することを特徴とする請求項1に記載のチタン酸リチ
ウム。
4. The lithium titanate according to claim 1, having a longest particle diameter in the range of 0.1 to 50 μm.
【請求項5】 チタン化合物とアンモニウム化合物とを
水中で反応させてチタン酸化合物を得る工程、該チタン
酸化合物とリチウム化合物とを水中で反応させてチタン
酸リチウム水和物を得る工程、該チタン酸リチウム水和
物を加熱脱水する工程からなることを特徴とするチタン
酸リチウムの製造方法。
5. A step of reacting a titanium compound and an ammonium compound in water to obtain a titanate compound, a step of reacting the titanate compound and a lithium compound in water to obtain a lithium titanate hydrate, the titanium A method for producing lithium titanate, comprising the step of heating and dehydrating lithium acid hydrate.
【請求項6】 チタン酸化合物とリチウム化合物とを水
中で水熱処理してチタン酸リチウム水和物を得ることを
特徴とする請求項5に記載のチタン酸リチウムの製造方
法。
6. The method for producing lithium titanate according to claim 5, wherein the titanate compound and the lithium compound are hydrothermally treated in water to obtain a lithium titanate hydrate.
【請求項7】 水熱処理をアンモニウム化合物の存在下
で行うことを特徴とする請求項6に記載のチタン酸リチ
ウムの製造方法。
7. The method for producing lithium titanate according to claim 6, wherein the hydrothermal treatment is performed in the presence of an ammonium compound.
【請求項8】 請求項1に記載のチタン酸リチウムから
なることを特徴とするリチウム電池用負極。
8. A negative electrode for a lithium battery, comprising the lithium titanate according to claim 1.
【請求項9】 請求項8に記載の負極を用いてなること
を特徴とするリチウム電池。
9. A lithium battery comprising the negative electrode according to claim 8.
JP08232397A 1996-03-18 1997-03-14 Method for producing lithium titanate Expired - Lifetime JP3894614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08232397A JP3894614B2 (en) 1996-03-18 1997-03-14 Method for producing lithium titanate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9040496 1996-03-18
JP8-90404 1996-03-18
JP08232397A JP3894614B2 (en) 1996-03-18 1997-03-14 Method for producing lithium titanate

Publications (2)

Publication Number Publication Date
JPH09309727A true JPH09309727A (en) 1997-12-02
JP3894614B2 JP3894614B2 (en) 2007-03-22

Family

ID=26423351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08232397A Expired - Lifetime JP3894614B2 (en) 1996-03-18 1997-03-14 Method for producing lithium titanate

Country Status (1)

Country Link
JP (1) JP3894614B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937684A1 (en) * 1997-07-15 1999-08-25 Sony Corporation Lithium hydrogentitanates and process for the preparation thereof
EP1057783A2 (en) * 1999-06-03 2000-12-06 Titan Kogyo Kabushiki Kaisha Lithium-Titanium composite oxides, processes for preparing them and uses thereof
WO2003008334A1 (en) 2001-07-20 2003-01-30 Altair Nanomaterials Inc. Process for making lithium titanate
WO2008114667A1 (en) * 2007-03-16 2008-09-25 Ishihara Sangyo Kaisha, Ltd. Electrode active material and lithium battery using the same
JP2009512986A (en) * 2005-10-21 2009-03-26 アルテアナノ インコーポレイテッド Lithium ion battery
JP2009080979A (en) * 2007-09-25 2009-04-16 Toshiba Corp Active materials for nonaqueous electrolyte battery and nonaqueous electrolyte battery
US7547490B2 (en) 2001-07-31 2009-06-16 Altairnano Inc. High performance lithium titanium spinel Li4Ti5012 for electrode material
WO2010052362A1 (en) * 2008-11-04 2010-05-14 Sachtleben Pigments Oy Process of preparing alkali metal titanates
US8039151B2 (en) 2005-07-07 2011-10-18 Kabushiki Kaisha Toshiba Negative electrode active material, nonaqueous electrolyte battery, battery pack and vehicle
WO2012029697A1 (en) 2010-08-31 2012-03-08 戸田工業株式会社 Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US20120141360A1 (en) * 2009-08-11 2012-06-07 Samsung Fine Chemicals Co., Ltd. Method of preparing lithium titanate nanoparticles
US20120214067A1 (en) * 2011-02-15 2012-08-23 Goto Natsumi Negative electrode active material for lithium ion secondary battery and method for producing the same
WO2012169331A1 (en) * 2011-06-10 2012-12-13 東邦チタニウム株式会社 Lithium titanate primary particles, lithium titanate aggregate, lithium ion secondary battery using lithium titanate primary particles or lithium titanate aggregate, and lithium ion capacitor using lithium titanate primary particles or lithium titanate aggregate
US8420264B2 (en) 2007-03-30 2013-04-16 Altairnano, Inc. Method for preparing a lithium ion cell
JP2013241312A (en) * 2012-05-22 2013-12-05 Three M Innovative Properties Co Sintered product, metal ion adsorbent, method for removing metal ions, and metal ion removing equipment
JP2014143004A (en) * 2013-01-22 2014-08-07 Toshiba Corp Negative electrode and nonaqueous electrolyte battery
KR20150065866A (en) 2012-10-10 2015-06-15 하이드로-퀘벡 Layered and spinel lithium titanates and processes for preparing the same
JP2015180592A (en) * 2015-03-23 2015-10-15 日本ケミコン株式会社 Lithium titanate crystal structure material
JP2015183151A (en) * 2014-03-26 2015-10-22 三菱マテリアル株式会社 Coating for thermal ray shielding and method of producing thermal ray shielding film
CN113264550A (en) * 2021-05-18 2021-08-17 攀枝花学院 Preparation method of lithium titanate negative electrode material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306563A1 (en) 2008-07-17 2011-04-06 Asahi Glass Company Limited Anode composite for nonaqueous electrolyte cell
KR20140139486A (en) 2012-03-16 2014-12-05 데이까 가부시끼가이샤 Lithium titanate and production method and use for same
JP5497094B2 (en) 2012-03-29 2014-05-21 太陽誘電株式会社 Lithium titanium composite oxide, battery electrode using the same, and lithium ion secondary battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937684A1 (en) * 1997-07-15 1999-08-25 Sony Corporation Lithium hydrogentitanates and process for the preparation thereof
EP0937684A4 (en) * 1997-07-15 2007-12-26 Sony Corp Lithium hydrogentitanates and process for the preparation thereof
EP1057783A2 (en) * 1999-06-03 2000-12-06 Titan Kogyo Kabushiki Kaisha Lithium-Titanium composite oxides, processes for preparing them and uses thereof
WO2003008334A1 (en) 2001-07-20 2003-01-30 Altair Nanomaterials Inc. Process for making lithium titanate
JP2008105943A (en) * 2001-07-20 2008-05-08 Altairnano Inc Process for making lithium titanate
US7547490B2 (en) 2001-07-31 2009-06-16 Altairnano Inc. High performance lithium titanium spinel Li4Ti5012 for electrode material
US8039151B2 (en) 2005-07-07 2011-10-18 Kabushiki Kaisha Toshiba Negative electrode active material, nonaqueous electrolyte battery, battery pack and vehicle
JP2009512986A (en) * 2005-10-21 2009-03-26 アルテアナノ インコーポレイテッド Lithium ion battery
JP5400607B2 (en) * 2007-03-16 2014-01-29 石原産業株式会社 Electrode active material and lithium battery using the same
WO2008114667A1 (en) * 2007-03-16 2008-09-25 Ishihara Sangyo Kaisha, Ltd. Electrode active material and lithium battery using the same
US8420264B2 (en) 2007-03-30 2013-04-16 Altairnano, Inc. Method for preparing a lithium ion cell
JP2009080979A (en) * 2007-09-25 2009-04-16 Toshiba Corp Active materials for nonaqueous electrolyte battery and nonaqueous electrolyte battery
WO2010052362A1 (en) * 2008-11-04 2010-05-14 Sachtleben Pigments Oy Process of preparing alkali metal titanates
US8840814B2 (en) 2008-11-04 2014-09-23 Sachtleben Pigments Oy Process of preparing alkali metal titanates
US20120141360A1 (en) * 2009-08-11 2012-06-07 Samsung Fine Chemicals Co., Ltd. Method of preparing lithium titanate nanoparticles
US8398953B2 (en) * 2009-08-11 2013-03-19 Samsung Fine Chemicals Co., Ltd. Method of preparing lithium titanate nanoparticles
WO2012029697A1 (en) 2010-08-31 2012-03-08 戸田工業株式会社 Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US20120214067A1 (en) * 2011-02-15 2012-08-23 Goto Natsumi Negative electrode active material for lithium ion secondary battery and method for producing the same
WO2012169331A1 (en) * 2011-06-10 2012-12-13 東邦チタニウム株式会社 Lithium titanate primary particles, lithium titanate aggregate, lithium ion secondary battery using lithium titanate primary particles or lithium titanate aggregate, and lithium ion capacitor using lithium titanate primary particles or lithium titanate aggregate
JPWO2012169331A1 (en) * 2011-06-10 2015-02-23 東邦チタニウム株式会社 Lithium titanate primary particles, lithium titanate aggregates, lithium ion secondary battery and lithium ion capacitor using them
JP2013241312A (en) * 2012-05-22 2013-12-05 Three M Innovative Properties Co Sintered product, metal ion adsorbent, method for removing metal ions, and metal ion removing equipment
KR20150065866A (en) 2012-10-10 2015-06-15 하이드로-퀘벡 Layered and spinel lithium titanates and processes for preparing the same
JP2016501806A (en) * 2012-10-10 2016-01-21 ハイドロ−ケベック Layered and spinel type lithium titanate and its preparation process
US9825292B2 (en) 2012-10-10 2017-11-21 Hydro-Quebec Layered and spinel lithium titanates and processes for preparing the same
JP2014143004A (en) * 2013-01-22 2014-08-07 Toshiba Corp Negative electrode and nonaqueous electrolyte battery
JP2015183151A (en) * 2014-03-26 2015-10-22 三菱マテリアル株式会社 Coating for thermal ray shielding and method of producing thermal ray shielding film
JP2015180592A (en) * 2015-03-23 2015-10-15 日本ケミコン株式会社 Lithium titanate crystal structure material
CN113264550A (en) * 2021-05-18 2021-08-17 攀枝花学院 Preparation method of lithium titanate negative electrode material

Also Published As

Publication number Publication date
JP3894614B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP3894614B2 (en) Method for producing lithium titanate
KR100522061B1 (en) Lithium Hydrogentitanates and Process for the Preparation Thereof
JP2729176B2 (en) Method for producing LiM3 + O2 or LiMn2O4 and LiNi3 + O2 for cathode material of secondary battery
JP7038042B2 (en) High tap density lithium positive electrode active material, intermediate and manufacturing method
US20200365889A1 (en) Manganese spinel doped with magnesium, cathode material comprising the same, method for preparing thereof and lithium ion battery comprising such spinel
JPH10251020A (en) Metal substituted lithium titanate, its production and lithium battery using the same
JP3894615B2 (en) Lithium titanate, method for producing the same, and lithium battery using the same
JPH10218622A (en) Production of spinel type lithium-manganese compound oxide and spinel type lithium-manganese compound oxide
JP2013503102A (en) Method for preparing lithium metal oxides using fluidized bed technology
JPWO2019172193A1 (en) Positive electrode active material for lithium ion secondary batteries and lithium ion secondary batteries
US6268085B1 (en) Composite manganese oxide cathodes for rechargeable lithium batteries
KR20100069578A (en) Titanium oxide compound for use in electrode and lithium secondary battery comprising the same
JP4435926B2 (en) High crystalline lithium titanate
Thirunakaran et al. Electrochemical behaviour of nano-sized spinel LiMn2O4 and LiAlxMn2− xO4 (x= Al: 0.00–0.40) synthesized via fumaric acid-assisted sol–gel synthesis for use in lithium rechargeable batteries
US6054110A (en) Process for producing lithium-cobalt composite oxide
US6361755B1 (en) Low temperature synthesis of Li4Mn5O12 cathodes for lithium batteries
JP4558229B2 (en) Lithium titanate, method for producing the same, and use thereof
JP3753754B2 (en) Method for producing spinel type LiMn2O4
CN113348150B (en) Titanium oxide, method for producing titanium oxide, and lithium secondary battery using electrode active material containing titanium oxide
JPH1179746A (en) Perovskite composite oxide and its production
JP3021229B2 (en) Method for producing LiMn2O4 having crystalline spinel structure and positive electrode for secondary battery using the same as active material
Taddesse et al. Substitutional effect on structural, electrical and electrochemical behaviors of LiMn1. 977 (Ce, Cu) 0.023 O4 nanoparticles prepared by sol-gel combustion method
KR20130069022A (en) Method for preparation of lithium metal phosphate
JPH09309726A (en) Lithium titanate hydrate and its production
JPH10279315A (en) Production of lithium-cobalt multiple oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

EXPY Cancellation because of completion of term