JPH09308484A - Carrier for carrying gene - Google Patents

Carrier for carrying gene

Info

Publication number
JPH09308484A
JPH09308484A JP8127531A JP12753196A JPH09308484A JP H09308484 A JPH09308484 A JP H09308484A JP 8127531 A JP8127531 A JP 8127531A JP 12753196 A JP12753196 A JP 12753196A JP H09308484 A JPH09308484 A JP H09308484A
Authority
JP
Japan
Prior art keywords
polymer
gene
carrier
residue
carrying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8127531A
Other languages
Japanese (ja)
Inventor
Sumio Sugano
純夫 菅野
Akiko Shibui
秋子 渋井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP8127531A priority Critical patent/JPH09308484A/en
Publication of JPH09308484A publication Critical patent/JPH09308484A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a safe and stable carrier for gene transfer formed of a polymer substance obtained by binding a hydrophilic polymer to a polymer containing a residue having a positive electron charge in a physiologically pH range and combining the polymer with a specific amount of gene in a cell or in vivo. SOLUTION: This carrier for carrying gene is formed of a polymer substance obtained by binding a hydrophilic polymer (e.g. polyethylene glycol) to a polymer (e.g. polylysine) such as a polyamino acid comprising a basic amino acid containing a residue having a positive electron charge in a physiological pH range. In the carrier, the polymer substance is combined with a carrying gene in a ratio of a value obtained by dividing weight parts of a polymer part having a positive electron charge in the polymer substance by molecular weight of the residue to 1/300 of weight parts of the carrying gene. The carrier for carrying gene is safe and stable in a cell or in vivo and is useful for gene therapy for carrying out treatment of diseases, means, etc., for obtaining organisms such as new bacteria or animals and plants which have extremely useful properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、遺伝的、非遺伝的疾患
の治療疾患の治療を行う遺伝子治療や、発酵、農業、畜
産、水産業等でのこれまでにない有用な性質を持つ新た
な細菌、動植物などの生命体を得る手段としての in vi
vo 、in vitro での遺伝子導入を行うための遺伝子送達
用担体に関する。
BACKGROUND OF THE INVENTION The present invention has a novel therapeutic property for treating genetic and non-genetic diseases, and gene therapy for treating diseases, and has novel properties which are unprecedentedly useful in fermentation, agriculture, livestock, fisheries and the like. Vi as a means to obtain living organisms such as various bacteria and plants
The present invention relates to a gene delivery carrier for vo or in vitro gene transfer.

【0002】[0002]

【従来の技術】遺伝子を直接細胞や、個体へ導入し、発
現させる技術は、疾患の治療を行う遺伝子治療や、これ
までにない有用な性質を持つ新たな細菌、動植物などの
生命体を得る手段として、急速に拡大しつつある。しか
し目的とする組織や細胞に遺伝子を到達させる過程にお
いて、例えば、個体に投与する場合にあっては、体循環
の間に各種の核酸分解酵素による切断や、或いは、貪食
系の細胞に取り込まれるなどの攻撃を受け、また、細胞
を体外に取りだして遺伝子を加える場合などでも、培養
液中に添加される血清中の核酸分解酵素による切断を受
ける。すなわちこのような遺伝子導入を効率的に行うた
めには、血清中での切断を受けず、また、標的組織に遺
伝子が到達できるまで安定に体循環中を移動できる遺伝
子担体が必須である。しかしながらこの目的に十分な担
体はいまだ開発されておらず、このことが遺伝子導入技
術の発展を妨げているのが現状である。
2. Description of the Related Art A technique for directly introducing a gene into a cell or an individual and expressing it is a gene therapy for treating a disease, or a new organism such as a bacterium or plant having a useful property which has never been obtained. As a means, it is expanding rapidly. However, in the process of delivering a gene to a target tissue or cell, for example, when it is administered to an individual, it is cleaved by various nucleolytic enzymes during systemic circulation or is taken up by phagocytic cells. When a cell is taken out of the body and a gene is added to it, it is also cleaved by the nucleolytic enzyme in the serum added to the culture medium. That is, in order to efficiently perform such gene transfer, a gene carrier that is not subject to cleavage in serum and that can stably move in the systemic circulation until the gene can reach the target tissue is essential. However, a carrier sufficient for this purpose has not been developed yet, and this is the hindrance to the progress of gene transfer technology.

【0003】[0003]

【発明が解決しようとする課題】この問題を解決するた
めには、核酸分解酵素の攻撃を受けにくく、また貪食系
の細胞に取り込まれない遺伝子送達用の担体を開発する
必要がある。しかし、これまでに知られている例えば、
核酸とリポソームのコンプレックスなどは、特に、貪食
系の細胞に取り込まれやすく、また核酸分解酵素の攻撃
からも十分には逃れておらず、またウィルスを遺伝子送
達用担体として用いることは、その感染性の問題などか
ら、個体へ直接導入するには危険が多いものである。従
って、本発明が解決しようとする課題は、目的とする組
織や細胞に対し、効率的な遺伝子導入が行え、生体内に
導入しても安全な遺伝子送達用担体を提供することにあ
る。
In order to solve this problem, it is necessary to develop a carrier for gene delivery that is not easily attacked by nucleolytic enzymes and is not taken up by phagocytic cells. But what is known so far is
Nucleic acid-liposome complexes, etc., are particularly easily taken up by phagocytic cells, and have not escaped sufficiently from the attack of nucleolytic enzymes, and the use of viruses as carriers for gene delivery has Due to problems such as the above, there are many dangers when directly introduced into an individual. Therefore, the problem to be solved by the present invention is to provide a carrier for gene delivery, which enables efficient gene transfer to a target tissue or cell and is safe even when introduced into a living body.

【0004】[0004]

【課題を解決するための手段】本発明は、遺伝子を動物
の体内や、組織、または細胞に作用させる目的で用いる
担体であって、生理的pH範囲内で正電荷を持つ残基を
分子内に含む高分子物質に親水性高分子が結合している
高分子物質によって形成され、担持する遺伝子の重量部
の300分の1に対する、該高分子物質のうち該高分子
物質のうち該正電荷を持つ高分子部分の重量部を該残基
の分子量で除した値の比が、0.5以上である遺伝子送
達用担体である。
The present invention is a carrier used for the purpose of causing a gene to act on the body of an animal, a tissue, or a cell, in which a residue having a positive charge within a physiological pH range is introduced into the molecule. Formed by a polymer substance in which a hydrophilic polymer is bound to a polymer substance contained in, and the positive charge of the polymer substance among the polymer substance with respect to 1/300 of the weight part of the gene to be carried. Is a carrier for gene delivery, wherein the ratio of the value obtained by dividing the weight part of the polymer part having the formula by the molecular weight of the residue is 0.5 or more.

【0005】生理的pH範囲内で正電荷を持つ残基を分
子内に含む高分子は、遺伝子を核酸分解酵素の攻撃から
守るものであれば、特に制限はないが、塩基性アミノ酸
よりなるポリアミノ酸は、生体適合性の点からも優れて
いる。このようなポリアミノ酸としては、リジン、ヒス
チジン、アルギニンなどのポリマーが考えられるが、ポ
リリジンが作り易さの点からは好適である。
The polymer containing a residue having a positive charge in the physiological pH range in the molecule is not particularly limited as long as it protects the gene from the attack of nucleolytic enzymes, but it is a polyamino acid consisting of basic amino acids. Amino acids are also excellent in biocompatibility. Polymers such as lysine, histidine, and arginine are conceivable as such polyamino acids, but polylysine is preferable from the viewpoint of easy production.

【0006】このような正電荷を持つ高分子に結合させ
る親水性高分子としては、核酸を貪食系細胞に取り込ま
れないようにする作用を有するものであれば構わない
が、ポリエチレングリコール、デキストラン等の水溶性
多糖類が挙げられ、特にポリエチレングリコールは、入
手のしやすさや、好適な分子量分布のものが適宜選択で
きる点で好適である。また、親水性高分子の分子量は1,
000〜100,000であることが好ましく、生理的pH範囲内
で正電荷を持つ残基を分子内に含む高分子に対して重量
比で0.1〜10の範囲で結合させることが好適であ
り、親水性高分子鎖1本に対して複数の生理的pH範囲
内で正電荷を持つ残基を分子内含む高分子を結合させて
も、あるいは逆に生理的pH範囲内で正電荷を持つ残基
を分子内に含む高分子1本に対して複数の親水性高分子
を結合させても良く、それは用いるそれぞれの高分子の
構造や分子量に応じて最適な組み合わせとすることがで
きる。
The hydrophilic polymer to be bonded to such a polymer having a positive charge may be any one as long as it has a function of preventing the nucleic acid from being taken up by phagocytic cells, but polyethylene glycol, dextran, etc. The water-soluble polysaccharides mentioned above are listed, and polyethylene glycol is particularly preferable in terms of availability and selection of one having a suitable molecular weight distribution. Moreover, the molecular weight of the hydrophilic polymer is 1,
It is preferably from 0000 to 100,000, and it is preferable to bind in a range of 0.1 to 10 by weight ratio to a polymer containing a residue having a positive charge in a physiological pH range in the molecule, Even if a polymer containing a residue having a positive charge in a plurality of physiological pH ranges is bound to one hydrophilic polymer chain, or conversely, a residue having a positive charge in a physiological pH range remains. A plurality of hydrophilic macromolecules may be bonded to one macromolecule containing a group in the molecule, and it is possible to make an optimal combination depending on the structure and molecular weight of each macromolecule to be used.

【0007】このような担体によって運ばれる遺伝子
は、特定の蛋白をコードする遺伝子とプロモーターを結
合させたプラスミド、特定遺伝子のmRNAと結合してその
発現を抑えるアンチセンスDNA等が代表的なものである
が、DNA或いはRNAであるということ以上には制限はな
い。このような高分子と遺伝子との比率としては、遺伝
子の重量部の300分の1に対する、該高分子の該正電
荷を持つ高分子部分の重量部を該残基の分子量で除した
値の比(以下、これを「比率」と言うことがある)が、
0.5以上、好ましくは1以上で複合体とすることが必
要である。なお、該正電荷を持つ高分子としてポリリジ
ンを用いた場合では、DNAの重量部の300分の1に
対して、ポリリジン(リジン残基の分子量として、リジ
ンの分子量−18=124 として)部分の重量部の1
24分の1の比が0.5以上、すなわち1重量部のDN
Aに対して該高分子をポリリジンとして(以下、これを
「ポリリジン/DNA比」ということがある)、600
分の124(約0.2)重量部以上、好ましくは300
分の124(約0.4)重量部以上用いることが必要で
ある。
The gene carried by such a carrier is typically a plasmid in which a gene encoding a specific protein and a promoter are bound, an antisense DNA which binds to the mRNA of the specific gene and suppresses its expression, and the like. However, it is not limited to being DNA or RNA. The ratio of such a polymer to a gene is a value obtained by dividing the weight part of the polymer part having the positive charge of the polymer by 1/300 of the gene weight part by the molecular weight of the residue. The ratio (hereinafter sometimes referred to as the “ratio”)
It is necessary to form a complex with 0.5 or more, preferably 1 or more. When polylysine is used as the polymer having the positive charge, the polylysine (as the molecular weight of lysine residue, ie, the molecular weight of lysine-18 = 124) of 1/300 parts by weight of DNA is used. 1 part by weight
A ratio of 1/24 to 0.5 or more, that is, 1 part by weight of DN
For A, the polymer was polylysine (hereinafter, this may be referred to as “polylysine / DNA ratio”), 600
More than 124 (about 0.2) parts by weight, preferably 300
It is necessary to use more than 124 (about 0.4) parts by weight.

【0008】[0008]

【実施例】次に、実施例および試験例を示して本発明を
より具体的に説明するが、本発明の範囲がこれによって
制限されるものでないことは言うまでもない。 (1)ポリリジン−ポリエチレングリコール結合体の合
成 親水性高分子であるポリエチレングリコール(分子量=
5,000)を2分子結合させた 2,4-bis(o-methoxypolyeth
yleneglycol)-6chloro-S-triazine(生化学工業社製#68
0032)を37mg/mlになるように溶かし、その0.33mlを、同
じくとホウ酸ナトリウム緩衝液(pH9.0)25mg/mlの濃度で
溶かしたPoly-L-Lysine( シグマ社#p-7890)1mlに加え
た。37℃で26時間遮光下で反応させた後、1mMのEDT
Aを含む10mMTris・Cl緩衝液5mlを加えた後、セントリプ
レップ−30で、1500×g 15分遠心して濃縮した。濃縮
液にさらに、1mMのEDTAを含む10mMTris・Cl緩衝液5mlを
加えた、セントリプレップ−30で同様に濃縮し、最終
的に Poly-L-Lysineとして、8.66mgの結合物を得た。
EXAMPLES Next, the present invention will be described more specifically by showing Examples and Test Examples, but it goes without saying that the scope of the present invention is not limited thereby. (1) Synthesis of polylysine-polyethylene glycol conjugate Polyethylene glycol (molecular weight =
2,4-bis (o-methoxypolyeth) in which two molecules of 5,000) are bound
yleneglycol) -6chloro-S-triazine (# 68 manufactured by Seikagaku Corporation)
0032) was dissolved to 37 mg / ml, and 0.33 ml thereof was similarly dissolved at a concentration of 25 mg / ml of sodium borate buffer (pH 9.0) Poly-L-Lysine (Sigma # p-7890) Added to 1 ml. After reacting at 37 ° C for 26 hours in the dark, 1 mM EDT
After adding 5 ml of 10 mM Tris-Cl buffer containing A, it was concentrated by centrifuging at Centriprep-30 at 1500 xg for 15 minutes. The concentrated solution was further concentrated in the same manner with Centriprep-30 to which 5 ml of 10 mM Tris-Cl buffer containing 1 mM EDTA was added, and finally 8.66 mg of the conjugate was obtained as Poly-L-Lysine.

【0009】(2)試料溶液(DNA・ポリリジン−ポ
リエチレングリコール結合体複合物)の調製 DNAとしては、プラスミドpEF321-CAT(Kim,D.W., Uetsk
i,T., Kaziro,Y., Yamaguchi,N. and Sugano,S. Use of
the human elongation factor 1α promoteras a vee
rsatile and eficient expression system. Gene 91(19
90),213-223.に記載された方法により作製)を用いた。
DNA150μgに700mMの食塩水75μlを加えて溶かした。こ
れに、700mMの食塩水75μlに溶かした(1)で調製した
ポリリジンーポリエチレングリコール結合体をポリリジ
ンとして30.9、47.5、65.0μg攪拌しながらそれぞれ加
え、さらに5M食塩水を加えて最終食塩濃度を1Mとし、試
料溶液1、2、3(比率=約0.5、約0.8、約1、
またポリリジン/DNA比=0.206、0.317、0.433)とし
た。
(2) Preparation of sample solution (DNA / polylysine-polyethylene glycol conjugate complex) As DNA, plasmid pEF321-CAT (Kim, DW, Uetsk
i, T., Kaziro, Y., Yamaguchi, N. and Sugano, S. Use of
the human elongation factor 1α promoteras a vee
rsatile and eficient expression system. Gene 91 (19
90), 213-223.).
To 150 μg of DNA, 75 μl of 700 mM saline was added and dissolved. To this, the polylysine-polyethylene glycol conjugate prepared in (1) dissolved in 75 μl of 700 mM saline was added as polylysine with stirring at 30.9, 47.5, and 65.0 μg, respectively, and 5 M saline was added to give a final salt concentration of 1 M. And sample solutions 1, 2, 3 (ratio = about 0.5, about 0.8, about 1,
The polylysine / DNA ratio was 0.206, 0.317, 0.433).

【0010】(3)比較液の調製 比較液1:超純水120μlに5M食塩水30μlを加え1M食塩
液とした。 比較液2:DNA(pEF321-CAT)150μgに、超純水120μl
及び5M食塩水30μlを加え1M食塩液とした。 比較液3:DNA(pEF321-CAT)150μgを700mMの食塩水75
μlを加えて溶かしこれに、700mMの食塩水75μlに溶か
したポリリジン47.5μgを攪拌しながら加え、これに5M
食塩水を加えて、最終食塩濃度を1Mとした。
(3) Preparation of Comparative Solution Comparative Solution 1: 30 μl of 5M saline was added to 120 μl of ultrapure water to prepare a 1M saline solution. Comparative solution 2: 120 μl of ultrapure water in 150 μg of DNA (pEF321-CAT)
And 30 μl of 5M saline were added to make a 1M saline solution. Comparative solution 3: DNA (pEF321-CAT) 150 μg was added to 700 mM saline 75
μL was added and dissolved, and 47.5 μg of polylysine dissolved in 75 μl of 700 mM saline was added with stirring to this, and 5 M of this was added.
Saline was added to bring the final salt concentration to 1M.

【0011】(4)体内安定性の評価1 試料溶液2、及び比較液1、2、3の100μlをBalb/c
マウス(4週令、体重約25g)の尾静脈より投与し、
投与後10、20、及び60分後に血液50〜100μlを採血し
た。採血した血液に同量の溶解液(100mMTrisCl(pH7.5
〜8.0)、100mM、2%SDS)を加えただちに攪拌溶解し
た。ProteinaseK(和光純薬工業社#160-14001)を最終
濃度200μg/mlとなるよう加え、37℃で一晩放置した
後、常法によりDNAを抽出した。抽出したDNAは Southe
rn Bloting法( Southern,E.M. :Detection of specifi
c sequences among DNA fragments separated by gel e
lectrophoresis. J.Mol.Biol.98(1975),503-517.)によ
り解析した。プローブとしては、pEF321-CATを用いた。
(4) Evaluation of stability in the body 1 100 μl of the sample solution 2 and the comparative solutions 1, 2, and 3 were Balb / c.
Administered from the tail vein of mice (4 weeks old, body weight about 25 g),
50 to 100 μl of blood was collected at 10, 20, and 60 minutes after administration. Equal amount of lysate (100mM TrisCl (pH7.5
~ 8.0), 100 mM, 2% SDS) was added and immediately dissolved by stirring. Proteinase K (Wako Pure Chemical Industries, Ltd. # 160-14001) was added to a final concentration of 200 μg / ml, left overnight at 37 ° C., and then DNA was extracted by a conventional method. The extracted DNA is Southe
rn Bloting method (Southern, EM: Detection of specifi
c sequences among DNA fragments separated by gel e
lectrophoresis. J. Mol. Biol. 98 (1975), 503-517.). PEF321-CAT was used as a probe.

【0012】(5)体内安定性の評価2 試料溶液1、2、3及び比較液3の100μlをBalb/cマ
ウス(4週令、体重約25g)の尾静脈より投与した。
投与前、投与後10、20分後に血液50μlを採血し、採血
した血液に同量の溶解液(100mM TrisCl(pH7.5〜8.
0)、100mM、2%SDS)を加えただちに攪拌溶解した。以
下(4)と同様に操作しDNAを解析した。
(5) Evaluation of stability in the body 2 100 μl of the sample solutions 1, 2, 3 and the comparative solution 3 were administered through the tail vein of Balb / c mice (4 weeks old, body weight: about 25 g).
50 μl of blood was collected before and 10 and 20 minutes after administration, and the same amount of lysate (100 mM TrisCl (pH 7.5-8.
0), 100 mM, 2% SDS) was added and immediately dissolved by stirring. Thereafter, the same operation as in (4) was performed to analyze the DNA.

【0013】(6)体内安定性の評価の結果 結果を図1、2に示した。図1に示したように試料溶液
においてのみ、投与したDNAのバンドが観測され、本複
合体によってDNAが体内で安定に保持されていることが
明らかであった。図2には、DNAに対して、複合体量が
多いほど安定性が高いことが示されている。すなわち、
複合体のポリリジン/DNA比が0.206では、10分後にDNA
断片がわずかに観測され、同比が0.317では10分後
で、さらに同比が0.433では、20分後でもプラスミド
と同じ長さのDNAが観測され血中で安定に運搬されてい
ることが示された。
(6) Results of evaluation of internal stability The results are shown in FIGS. As shown in FIG. 1, the band of the administered DNA was observed only in the sample solution, and it was clear that this complex stably retained the DNA in the body. FIG. 2 shows that the stability of DNA is higher as the amount of complex is larger. That is,
When the polylysine / DNA ratio of the complex was 0.206, DNA was detected after 10 minutes.
Fragments were slightly observed, and at the same ratio of 0.317, 10 minutes later, and at the same ratio of 0.433, DNA of the same length as the plasmid was observed even after 20 minutes, showing that it was stably transported in blood. .

【0014】[0014]

【発明の効果】上述したように、DNAをそのまま或い
はポリリジンのみとともに投与した場合、体内でDNA
は非常に不安定であり、血中からは回収されなかった。
しかし、本発明の担体では、生理的pH範囲内で正電荷
を持つ残基を分子内に含む高分子に親水性高分子が結合
している高分子物質により形成され、担持する遺伝子の
重量部の300分の1に対して、該高分子物質のうち該
正電荷を持つ高分子部分の重量部を該残基の分子量で除
した値との比が、約0.5でその断片が観察され、約
0.8では10分後で、約1との複合体では20分後で
も完全な長さのDNAが回収されたことより、本発明の
担体が核酸分解酵素による分解や貪食系細胞による貪食
から遺伝子を守り、細胞、組織、あるいは個体といった
生体内へ投与された遺伝子がそれらの中で安定に運搬し
うることが示された。
As described above, when the DNA is administered as it is or with the polylysine alone, the DNA in the body is
Was very unstable and was not recovered from the blood.
However, the carrier of the present invention is formed by a polymer substance in which a hydrophilic polymer is bound to a polymer containing a residue having a positive charge in the physiological pH range, and the weight part of the gene to be carried is part by weight. The ratio to the value obtained by dividing the weight part of the polymer part having the positive charge in the polymer substance by the molecular weight of the residue is about 0.5, and the fragment is observed. Since the full length DNA was recovered after about 10 minutes at about 0.8 and after about 20 minutes in the complex with about 1, the carrier of the present invention shows that the carrier of the present invention is degraded by nucleolytic enzymes or phagocytic cells. It was shown that the gene can be protected from phagocytosis by the bacterium, and that the gene administered into the living body such as cells, tissues, or individuals can be stably carried in them.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の遺伝子送達用担体に担持した遺伝子
の体内安定性を示す図である
FIG. 1 is a diagram showing the in-vivo stability of a gene carried on the carrier for gene delivery of the present invention.

【図2】 本発明の遺伝子送達用担体に担持した遺伝子
の体内安定性を示す図である
FIG. 2 is a diagram showing the in-vivo stability of a gene carried on the carrier for gene delivery of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】生理的pH範囲内で正電荷を持つ残基を分
子内に含む高分子に親水性高分子が結合している高分子
物質により形成され、担持する遺伝子の重量部の300
分の1に対する、該高分子物質のうち該正電荷を持つ高
分子部分の重量部を該残基の分子量で除した値の比が、
0.5以上の比率で該高分子物質および該遺伝子が複合
されてなることを特徴とする遺伝子送達用担体。
1. A 300 parts by weight part of a gene formed by a polymer substance in which a hydrophilic polymer is bound to a polymer containing a residue having a positive charge in a physiological pH range and carried by the hydrophilic polymer.
The ratio of the value obtained by dividing the weight part of the polymer portion having the positive charge in the polymer substance by the molecular weight of the residue to
A carrier for gene delivery, characterized in that the macromolecular substance and the gene are combined at a ratio of 0.5 or more.
【請求項2】生理的pH範囲内で正電荷を持つ残基を分
子内に含む高分子が、塩基性アミノ酸よりなるポリアミ
ノ酸である請求項1の遺伝子送達用担体。
2. The carrier for gene delivery according to claim 1, wherein the polymer containing a residue having a positive charge in a physiological pH range in the molecule is a polyamino acid consisting of a basic amino acid.
【請求項3】ポリアミノ酸がポリリジンである、請求項
2の遺伝子送達用担体。
3. The carrier for gene delivery according to claim 2, wherein the polyamino acid is polylysine.
【請求項4】親水性高分子がポリエチレングリコールで
ある請求項1の遺伝子送達用担体。
4. The gene delivery carrier according to claim 1, wherein the hydrophilic polymer is polyethylene glycol.
JP8127531A 1996-05-22 1996-05-22 Carrier for carrying gene Pending JPH09308484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8127531A JPH09308484A (en) 1996-05-22 1996-05-22 Carrier for carrying gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8127531A JPH09308484A (en) 1996-05-22 1996-05-22 Carrier for carrying gene

Publications (1)

Publication Number Publication Date
JPH09308484A true JPH09308484A (en) 1997-12-02

Family

ID=14962328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8127531A Pending JPH09308484A (en) 1996-05-22 1996-05-22 Carrier for carrying gene

Country Status (1)

Country Link
JP (1) JPH09308484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466254B1 (en) * 2002-02-25 2005-01-14 한국과학기술원 Conjugates Comprising Oligonucleotide And Hydrophilic Polymers for Gene Transfer, Hybrid Polyion Complex Micelles Self-assembled from Said Conjugates and Their Manufacturing Method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466254B1 (en) * 2002-02-25 2005-01-14 한국과학기술원 Conjugates Comprising Oligonucleotide And Hydrophilic Polymers for Gene Transfer, Hybrid Polyion Complex Micelles Self-assembled from Said Conjugates and Their Manufacturing Method

Similar Documents

Publication Publication Date Title
KR101710026B1 (en) Composition comprising delivery carrier of nano-liposome having Cas9 protein and guide RNA
AU2017374044B2 (en) Modified guide RNAs
CN109475646A (en) Lipid nanoparticle preparation for CRISPR/CAS ingredient
US20110301230A1 (en) Gene carrier
JP2021536244A (en) Editing of RNA and DNA bases via recruitment of genetically engineered ADAR
JP2019534695A (en) RNA-induced nucleic acid modifying enzyme and method of using the same
US8492142B2 (en) Freeze-dried product for introducing nucleic acid, oligonucleic acid or derivative thereof
Riccardi et al. Fluorescent thrombin binding aptamer-tagged nanoparticles for an efficient and reversible control of thrombin activity
EP1142591B1 (en) Gene carriers
CN112675202A (en) Anti-tumor immune cell based on targeting ligand cell coupling technology and preparation method and application thereof
JP2021525508A (en) Compositions and Methods of Adjustable Co-Coupling Polypeptide Nanoparticle Delivery Systems for Nucleic Acid Therapeutics
EP3683310A1 (en) Aptamer and use of the aptamer in the diagnosis and treatment of cancer
CN112972703A (en) Gene editing nanocapsule and preparation method and application thereof
JP2024504981A (en) Novel engineered and chimeric nucleases
MXPA01012802A (en) Copolymers for the transfer of nucleic acids to the cell.
JPH09308484A (en) Carrier for carrying gene
WO1999039744A1 (en) Compositions and methods for polynucleotide delivery
WO2022095853A1 (en) Preparation for and application of lysosome-targeting nucleic acid chimera
JPH10158196A (en) Carrier for stabilization of nucleic acid
JP2023526057A (en) Modified guide RNA for CRISPR genome editing
KR102050297B1 (en) DNA Aptamer Specifically Binding to PG-1 Peptide and Its Use
US20240067960A1 (en) Non-viral delivery compositions and screening methods
AU2002354738B2 (en) Xenogenic oligoor/and polyribonucleotides as agents for the treatment of malignant tumours
US20050153920A1 (en) Ribozymes used as prodrugs
CN106906219B (en) Aptamer wh6 specifically binding to annexin A2 and application thereof