JPH09306761A - Ignition coil for internal combustion engine - Google Patents
Ignition coil for internal combustion engineInfo
- Publication number
- JPH09306761A JPH09306761A JP8141181A JP14118196A JPH09306761A JP H09306761 A JPH09306761 A JP H09306761A JP 8141181 A JP8141181 A JP 8141181A JP 14118196 A JP14118196 A JP 14118196A JP H09306761 A JPH09306761 A JP H09306761A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- permanent magnet
- magnetic circuit
- ignition coil
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ignition Installations For Internal Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば自動車のエ
ンジンの点火プラグにおいて火花放電を発生させるため
に高電圧を供給するモールド型の内燃機関用点火コイル
に関し、特に小型化が要求される内燃機関用点火コイル
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded type internal combustion engine ignition coil for supplying a high voltage to generate a spark discharge in, for example, a spark plug of an automobile engine, and more particularly to an internal combustion engine which is required to be miniaturized. The present invention relates to an ignition coil.
【0002】[0002]
【従来の技術】従来より、磁気回路内に永久磁石を有す
るモールド型の内燃機関用点火コイルは、例えば、図5
に示す断面図のような概略構成をなしていた。2. Description of the Related Art Conventionally, a molded ignition coil for an internal combustion engine having a permanent magnet in a magnetic circuit has been disclosed in, for example, FIG.
It had a schematic structure as shown in the sectional view of FIG.
【0003】図において1は点火コイル本体であり、鉄
心としてほぼUの字状をなした珪素鋼板の積層鉄心1
0,11の端部同士を向かい合わせて接合し、閉磁路を
なす磁気回路を構成する。In the figure, reference numeral 1 is an ignition coil body, which is a laminated iron core 1 made of a silicon steel plate having an approximately U-shape as an iron core.
The ends of 0 and 11 are joined to face each other to form a magnetic circuit forming a closed magnetic circuit.
【0004】尚、点火コイル本体1内の磁気回路には、
磁気逆バイアス用に板状の永久磁石12を鉄心10,1
1の間に挟み込むように配設し、接着剤を用いて後述す
る一次コイルボビン内で接着して該一次コイルボビンに
固定している。In the magnetic circuit in the ignition coil body 1,
A plate-shaped permanent magnet 12 is attached to the iron cores 10 and 1 for magnetic reverse bias.
They are arranged so as to be sandwiched between the first coil bobbin and the first coil bobbin, and are bonded to each other in the primary coil bobbin described later by using an adhesive.
【0005】更に鉄心10,11の一方の接合部11a
を溶接等によって接合している(以下、この位置に永久
磁石を配設したものを内磁石形と記載する)。Further, one joint portion 11a of the iron cores 10 and 11 is formed.
Are joined by welding or the like (hereinafter, a permanent magnet arranged at this position is referred to as an inner magnet type).
【0006】2は例えば合成樹脂等の電気的絶縁材にて
一体的に形成された一次コイルボビンであり、該一次コ
イルボビン2は鉄心の外周に密接して配設されると共に
外周部には一次コイル3が巻回されている。Reference numeral 2 denotes a primary coil bobbin integrally formed of an electrically insulating material such as synthetic resin. The primary coil bobbin 2 is disposed in close contact with the outer periphery of the iron core and has a primary coil on the outer peripheral portion. 3 is wound.
【0007】また、4は二次コイルボビンであって、一
次コイル3の外周部に同心状に配設されており、例えば
合成樹脂等の電気的絶縁材にて構成され、且つ二次コイ
ル5を分割巻するための仕切りとして機能する複数個の
鍔部を一体的に成型している。そして、二次コイルボビ
ン4には例えば一次コイル3と巻線比にしてほぼ1:1
00となる二次コイル5が、各鍔部を仕切りとして分割
巻にて巻回されている。A secondary coil bobbin 4 is concentrically arranged on the outer periphery of the primary coil 3 and is made of an electrically insulating material such as synthetic resin. A plurality of collars, which function as partitions for divided winding, are integrally molded. The secondary coil bobbin 4 has, for example, a winding ratio of the primary coil 3 of about 1: 1.
The secondary coil 5, which is No. 00, is wound in a divided winding with each collar portion as a partition.
【0008】更に、6は二次コイル5の更に外周に配設
され、合成樹脂等の絶縁部材にて成型された絶縁ケース
を示しており、該絶縁ケース6の一端には一次端子7が
配設され、しかも絶縁ケース6の底部に高圧端子8が配
設される。そして、絶縁ケース6の内部には例えばエポ
キシ樹脂等の絶縁部材9を充填した後に、該絶縁部材9
を硬化させ、絶縁ケース6の内部に配設した各部材間を
絶縁した状態で固定している。Further, reference numeral 6 denotes an insulating case which is disposed further on the outer circumference of the secondary coil 5 and is molded with an insulating member such as synthetic resin. One end of the insulating case 6 is provided with a primary terminal 7. In addition, the high voltage terminal 8 is provided at the bottom of the insulating case 6. The inside of the insulating case 6 is filled with an insulating member 9 such as epoxy resin, and then the insulating member 9
Is hardened, and the members arranged inside the insulating case 6 are fixed in an insulated state.
【0009】また、一次コイル3と一次端子7及び二次
コイル5と高圧端子8はそれぞれ電気的に接続され、一
次コイル3に所定の電流を通電した後に遮断すると、二
次コイル5に発生した高電圧の電流は高圧端子8から図
示していないハイテンションコードを介して点火プラグ
に供給される。The primary coil 3 and the primary terminal 7 are electrically connected to each other, and the secondary coil 5 and the high voltage terminal 8 are electrically connected to each other. When a predetermined current is applied to the primary coil 3 and then cut off, the secondary coil 5 is generated. A high voltage current is supplied from the high voltage terminal 8 to the spark plug via a high tension cord (not shown).
【0010】以上のように構成した内磁石形の内燃機関
用点火コイル(所謂モールドコイル)は、永久磁石12
を用いて鉄心10,11に磁気逆バイアスをかけること
により、一次コイル電流遮断時の鉄心10,11におけ
る磁束の変化量を大きくして、モールドコイルの小型化
及び高出力化が図られていた。The internal magnet type ignition coil (so-called molded coil) of the internal magnet type configured as described above is a permanent magnet 12
By applying a magnetic reverse bias to the iron cores 10 and 11 by using, the change amount of the magnetic flux in the iron cores 10 and 11 when the primary coil current is cut off is increased, and the mold coil is downsized and the output is increased. .
【0011】[0011]
【発明が解決しようとする課題】しかしながら、上記し
たような永久磁石は価格が高くなるためにモールドコイ
ル自体の価格も高価になるという問題を生じていた。However, since the price of the above-mentioned permanent magnet is high, the price of the molded coil itself is also high.
【0012】本発明は、このような欠点を解消するもの
であり、永久磁石を使用した内燃機関用点火コイルの小
型化及び高出力化に係わるものである。The present invention solves such a drawback and relates to miniaturization and high output of an ignition coil for an internal combustion engine using a permanent magnet.
【0013】[0013]
【課題を解決するための手段】本発明は上記に鑑みて成
されたもので、一次コイルの外周側に二次コイルを同心
状に配設し、絶縁部材により一体的にモールドしたコイ
ル本体と、磁性金属からなる閉磁路鉄心とで構成され、
上記コイル本体を上記閉磁路鉄心に挿入して配設した内
燃機関用点火コイルであって、上記コイル本体が配設さ
れた場所とは異なる上記閉磁路鉄心の位置に永久磁石を
上記閉磁路と磁気的に直列に配設し、且つ上記永久磁石
の磁路と対面する面の面積を上記閉磁路鉄心の断面積の
1.4倍乃至2倍とした内燃機関用点火コイルを提供す
るものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has a coil body in which a secondary coil is concentrically arranged on the outer peripheral side of a primary coil and integrally molded with an insulating member. , A closed magnetic circuit iron core made of magnetic metal,
An ignition coil for an internal combustion engine, wherein the coil body is arranged by inserting it into the closed magnetic circuit core, and a permanent magnet is provided in the closed magnetic circuit at a position of the closed magnetic circuit core different from a place where the coil body is arranged. An ignition coil for an internal combustion engine, which is magnetically arranged in series and has an area of a surface facing the magnetic path of the permanent magnet that is 1.4 to 2 times the cross-sectional area of the closed magnetic circuit core. is there.
【0014】また、本発明は、上記永久磁石の厚みを上
記永久磁石の上記面積に0.007乃至0.01を乗じ
た値の厚みとした内燃機関用点火コイルを提供するもの
である。The present invention also provides an ignition coil for an internal combustion engine, wherein the thickness of the permanent magnet is a value obtained by multiplying the area of the permanent magnet by 0.007 to 0.01.
【0015】更に、本発明は、上記閉磁路鉄心を構成す
る上記磁性金属が方向性珪素鋼板の積層体とした内燃機
関用点火コイルを提供するものである。Furthermore, the present invention provides an ignition coil for an internal combustion engine, wherein the magnetic metal forming the closed magnetic circuit core is a laminated body of grain-oriented silicon steel plates.
【0016】本発明は、一次コイルの外周側に二次コイ
ルを同心状に配設し、絶縁部材により一体的にモールド
したコイル本体と、磁性金属からなる閉磁路鉄心とで構
成され、上記コイル本体を上記閉磁路鉄心に挿入して配
設した内燃機関用点火コイルであって、上記閉磁路鉄心
の磁路の一部に配設した永久磁石と磁気的に直列に磁気
飽和防止用の空隙か若しくは非磁性体からなるスペーサ
ーを設けた内燃機関用点火コイルを提供するものであ
る。According to the present invention, the secondary coil is concentrically arranged on the outer peripheral side of the primary coil, and is composed of a coil body integrally molded with an insulating member and a closed magnetic circuit iron core made of magnetic metal. An ignition coil for an internal combustion engine in which a main body is inserted into the closed magnetic circuit core to be magnetically connected in series with a permanent magnet disposed in a part of the magnetic path of the closed magnetic circuit core to prevent magnetic saturation. Alternatively, the present invention provides an ignition coil for an internal combustion engine provided with a spacer made of a non-magnetic material.
【0017】[0017]
【発明の実施の形態】以下に、本発明を図面に基づいて
説明する。図1は本発明の一実施形態における内燃機関
用点火コイルの概略断面図を示しており、従来例と同一
部材は同一符号で示している。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view of an ignition coil for an internal combustion engine according to an embodiment of the present invention, and the same members as those in the conventional example are designated by the same reference numerals.
【0018】本実施形態における最大の特徴は、永久磁
石12を点火コイル本体1内ではなく、点火コイル本体
1が配設された閉磁路鉄心10,11の一辺と対向する
辺に設ける(以下、これを外磁石形と記載する)。The greatest feature of the present embodiment is that the permanent magnet 12 is provided not on the inside of the ignition coil body 1 but on the side opposite to one side of the closed magnetic circuit cores 10 and 11 in which the ignition coil body 1 is arranged (hereinafter, This is described as an outer magnet type).
【0019】更に、永久磁石12をサマリウム・コバル
ト系やネオジウム系等の板状の磁石とし、磁路に対して
角度θだけ傾斜して配設し、しかも閉磁路鉄心10,1
1が磁気飽和を起こさないように非磁性体からなるスペ
ーサー13か若しくは空隙を永久磁石12に隣接して設
けている。Further, the permanent magnet 12 is a samarium-cobalt-based or neodymium-based plate-shaped magnet, which is arranged at an angle θ with respect to the magnetic path, and the closed magnetic circuit cores 10, 1 are provided.
A spacer 13 made of a non-magnetic material or a gap is provided adjacent to the permanent magnet 12 so that 1 does not cause magnetic saturation.
【0020】[0020]
【実施例】以下に、本発明の一実施例を示して従来例と
の対比を行う。先ず、0.3mm厚の方向性硅素鋼板を
積層して、断面が9mm×9mmのほぼUの字状の鉄心
10,11を形成する。そして、この鉄心10,11を
一次コイルボビン2及び絶縁ケース6に設けられた鉄心
固定鞘6a内に挿入する。そして、一次コイルボビン2
内において鉄心10,11は接合部11aにて接合され
る。EXAMPLE An example of the present invention will be shown below for comparison with a conventional example. First, 0.3 mm-thickness grain-oriented silicon steel plates are laminated to form substantially U-shaped iron cores 10 and 11 having a cross section of 9 mm × 9 mm. Then, the iron cores 10 and 11 are inserted into the primary coil bobbin 2 and the iron core fixing sheath 6 a provided on the insulating case 6. And the primary coil bobbin 2
Inside, the iron cores 10 and 11 are joined at the joining portion 11a.
【0021】一方、鉄心固定鞘6a内においては、磁路
に対して角度θ=40度の傾きで鉄心10,11の端面
が形成されると共に、該端面に挟持された状態で1mm
厚のサマリウム・コバルト系の永久磁石12及び非磁性
体からなる0.2〜0.4mm厚程度のスペーサー13
か若しくは空隙が配設されて、鉄心10,11が磁気飽
和を起こすことを防止している。尚、永久磁石12の面
積は9mm×14mm=126mm2 である。On the other hand, in the iron core fixing sheath 6a, the end faces of the iron cores 10 and 11 are formed at an angle of θ = 40 degrees with respect to the magnetic path, and 1 mm when sandwiched between the end faces.
A thick samarium-cobalt-based permanent magnet 12 and a spacer 13 made of a non-magnetic material and having a thickness of about 0.2 to 0.4 mm.
Alternatively, a gap is provided to prevent the iron cores 10 and 11 from being magnetically saturated. The area of the permanent magnet 12 is 9 mm × 14 mm = 126 mm 2 .
【0022】また、一次コイル3は0.45mm径の単
線を140回巻線したものであり、一次遮断電流は6A
でこれによる起磁力は780ATである。更に、二次コ
イル5は一次コイル3と巻線比で1:100となる巻数
を有し、絶縁耐圧を確保するために、二次コイルボビン
4に設けられた鍔部で仕切った状態で分割巻されてい
る。尚、二次コイル5の直流抵抗値は14KΩである。The primary coil 3 is a 0.45 mm diameter single wire wound 140 times, and the primary breaking current is 6 A.
The resulting magnetomotive force is 780 AT. Further, the secondary coil 5 has a winding number of 1: 100 with the winding ratio of the primary coil 3, and in order to secure the withstand voltage, the secondary coil 5 is divided into windings with a collar portion provided on the secondary coil bobbin 4, and is divided and wound. Has been done. The DC resistance value of the secondary coil 5 is 14 KΩ.
【0023】以上のような条件の本実施例(外磁石形)
と従来例(内磁石形)とを比較すると図2のようにな
る。尚、何れの場合においても、一次コイル3の起磁力
は780ATとなるように設定されている。これからも
分かるとおり、一次コイル3に鎖交する磁束の変化量の
最大値は、従来例の場合には、1.9×10-4(Wb)
であるのに対して、本実施例では2.4×10-4(W
b)となった。This embodiment (outer magnet type) under the above conditions
2 is compared with the conventional example (inner magnet type). In any case, the magnetomotive force of the primary coil 3 is set to 780 AT. As can be seen from this, the maximum value of the change amount of the magnetic flux interlinking with the primary coil 3 is 1.9 × 10 −4 (Wb) in the case of the conventional example.
On the other hand, in this embodiment, 2.4 × 10 −4 (W
It became b).
【0024】これは、外磁石形の場合には一次コイル3
に貫通する部分の鉄心の磁気抵抗が極めて小さい構造と
なるため、同一の起磁力である場合には一次コイル3に
鎖交する磁束の変化量が増大するためである。In the case of the outer magnet type, this is the primary coil 3
This is because the magnetic resistance of the iron core in the portion penetrating into is extremely small, so that when the magnetomotive force is the same, the amount of change in the magnetic flux linked to the primary coil 3 increases.
【0025】また、図3は同一測定条件での本実施例及
び従来例における一次コイル3に鎖交する磁束の変化量
の分布を示している。尚、図におけるA,B,Cは何れ
も図1及び図5に示す各A,B,Cの位置にそれぞれ対
応している。FIG. 3 shows the distribution of the amount of change in the magnetic flux linked to the primary coil 3 in this embodiment and the conventional example under the same measurement conditions. It should be noted that A, B, and C in the drawing all correspond to the positions of A, B, and C shown in FIGS. 1 and 5, respectively.
【0026】図において従来のような内磁石形の場合に
は、磁束の変化量が最大となる位置はAであり、永久磁
石12を装着したCの位置では、磁束の変化量は、Aの
87%しかない。これは、永久磁石12が磁束の変化を
妨げているためである。そして、A,B,Cの平均値は
Aの位置における94%となる。In the figure, in the case of the conventional inner magnet type, the position where the change amount of the magnetic flux is maximum is A, and at the position C where the permanent magnet 12 is mounted, the change amount of the magnetic flux is A Only 87%. This is because the permanent magnet 12 prevents the change of magnetic flux. The average value of A, B, and C is 94% at the position of A.
【0027】一方、本実施例のような外磁石形の場合に
は、磁束の変化量が最大となる位置はBであり、A,
B,Cの平均値はBの位置における97%となった。こ
れは、永久磁石12を一次コイル3から遠ざけたため、
一次コイル3付近での磁束の変化量がほぼ均一になった
ものであり、それによって中央部であるBの位置での磁
束の変化量が最大となったわけである。On the other hand, in the case of the outer magnet type as in this embodiment, the position where the amount of change in magnetic flux is maximum is B, and A,
The average value of B and C was 97% at the position of B. This is because the permanent magnet 12 is moved away from the primary coil 3,
The amount of change in the magnetic flux in the vicinity of the primary coil 3 is almost uniform, which maximizes the amount of change in the magnetic flux at the position B, which is the central portion.
【0028】更に、従来例と本実施例との実効一次イン
ダクタンスは、それぞれ4.2mHと5.4mHであっ
て本実施例の場合の方が29%程増大している。また、
従来例及び本実施例における一次コイル3と二次コイル
5との結合係数は、それぞれ0.92〜0.94及び
0.95〜0.97となり、本実施例の方がかなり改善
されていることが分かる。Further, the effective primary inductances of the conventional example and this example are 4.2 mH and 5.4 mH, respectively, which is increased by about 29% in the case of this example. Also,
Coupling coefficients of the primary coil 3 and the secondary coil 5 in the conventional example and the present example are 0.92 to 0.94 and 0.95 to 0.97, respectively, which is considerably improved in the present example. I understand.
【0029】以上のことから、従来例及び本実施例にお
ける二次コイル5の条件を同じにすると、一次コイル電
流を6A遮断とし、二次側の負荷を50PFとすると、
従来例の場合は、二次電圧は31.4KV、火花エネル
ギーは41mJであるのに対し、本実施例の場合は、二
次電圧は36.0KV、火花エネルギーは55mJとな
り、本実施例の方が二次電圧では15%、火花エネルギ
ーでは34%増大する。From the above, if the conditions of the secondary coil 5 in the conventional example and the present example are the same, the primary coil current is cut off by 6 A and the load on the secondary side is set to 50 PF.
In the case of the conventional example, the secondary voltage is 31.4 KV and the spark energy is 41 mJ, whereas in the case of this example, the secondary voltage is 36.0 KV and the spark energy is 55 mJ. However, the secondary voltage increases by 15%, and the spark energy increases by 34%.
【0030】逆に、本実施例の構成で従来の性能を引き
出すためには、例えば永久磁石12の厚みを0.7mm
とすれば、一次コイル3及び二次コイル5の巻数を20
%削減することが可能となり、大幅なコスト低減を図る
ことができる。また、上述した仕様の中間をとって、高
出力とコスト低減を両立させる設計とすることにより、
高出力で安価な点火コイルを提供することも可能であ
る。On the contrary, in order to bring out the conventional performance with the structure of this embodiment, for example, the thickness of the permanent magnet 12 is 0.7 mm.
Then, the number of turns of the primary coil 3 and the secondary coil 5 is 20.
%, And it is possible to significantly reduce the cost. In addition, by taking the middle of the above specifications and designing to achieve both high output and cost reduction,
It is also possible to provide a high-power and inexpensive ignition coil.
【0031】以上の説明では永久磁石12を磁路に対し
て40度の角度としているが、角度θの値を他の値にし
ても良い。そこで、図4に永久磁石12の配設される角
度θを変えた場合の磁束変化量を示している。図からも
分かるとおり、θが30度未満では磁気飽和を起こし、
実用的には30度〜45度で磁束変化量が最大になる。
これを永久磁石12の面積で表せば、30度は鉄心の断
面積の2.0倍、45度では鉄心の断面積の1.4倍と
なる。In the above description, the permanent magnet 12 has an angle of 40 degrees with respect to the magnetic path, but the value of the angle θ may be another value. Therefore, FIG. 4 shows the amount of change in magnetic flux when the angle θ at which the permanent magnets 12 are arranged is changed. As you can see from the figure, when θ is less than 30 degrees, magnetic saturation occurs,
Practically, the magnetic flux change amount becomes maximum at 30 to 45 degrees.
If this is expressed by the area of the permanent magnet 12, 30 degrees is 2.0 times the cross-sectional area of the iron core, and 45 degrees is 1.4 times the cross-sectional area of the iron core.
【0032】一般に、永久磁石12は面積が広いほど、
鉄心に対する磁気逆バイアス量を大きくすることができ
るが、その反面、永久磁石12は一次コイル3による順
方向の励磁に対しては、空隙と同等の磁気抵抗となるた
め、永久磁石12は面積が大きい程磁気抵抗が小さくな
り、磁気飽和し易くなるといった矛盾を生じ、結果的に
は点火コイルの高出力化が図れない場合がある。Generally, the larger the area of the permanent magnet 12,
Although the amount of magnetic reverse bias with respect to the iron core can be increased, on the other hand, the permanent magnet 12 has a magnetic resistance equivalent to that of an air gap in the forward excitation by the primary coil 3, so that the area of the permanent magnet 12 is large. There is a contradiction that the larger the value, the smaller the magnetic resistance and the more easily the magnetic saturation occurs, and as a result, the ignition coil may not have a high output.
【0033】従って、本実施例のように必要に応じて永
久磁石12と磁気的に直列に磁気飽和防止用の空隙か若
しくはスペーサー13を設けることが有効となる。或い
は、永久磁石12に充分な磁気抵抗が生じるように、そ
の厚みを選択することも可能である。Therefore, it is effective to provide a magnetic saturation preventing gap or a spacer 13 in magnetic series with the permanent magnet 12 as required, as in this embodiment. Alternatively, the thickness can be selected so that the permanent magnet 12 has a sufficient magnetic resistance.
【0034】即ち、永久磁石12の面積に比例した厚み
を選択することが理想的である。本実施例で使用される
方向性硅素鋼板は、磁束密度が2.0Tesla程度で
磁気飽和するため、実用的には1.6〜1.9Tesl
a程度で使用すると効率が良い。That is, it is ideal to select the thickness proportional to the area of the permanent magnet 12. The grain-oriented silicon steel sheet used in this example is magnetically saturated at a magnetic flux density of about 2.0 Tesla, so that it is practically 1.6 to 1.9 Tesl.
Efficiency is good when used at about a.
【0035】そこで上記の条件で永久磁石12の最適な
厚みを求めると、磁束密度が1.9Teslaになる永
久磁石の厚みは0.9mmであり、0.9という数値は
角度θが40度における永久磁石12の面積である12
6mm2 の126という数値に、0.0072を乗じた
値である。また、磁束密度が1.6Teslaになる永
久磁石の厚みは1.2mmであり、1.2という数値は
126という数値に、0.0096を乗じた値である。
即ち、実質的には永久磁石12の厚みは、ほぼ永久磁石
12の面積の数値に0.007〜0.010を乗じた値
が最適となる。Therefore, when the optimum thickness of the permanent magnet 12 is obtained under the above conditions, the thickness of the permanent magnet having a magnetic flux density of 1.9 Tesla is 0.9 mm, and the numerical value of 0.9 is when the angle θ is 40 degrees. 12 which is the area of the permanent magnet 12.
It is a value obtained by multiplying the value of 126 of 6 mm 2 by 0.0072. The thickness of the permanent magnet having a magnetic flux density of 1.6 Tesla is 1.2 mm, and the numerical value of 1.2 is the numerical value of 126 multiplied by 0.0096.
That is, substantially, the optimum thickness of the permanent magnet 12 is a value obtained by multiplying the numerical value of the area of the permanent magnet 12 by 0.007 to 0.010.
【0036】以上、本発明を実施形態に基づいて説明し
たが、本発明は上記した実施形態に限定されるものでは
なく、特許請求の範囲に記載した構成を変更しない限
り、どのようにでも実施できる。As described above, the present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and may be implemented in any manner unless the structure described in the claims is changed. it can.
【0037】[0037]
【発明の効果】以上述べたように、本発明における内燃
機関用点火コイルは、外磁石形の閉磁路を形成したこと
により、小型で高い火花エネルギーの得られる点火コイ
ルを提供できる等、多大な効果を奏する。As described above, the ignition coil for an internal combustion engine according to the present invention has a large size because it is provided with an outer magnet type closed magnetic circuit, so that it is possible to provide an ignition coil that is small in size and has high spark energy. Produce an effect.
【図1】本発明の一実施形態における内燃機関用点火コ
イルの概略断面図である。FIG. 1 is a schematic cross-sectional view of an internal combustion engine ignition coil according to an embodiment of the present invention.
【図2】従来の点火コイル及び本発明の点火コイルにお
ける磁束変化量を示す特性図である。FIG. 2 is a characteristic diagram showing a magnetic flux change amount in a conventional ignition coil and an ignition coil of the present invention.
【図3】従来の点火コイル及び本発明の点火コイルのA
〜Cの各位置における磁束変化量の分布を示す特性図で
ある。FIG. 3 A of a conventional ignition coil and an ignition coil of the present invention
It is a characteristic view which shows the distribution of the magnetic flux change amount in each position of -C.
【図4】本発明の点火コイルにおける永久磁石配設角度
と磁束変化量を示す特性図である。FIG. 4 is a characteristic diagram showing a permanent magnet arrangement angle and a magnetic flux change amount in the ignition coil of the present invention.
【図5】従来の内燃機関用点火コイルの概略断面図であ
る。FIG. 5 is a schematic cross-sectional view of a conventional ignition coil for an internal combustion engine.
1 点火コイル本体 2 一次コイルボビン 3 一次コイル 4 二次コイルボビン 5 二次コイル 6 絶縁ケース 6a 鉄心固定鞘 7 一次端子 8 高圧端子 9 絶縁部材 10、11 鉄心 11a 接合部 12 永久磁石 13 スペーサー A、B、C 磁束変化量測定点 α 外磁石形の特性曲線 β 内磁石形の特性曲線 θ 永久磁石配設角度 1 Ignition coil main body 2 Primary coil bobbin 3 Primary coil 4 Secondary coil bobbin 5 Secondary coil 6 Insulation case 6a Iron core fixing sheath 7 Primary terminal 8 High voltage terminal 9 Insulating member 10, 11 Iron core 11a Joint 12 Permanent magnet 13 Spacer A, B, C Magnetic flux variation measurement point α Outer magnet type characteristic curve β Inner magnet type characteristic curve θ Permanent magnet arrangement angle
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成9年4月1日[Submission date] April 1, 1997
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【書類名】 明細書[Document Name] Statement
【発明の名称】 内燃機関用点火コイルTitle of Invention Ignition coil for internal combustion engine
【特許請求の範囲】[Claims]
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、例えば自動車のエ
ンジンの点火プラグにおいて火花放電を発生させるため
に高電圧を供給するモールド型の内燃機関用点火コイル
に関し、特に小型化が要求される内燃機関用点火コイル
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded type internal combustion engine ignition coil for supplying a high voltage to generate a spark discharge in, for example, a spark plug of an automobile engine, and more particularly to an internal combustion engine which is required to be miniaturized. The present invention relates to an ignition coil.
【0002】[0002]
【従来の技術】従来より、磁気回路内に永久磁石を有す
るモールド型の内燃機関用点火コイルは、例えば、図5
に示す断面図のような概略構成をなしていた。2. Description of the Related Art Conventionally, a molded ignition coil for an internal combustion engine having a permanent magnet in a magnetic circuit has been disclosed in, for example, FIG.
It had a schematic structure as shown in the sectional view of FIG.
【0003】図において1は点火コイル本体であり、鉄
心としてほぼUの字状をなした珪素鋼板の積層鉄心1
0,11の端部同士を向かい合わせて接合し、閉磁路を
なす磁気回路を構成する。In the figure, reference numeral 1 is an ignition coil body, which is a laminated iron core 1 made of a silicon steel plate having an approximately U-shape as an iron core.
The ends of 0 and 11 are joined to face each other to form a magnetic circuit forming a closed magnetic circuit.
【0004】尚、点火コイル本体1内の磁気回路には、
磁気逆バイアス用に板状の永久磁石12を鉄心10,1
1の間に挟み込むように配設し、接着剤を用いて後述す
る一次コイルボビン内で接着して該一次コイルボビンに
固定している。In the magnetic circuit in the ignition coil body 1,
A plate-shaped permanent magnet 12 is attached to the iron cores 10 and 1 for magnetic reverse bias.
They are arranged so as to be sandwiched between the first coil bobbin and the first coil bobbin, and are bonded to each other in the primary coil bobbin described later by using an adhesive.
【0005】更に鉄心10,11の一方の接合部11a
を溶接等によって接合している(以下、この位置に永久
磁石を配設したものを内磁石形と記載する)。Further, one joint portion 11a of the iron cores 10 and 11 is formed.
Are joined by welding or the like (hereinafter, a permanent magnet arranged at this position is referred to as an inner magnet type).
【0006】2は例えば合成樹脂等の電気的絶縁材にて
一体的に形成された一次コイルボビンであり、該一次コ
イルボビン2は鉄心の外周に密接して配設されると共に
外周部には一次コイル3が巻回されている。Reference numeral 2 denotes a primary coil bobbin integrally formed of an electrically insulating material such as synthetic resin. The primary coil bobbin 2 is disposed in close contact with the outer periphery of the iron core and has a primary coil on the outer peripheral portion. 3 is wound.
【0007】また、4は二次コイルボビンであって、一
次コイル3の外周部に同心状に配設されており、例えば
合成樹脂等の電気的絶縁材にて構成され、且つ二次コイ
ル5を分割巻するための仕切りとして機能する複数個の
鍔部を一体的に成型している。そして、二次コイルボビ
ン4には例えば一次コイル3と巻線比にしてほぼ1:1
00となる二次コイル5が、各鍔部を仕切りとして分割
巻にて巻回されている。A secondary coil bobbin 4 is concentrically arranged on the outer periphery of the primary coil 3 and is made of an electrically insulating material such as synthetic resin. A plurality of collars, which function as partitions for divided winding, are integrally molded. The secondary coil bobbin 4 has, for example, a winding ratio of the primary coil 3 of about 1: 1.
The secondary coil 5, which is No. 00, is wound in a divided winding with each collar portion as a partition.
【0008】更に、6は二次コイル5の更に外周に配設
され、合成樹脂等の絶縁部材にて成型された絶縁ケース
を示しており、該絶縁ケース6の一端には一次端子7が
配設され、しかも絶縁ケース6の底部に高圧端子8が配
設される。そして、絶縁ケース6の内部には例えばエポ
キシ樹脂等の絶縁部材9を充填した後に、該絶縁部材9
を硬化させ、絶縁ケース6の内部に配設した各部材間を
絶縁した状態で固定している。Further, reference numeral 6 denotes an insulating case which is disposed further on the outer circumference of the secondary coil 5 and is molded with an insulating member such as synthetic resin. One end of the insulating case 6 is provided with a primary terminal 7. In addition, the high voltage terminal 8 is provided at the bottom of the insulating case 6. The inside of the insulating case 6 is filled with an insulating member 9 such as epoxy resin, and then the insulating member 9
Is hardened, and the members arranged inside the insulating case 6 are fixed in an insulated state.
【0009】また、一次コイル3と一次端子7及び二次
コイル5と高圧端子8はそれぞれ電気的に接続され、一
次コイル3に所定の電流を通電した後に遮断すると、二
次コイル5に発生した高電圧の電流は高圧端子8から図
示していないハイテンションコードを介して点火プラグ
に供給される。The primary coil 3 and the primary terminal 7 are electrically connected to each other, and the secondary coil 5 and the high voltage terminal 8 are electrically connected to each other. When a predetermined current is applied to the primary coil 3 and then cut off, the secondary coil 5 is generated. A high voltage current is supplied from the high voltage terminal 8 to the spark plug via a high tension cord (not shown).
【0010】以上のように構成した内磁石形の内燃機関
用点火コイル(所謂モールドコイル)は、永久磁石12
を用いて鉄心10,11に磁気逆バイアスをかけること
により、一次コイル電流遮断時の鉄心10,11におけ
る磁束の変化量を大きくして、モールドコイルの小型化
及び高出力化が図られていた。The internal magnet type ignition coil (so-called molded coil) of the internal magnet type configured as described above is a permanent magnet 12
By applying a magnetic reverse bias to the iron cores 10 and 11 by using, the change amount of the magnetic flux in the iron cores 10 and 11 when the primary coil current is cut off is increased, and the mold coil is downsized and the output is increased. .
【0011】[0011]
【発明が解決しようとする課題】しかしながら、上記し
たような永久磁石は価格が高くなるためにモールドコイ
ル自体の価格も高価になるという問題を生じていた。However, since the price of the above-mentioned permanent magnet is high, the price of the molded coil itself is also high.
【0012】本発明は、このような欠点を解消するもの
であり、永久磁石を使用した内燃機関用点火コイルの小
型化及び高出力化に係わるものである。The present invention solves such a drawback and relates to miniaturization and high output of an ignition coil for an internal combustion engine using a permanent magnet.
【0013】[0013]
【課題を解決するための手段】本発明は上記に鑑みて成
されたもので、一次コイルの外周側に二次コイルを同心
状に配設し、絶縁部材により一体的にモールドしたコイ
ル本体と、磁性金属からなる閉磁路鉄心とで構成され、
上記コイル本体を上記閉磁路鉄心に挿入して配設した内
燃機関用点火コイルであって、上記コイル本体が配設さ
れた鉄心と対向する側の鉄心に永久磁石を上記閉磁路と
磁気的に直列に配設し、且つ上記永久磁石の磁路と対面
する面の面積を上記閉磁路鉄心の断面積の1.4倍乃至
2倍とした内燃機関用点火コイルを提供するものであ
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has a coil body in which a secondary coil is concentrically arranged on the outer peripheral side of a primary coil and integrally molded with an insulating member. , A closed magnetic circuit iron core made of magnetic metal,
An ignition coil for an internal combustion engine, wherein the coil body is arranged by inserting it into the closed magnetic circuit core, and a permanent magnet is magnetically connected to the closed magnetic circuit on the iron core on the side facing the iron core on which the coil body is arranged. An ignition coil for an internal combustion engine, which is arranged in series and has an area of a surface facing the magnetic path of the permanent magnet that is 1.4 to 2 times the cross-sectional area of the closed magnetic circuit core.
【0014】また、本発明は、上記永久磁石の厚みを上
記永久磁石の上記面積に0.007乃至0.01を乗じ
た値の厚みとした内燃機関用点火コイルを提供するもの
である。The present invention also provides an ignition coil for an internal combustion engine, wherein the thickness of the permanent magnet is a value obtained by multiplying the area of the permanent magnet by 0.007 to 0.01.
【0015】更に、本発明は、上記閉磁路鉄心を構成す
る上記磁性金属が方向性珪素鋼板の積層体とした内燃機
関用点火コイルを提供するものである。Furthermore, the present invention provides an ignition coil for an internal combustion engine, wherein the magnetic metal forming the closed magnetic circuit core is a laminated body of grain-oriented silicon steel plates.
【0016】本発明は、一次コイルの外周側に二次コイ
ルを同心状に配設し、絶縁部材により一体的にモールド
したコイル本体と、磁性金属からなる閉磁路鉄心とで構
成され、上記コイル本体を上記閉磁路鉄心に挿入して配
設した内燃機関用点火コイルであって、上記閉磁路鉄心
の磁路の一部に配設した永久磁石と磁気的に直列に磁気
飽和防止用の空隙か若しくは非磁性体からなるスペーサ
ーを設けた内燃機関用点火コイルを提供するものであ
る。According to the present invention, the secondary coil is concentrically arranged on the outer peripheral side of the primary coil, and is composed of a coil body integrally molded with an insulating member and a closed magnetic circuit iron core made of magnetic metal. An ignition coil for an internal combustion engine in which a main body is inserted into the closed magnetic circuit core to be magnetically connected in series with a permanent magnet disposed in a part of the magnetic path of the closed magnetic circuit core to prevent magnetic saturation. Alternatively, the present invention provides an ignition coil for an internal combustion engine provided with a spacer made of a non-magnetic material.
【0017】[0017]
【発明の実施の形態】以下に、本発明を図面に基づいて
説明する。図1は本発明の一実施形態における内燃機関
用点火コイルの概略断面図を示しており、従来例と同一
部材は同一符号で示している。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view of an ignition coil for an internal combustion engine according to an embodiment of the present invention, and the same members as those in the conventional example are designated by the same reference numerals.
【0018】本実施形態における最大の特徴は、永久磁
石12を点火コイル本体1内ではなく、点火コイル本体
1が配設された閉磁路鉄心10,11の一辺と対向する
辺に設ける(以下、これを外磁石形と記載する)。The greatest feature of the present embodiment is that the permanent magnet 12 is provided not on the inside of the ignition coil body 1 but on the side opposite to one side of the closed magnetic circuit cores 10 and 11 in which the ignition coil body 1 is arranged (hereinafter, This is described as an outer magnet type).
【0019】更に、永久磁石12をサマリウム・コバル
ト系やネオジウム系等の板状の磁石とし、磁路に対して
角度θだけ傾斜して配設し、しかも閉磁路鉄心10,1
1が磁気飽和を起こさないように非磁性体からなるスペ
ーサー13か若しくは空隙を永久磁石12に隣接して設
けている。Further, the permanent magnet 12 is a samarium-cobalt-based or neodymium-based plate-shaped magnet, which is arranged at an angle θ with respect to the magnetic path, and the closed magnetic circuit cores 10, 1 are provided.
A spacer 13 made of a non-magnetic material or a gap is provided adjacent to the permanent magnet 12 so that 1 does not cause magnetic saturation.
【0020】[0020]
【実施例】以下に、本発明の一実施例を示して従来例と
の対比を行う。先ず、0.3mm厚の方向性硅素鋼板を
積層して、断面が9mm×9mmのほぼUの字状の鉄心
10,11を形成する。そして、この鉄心10,11を
一次コイルボビン2及び絶縁ケース6に設けられた鉄心
固定鞘6a内に挿入する。そして、一次コイルボビン2
内において鉄心10,11は接合部11aにて接合され
る。EXAMPLE An example of the present invention will be shown below for comparison with a conventional example. First, 0.3 mm-thickness grain-oriented silicon steel plates are laminated to form substantially U-shaped iron cores 10 and 11 having a cross section of 9 mm × 9 mm. Then, the iron cores 10 and 11 are inserted into the primary coil bobbin 2 and the iron core fixing sheath 6 a provided on the insulating case 6. And the primary coil bobbin 2
Inside, the iron cores 10 and 11 are joined at the joining portion 11a.
【0021】一方、鉄心固定鞘6a内においては、磁路
に対して角度θ=40度の傾きで鉄心10,11の端面
が形成されると共に、該端面に挟持された状態で1mm
厚のサマリウム・コバルト系の永久磁石12及び非磁性
体からなる0.2〜0.4mm厚程度のスペーサー13
か若しくは空隙が配設されて、鉄心10,11が磁気飽
和を起こすことを防止している。尚、永久磁石12の面
積は9mm×14mm=126mm2 である。On the other hand, in the iron core fixing sheath 6a, the end faces of the iron cores 10 and 11 are formed at an angle of θ = 40 degrees with respect to the magnetic path, and 1 mm when sandwiched between the end faces.
A thick samarium-cobalt-based permanent magnet 12 and a spacer 13 made of a non-magnetic material and having a thickness of about 0.2 to 0.4 mm.
Alternatively, a gap is provided to prevent the iron cores 10 and 11 from being magnetically saturated. The area of the permanent magnet 12 is 9 mm × 14 mm = 126 mm 2 .
【0022】また、一次コイル3は0.45mm径の単
線を140回巻線したものであり、一次遮断電流は6A
でこれによる起磁力は780ATである。更に、二次コ
イル5は一次コイル3と巻線比で1:100となる巻数
を有し、絶縁耐圧を確保するために、二次コイルボビン
4に設けられた鍔部で仕切った状態で分割巻されてい
る。尚、二次コイル5の直流抵抗値は14KΩである。The primary coil 3 is a 0.45 mm diameter single wire wound 140 times, and the primary breaking current is 6 A.
The resulting magnetomotive force is 780 AT. Further, the secondary coil 5 has a winding number of 1: 100 with the winding ratio of the primary coil 3, and in order to secure the withstand voltage, the secondary coil 5 is divided into windings with a collar portion provided on the secondary coil bobbin 4, and is divided and wound. Has been done. The DC resistance value of the secondary coil 5 is 14 KΩ.
【0023】以上のような条件の本実施例(外磁石形)
と従来例(内磁石形)とを比較すると図2のようにな
る。尚、何れの場合においても、一次コイル3の起磁力
は780ATとなるように設定されている。これからも
分かるとおり、一次コイル3に鎖交する磁束の変化量の
最大値は、従来例の場合には、1.9×10-4(Wb)
であるのに対して、本実施例では2.4×10-4(W
b)となった。This embodiment (outer magnet type) under the above conditions
2 is compared with the conventional example (inner magnet type). In any case, the magnetomotive force of the primary coil 3 is set to 780 AT. As can be seen from this, the maximum value of the change amount of the magnetic flux interlinking with the primary coil 3 is 1.9 × 10 −4 (Wb) in the case of the conventional example.
On the other hand, in this embodiment, 2.4 × 10 −4 (W
It became b).
【0024】これは、外磁石形の場合には一次コイル3
に貫通する部分の鉄心の磁気抵抗が極めて小さい構造と
なるため、同一の起磁力である場合には一次コイル3に
鎖交する磁束の変化量が増大するためである。In the case of the outer magnet type, this is the primary coil 3
This is because the magnetic resistance of the iron core in the portion penetrating into is extremely small, so that when the magnetomotive force is the same, the amount of change in the magnetic flux linked to the primary coil 3 increases.
【0025】また、図3は同一測定条件での本実施例及
び従来例における一次コイル3に鎖交する磁束の変化量
の分布を示している。尚、図におけるA,B,Cは何れ
も図1及び図5に示す各A,B,Cの位置にそれぞれ対
応している。FIG. 3 shows the distribution of the amount of change in the magnetic flux linked to the primary coil 3 in this embodiment and the conventional example under the same measurement conditions. It should be noted that A, B, and C in the drawing all correspond to the positions of A, B, and C shown in FIGS. 1 and 5, respectively.
【0026】図において従来のような内磁石形の場合に
は、磁束の変化量が最大となる位置はAであり、永久磁
石12を装着したCの位置では、磁束の変化量は、Aの
87%しかない。これは、永久磁石12が磁束の変化を
妨げているためである。そして、A,B,Cの平均値は
Aの位置における94%となる。In the figure, in the case of the conventional inner magnet type, the position where the change amount of the magnetic flux is maximum is A, and at the position C where the permanent magnet 12 is mounted, the change amount of the magnetic flux is A Only 87%. This is because the permanent magnet 12 prevents the change of magnetic flux. The average value of A, B, and C is 94% at the position of A.
【0027】一方、本実施例のような外磁石形の場合に
は、磁束の変化量が最大となる位置はBであり、A,
B,Cの平均値はBの位置における97%となった。こ
れは、永久磁石12を一次コイル3から遠ざけたため、
一次コイル3付近での磁束の変化量がほぼ均一になった
ものであり、それによって中央部であるBの位置での磁
束の変化量が最大となったわけである。On the other hand, in the case of the outer magnet type as in this embodiment, the position where the amount of change in magnetic flux is maximum is B, and A,
The average value of B and C was 97% at the position of B. This is because the permanent magnet 12 is moved away from the primary coil 3,
The amount of change in the magnetic flux in the vicinity of the primary coil 3 is almost uniform, which maximizes the amount of change in the magnetic flux at the position B, which is the central portion.
【0028】更に、従来例と本実施例との実効一次イン
ダクタンスは、それぞれ4.2mHと5.4mHであっ
て本実施例の場合の方が29%程増大している。また、
従来例及び本実施例における一次コイル3と二次コイル
5との結合係数は、それぞれ0.92〜0.94及び
0.95〜0.97となり、本実施例の方がかなり改善
されていることが分かる。Further, the effective primary inductances of the conventional example and this example are 4.2 mH and 5.4 mH, respectively, which is increased by about 29% in the case of this example. Also,
Coupling coefficients of the primary coil 3 and the secondary coil 5 in the conventional example and the present example are 0.92 to 0.94 and 0.95 to 0.97, respectively, which is considerably improved in the present example. I understand.
【0029】以上のことから、従来例及び本実施例にお
ける二次コイル5の条件を同じにすると、一次コイル電
流を6A遮断とし、二次側の負荷を50PFとすると、
従来例の場合は、二次電圧は31.4KV、火花エネル
ギーは41mJであるのに対し、本実施例の場合は、二
次電圧は36.0KV、火花エネルギーは55mJとな
り、本実施例の方が二次電圧では15%、火花エネルギ
ーでは34%増大する。From the above, if the conditions of the secondary coil 5 in the conventional example and the present example are the same, the primary coil current is cut off by 6 A and the load on the secondary side is set to 50 PF.
In the case of the conventional example, the secondary voltage is 31.4 KV and the spark energy is 41 mJ, whereas in the case of this example, the secondary voltage is 36.0 KV and the spark energy is 55 mJ. However, the secondary voltage increases by 15%, and the spark energy increases by 34%.
【0030】逆に、本実施例の構成で従来の性能を引き
出すためには、例えば永久磁石12の厚みを0.7mm
とすれば、一次コイル3及び二次コイル5の巻数を20
%削減することが可能となり、大幅なコスト低減を図る
ことができる。また、上述した仕様の中間をとって、高
出力とコスト低減を両立させる設計とすることにより、
高出力で安価な点火コイルを提供することも可能であ
る。On the contrary, in order to bring out the conventional performance with the structure of this embodiment, for example, the thickness of the permanent magnet 12 is 0.7 mm.
Then, the number of turns of the primary coil 3 and the secondary coil 5 is 20.
%, And it is possible to significantly reduce the cost. In addition, by taking the middle of the above specifications and designing to achieve both high output and cost reduction,
It is also possible to provide a high-power and inexpensive ignition coil.
【0031】以上の説明では永久磁石12を磁路に対し
て40度の角度としているが、角度θの値を他の値にし
ても良い。そこで、図4に永久磁石12の配設される角
度θを変えた場合の磁束変化量を示している。図からも
分かるとおり、θが30度未満では磁気飽和を起こし、
実用的には30度〜45度で磁束変化量が最大になる。
これを永久磁石12の面積で表せば、30度は鉄心の断
面積の2.0倍、45度では鉄心の断面積の1.4倍と
なる。In the above description, the permanent magnet 12 has an angle of 40 degrees with respect to the magnetic path, but the value of the angle θ may be another value. Therefore, FIG. 4 shows the amount of change in magnetic flux when the angle θ at which the permanent magnets 12 are arranged is changed. As you can see from the figure, when θ is less than 30 degrees, magnetic saturation occurs,
Practically, the magnetic flux change amount becomes maximum at 30 to 45 degrees.
If this is expressed by the area of the permanent magnet 12, 30 degrees is 2.0 times the cross-sectional area of the iron core, and 45 degrees is 1.4 times the cross-sectional area of the iron core.
【0032】一般に、永久磁石12は面積が広いほど、
鉄心に対する磁気逆バイアス量を大きくすることができ
るが、その反面、永久磁石12は一次コイル3による順
方向の励磁に対しては、空隙と同等の磁気抵抗となるた
め、永久磁石12は面積が大きい程磁気抵抗が小さくな
り、磁気飽和し易くなるといった矛盾を生じ、結果的に
は点火コイルの高出力化が図れない場合がある。Generally, the larger the area of the permanent magnet 12,
Although the amount of magnetic reverse bias with respect to the iron core can be increased, on the other hand, the permanent magnet 12 has a magnetic resistance equivalent to that of an air gap in the forward excitation by the primary coil 3, so that the area of the permanent magnet 12 is large. There is a contradiction that the larger the value, the smaller the magnetic resistance and the more easily the magnetic saturation occurs, and as a result, the ignition coil may not have a high output.
【0033】従って、本実施例のように必要に応じて永
久磁石12と磁気的に直列に磁気飽和防止用の空隙か若
しくはスペーサー13を設けることが有効となる。或い
は、永久磁石12に充分な磁気抵抗が生じるように、そ
の厚みを選択することも可能である。Therefore, it is effective to provide a magnetic saturation preventing gap or a spacer 13 in magnetic series with the permanent magnet 12 as required, as in this embodiment. Alternatively, the thickness can be selected so that the permanent magnet 12 has a sufficient magnetic resistance.
【0034】即ち、永久磁石12の面積に比例した厚み
を選択することが理想的である。本実施例で使用される
方向性硅素鋼板は、磁束密度が2.0Tesla程度で
磁気飽和するため、実用的には1.6〜1.9Tesl
a程度で使用すると効率が良い。That is, it is ideal to select the thickness proportional to the area of the permanent magnet 12. The grain-oriented silicon steel sheet used in this example is magnetically saturated at a magnetic flux density of about 2.0 Tesla, so that it is practically 1.6 to 1.9 Tesl.
Efficiency is good when used at about a.
【0035】そこで上記の条件で永久磁石12の最適な
厚みを求めると、磁束密度が1.9Teslaになる永
久磁石の厚みは0.9mmであり、0.9という数値は
角度θが40度における永久磁石12の面積である12
6mm2 の126という数値に、0.0072を乗じ
た値である。また、磁束密度が1.6Teslaになる
永久磁石の厚みは1.2mmであり、1.2という数値
は126という数値に、0.0096を乗じた値であ
る。即ち、実質的には永久磁石12の厚みは、ほぼ永久
磁石12の面積の数値に0.007〜0.010を乗じ
た値が最適となる。Therefore, when the optimum thickness of the permanent magnet 12 is obtained under the above conditions, the thickness of the permanent magnet having a magnetic flux density of 1.9 Tesla is 0.9 mm, and the numerical value of 0.9 is when the angle θ is 40 degrees. 12 which is the area of the permanent magnet 12.
It is a value obtained by multiplying the value of 126 of 6 mm 2 by 0.0072. The thickness of the permanent magnet having a magnetic flux density of 1.6 Tesla is 1.2 mm, and the numerical value of 1.2 is the numerical value of 126 multiplied by 0.0096. That is, substantially, the optimum thickness of the permanent magnet 12 is a value obtained by multiplying the numerical value of the area of the permanent magnet 12 by 0.007 to 0.010.
【0036】以上、本発明を実施形態に基づいて説明し
たが、本発明は上記した実施形態に限定されるものでは
なく、特許請求の範囲に記載した構成を変更しない限
り、どのようにでも実施できる。As described above, the present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and may be implemented in any manner unless the structure described in the claims is changed. it can.
【0037】[0037]
【発明の効果】以上述べたように、本発明における内燃
機関用点火コイルは、外磁石形の閉磁路を形成したこと
により、小型で高い火花エネルギーの得られる点火コイ
ルを提供できる等、多大な効果を奏する。As described above, the ignition coil for an internal combustion engine according to the present invention has a large size because it is provided with an outer magnet type closed magnetic circuit, so that it is possible to provide an ignition coil that is small in size and has high spark energy. Produce an effect.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施形態における内燃機関用点火コ
イルの概略断面図である。FIG. 1 is a schematic cross-sectional view of an internal combustion engine ignition coil according to an embodiment of the present invention.
【図2】従来の点火コイル及び本発明の点火コイルにお
ける磁束変化量を示す特性図である。FIG. 2 is a characteristic diagram showing a magnetic flux change amount in a conventional ignition coil and an ignition coil of the present invention.
【図3】従来の点火コイル及び本発明の点火コイルのA
〜Cの各位置における磁束変化量の分布を示す特性図で
ある。FIG. 3 A of a conventional ignition coil and an ignition coil of the present invention
It is a characteristic view which shows the distribution of the magnetic flux change amount in each position of -C.
【図4】本発明の点火コイルにおける永久磁石配設角度
と磁束変化量を示す特性図である。FIG. 4 is a characteristic diagram showing a permanent magnet arrangement angle and a magnetic flux change amount in the ignition coil of the present invention.
【図5】従来の内燃機関用点火コイルの概略断面図であ
る。FIG. 5 is a schematic cross-sectional view of a conventional ignition coil for an internal combustion engine.
【符号の説明】 1 点火コイル本体 2 一次コイルボビン 3 一次コイル 4 二次コイルボビン 5 二次コイル 6 絶縁ケース 6a 鉄心固定鞘 7 一次端子 8 高圧端子 9 絶縁部材 10、11 鉄心 11a 接合部 12 永久磁石 13 スペーサー A、B、C 磁束変化量測定点 α 外磁石形の特性曲線 β 内磁石形の特性曲線 θ 永久磁石配設角度[Explanation of Codes] 1 Ignition coil body 2 Primary coil bobbin 3 Primary coil 4 Secondary coil bobbin 5 Secondary coil 6 Insulation case 6a Iron core fixing sheath 7 Primary terminal 8 High voltage terminal 9 Insulation member 10, 11 Iron core 11a Joint part 12 Permanent magnet 13 Spacer A, B, C Magnetic flux variation measurement point α Outer magnet type characteristic curve β Inner magnet type characteristic curve θ Permanent magnet installation angle
Claims (4)
状に配設し、絶縁部材により一体的にモールドしたコイ
ル本体と、磁性金属からなる閉磁路鉄心とで構成され、
上記コイル本体を上記閉磁路鉄心に挿入して配設した内
燃機関用点火コイルであって、 上記コイル本体が配設された場所とは異なる上記閉磁路
鉄心の位置に永久磁石を上記閉磁路と磁気的に直列に配
設し、且つ上記永久磁石の磁路と対面する面の面積を上
記閉磁路鉄心の断面積の1.4倍乃至2倍としたことを
特徴とする内燃機関用点火コイル。1. A secondary coil is concentrically arranged on the outer peripheral side of the primary coil, and is composed of a coil body integrally molded with an insulating member, and a closed magnetic circuit core made of magnetic metal.
An ignition coil for an internal combustion engine, wherein the coil main body is inserted and arranged in the closed magnetic circuit core, and a permanent magnet is provided in the closed magnetic circuit at a position of the closed magnetic circuit core different from a place where the coil main body is arranged. An ignition coil for an internal combustion engine, which is magnetically arranged in series and has an area of a surface facing the magnetic path of the permanent magnet, which is 1.4 to 2 times the cross-sectional area of the closed magnetic circuit core. .
において、 上記永久磁石の厚みを上記永久磁石の上記面積に0.0
07乃至0.01を乗じた値の厚みとしたことを特徴と
する内燃機関用点火コイル。2. The ignition coil for an internal combustion engine according to claim 1, wherein the thickness of the permanent magnet is 0.0 to the area of the permanent magnet.
An ignition coil for an internal combustion engine, wherein the ignition coil has a thickness multiplied by 07 to 0.01.
において、 上記閉磁路鉄心を構成する上記磁性金属は方向性珪素鋼
板の積層体としたことを特徴とする内燃機関用点火コイ
ル。3. The ignition coil for an internal combustion engine according to claim 1, wherein the magnetic metal forming the closed magnetic circuit core is a laminated body of grain-oriented silicon steel sheets.
状に配設し、絶縁部材により一体的にモールドしたコイ
ル本体と、磁性金属からなる閉磁路鉄心とで構成され、
上記コイル本体を上記閉磁路鉄心に挿入して配設した内
燃機関用点火コイルであって、 上記閉磁路鉄心の磁路の一部に配設した永久磁石と磁気
的に直列に磁気飽和防止用の空隙か若しくは非磁性体か
らなるスペーサーを設けたことを特徴とする内燃機関用
点火コイル。4. A secondary coil is concentrically arranged on the outer peripheral side of the primary coil, and is composed of a coil body integrally molded with an insulating member, and a closed magnetic circuit core made of magnetic metal.
An ignition coil for an internal combustion engine, in which the coil body is inserted into the closed magnetic circuit core to be magnetically connected in series with a permanent magnet disposed in a part of the magnetic path of the closed magnetic circuit core to prevent magnetic saturation. An ignition coil for an internal combustion engine, characterized in that it is provided with a void or a spacer made of a non-magnetic material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8141181A JPH09306761A (en) | 1996-05-13 | 1996-05-13 | Ignition coil for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8141181A JPH09306761A (en) | 1996-05-13 | 1996-05-13 | Ignition coil for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09306761A true JPH09306761A (en) | 1997-11-28 |
Family
ID=15286041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8141181A Pending JPH09306761A (en) | 1996-05-13 | 1996-05-13 | Ignition coil for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09306761A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003068535A (en) * | 2001-08-29 | 2003-03-07 | Nec Tokin Corp | Inductance part |
JP2009076734A (en) * | 2007-09-21 | 2009-04-09 | Hanshin Electric Co Ltd | Ignition coil for internal combustion engine |
CN107408452A (en) * | 2015-04-15 | 2017-11-28 | 三菱电机株式会社 | Internal combustion engine ignition coil |
-
1996
- 1996-05-13 JP JP8141181A patent/JPH09306761A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003068535A (en) * | 2001-08-29 | 2003-03-07 | Nec Tokin Corp | Inductance part |
JP2009076734A (en) * | 2007-09-21 | 2009-04-09 | Hanshin Electric Co Ltd | Ignition coil for internal combustion engine |
CN107408452A (en) * | 2015-04-15 | 2017-11-28 | 三菱电机株式会社 | Internal combustion engine ignition coil |
US20180240589A1 (en) * | 2015-04-15 | 2018-08-23 | Mitsubishi Electric Corporation | Ignition coil for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0738831B1 (en) | Ignition coil for internal combustion engine | |
KR100246976B1 (en) | Ignition coil for an internal combustion engine | |
JPH0845755A (en) | Ignition coil for internal combustion engine | |
US5128646A (en) | Ignition coil for an internal combustion engine | |
JPH09186029A (en) | Ignition coil for internal combustion engine | |
US5128645A (en) | Ignition coil for an internal combustion engine | |
JPH09306761A (en) | Ignition coil for internal combustion engine | |
US7098765B2 (en) | Ignition coil having magnetic flux reducing inner structure | |
JP3031158U (en) | Ignition coil for internal combustion engine | |
JP4291422B2 (en) | Ignition coil for internal combustion engine | |
JPH10275732A (en) | Ignition coil for internal combustion engine | |
JP3042144U (en) | Ignition coil for internal combustion engine | |
JP2830367B2 (en) | Ignition coil for internal combustion engine | |
JP4020998B2 (en) | Ignition coil for internal combustion engine | |
JP2936239B2 (en) | Ignition coil for internal combustion engine | |
JP3200794B2 (en) | Ignition coil for internal combustion engine | |
JP2597869B2 (en) | Manufacturing method of ignition coil | |
JP2004304199A (en) | Ignition coil for internal-combustion engine | |
JP2769729B2 (en) | Ignition coil for internal combustion engine | |
JP2827043B2 (en) | Ignition coil for internal combustion engine | |
JP3028692U (en) | Internal combustion engine ignition coil | |
JP2000182860A (en) | Ignition coil for internal combustion engine | |
JP4068693B2 (en) | Ignition coil for internal combustion engine | |
JP2820034B2 (en) | Ignition coil | |
JP2000323338A (en) | Ignition coil for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000418 |