JP4068693B2 - Ignition coil for internal combustion engine - Google Patents

Ignition coil for internal combustion engine Download PDF

Info

Publication number
JP4068693B2
JP4068693B2 JP23609097A JP23609097A JP4068693B2 JP 4068693 B2 JP4068693 B2 JP 4068693B2 JP 23609097 A JP23609097 A JP 23609097A JP 23609097 A JP23609097 A JP 23609097A JP 4068693 B2 JP4068693 B2 JP 4068693B2
Authority
JP
Japan
Prior art keywords
iron core
core
central
coil
ignition coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23609097A
Other languages
Japanese (ja)
Other versions
JPH1187157A (en
Inventor
孝 吉成
宏 木村
明公 信時
Original Assignee
阪神エレクトリック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阪神エレクトリック株式会社 filed Critical 阪神エレクトリック株式会社
Priority to JP23609097A priority Critical patent/JP4068693B2/en
Publication of JPH1187157A publication Critical patent/JPH1187157A/en
Application granted granted Critical
Publication of JP4068693B2 publication Critical patent/JP4068693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車の内燃機関の点火プラグに火花放電を生じさせるための内燃機関用点火コイルに関し、特にエンジンブロックに穿たれたプラグホールに搭載される内燃機関用点火コイルに関するものである。
【0002】
【従来の技術】
従来、内燃機関のプラグホールに搭載される内燃機関用点火コイルとしては、図3に示すような、一次コイル4Aと、二次コイル6Aと、該二つのコイル4A,6Aを磁気的に結合させるための円柱状の中央鉄心2Aとを、円筒状のケース7Aの内側に配し、また中央鉄心2Aの両端から発生する磁力線20Aが流入し中央鉄心2Aとの間で開磁路を形成する外装鉄心11Aを、ケース7Aの外周に配して成る内燃機関用点火コイル1Aが知られている。
【0003】
この内燃機関用点火コイル1Aは、エンジンブロックに穿たれた細くて長いプラグホール(図示しない)に納めて用いられることを予定しているため、必然的に寸法上の制約が生じ、プラグホールの内径との関係で絶縁ケース7Aの外径は、22mmから太くても25mm程度に留められている。
【0004】
【発明を解決しようとする課題】
このように、上記従来の内燃機関用点火コイル1Aでは、ケース7Aの外径が制約され、ひいては中央鉄心2Aの断面積、一次コイル4A、二次コイル6Aの巻線断面積も制約されており、したがって、中央鉄心2A、一次コイル4Aおよび二次コイル6Aから成るコイル部の長さを長く取って巻回数を確保しなければ、十分な点火エネルギを得ることができなかった。
【0005】
また、磁気回路が開磁路であるため磁気効率が悪く、中央鉄心2Aの両端に永久磁石14A,14Aを設けて磁気逆バイアスをかけるようにしても、性能向上には限界があり、この点からもコイル部の長さを長く取らなければ、十分な点火エネルギを得ることができなかった。
【0006】
一方、内燃機関用点火コイル1Aは、高度な耐熱性、および冷熱繰り返し耐性が要求されるため、高耐熱の熱硬化性樹脂12Aを充填し各部材間の絶縁を図っているが、二次ボビン5Aや絶縁ケース7Aと熱硬化性樹脂12Aとの冷熱時の熱膨張差のため、冷熱繰り返し時にはコイル部に長さ方向(図3の矢印M)の引っ張り応力が発生し、その引っ張り応力によって熱硬化性樹脂12Aにクラックが発生することがあった。そして、上記従来の内燃機関用点火コイル1Aでは、コイル部の長さが長いため、そのクラック発生の可能性が特に大きく、製品としての信頼性も損なわれるという問題点を有していた。
【0007】
この発明は上記に鑑み提案されたもので、コイル部の長さを短くしても十分な点火エネルギを得ることができ、充填した熱硬化性樹脂にもクラックが発生しない内燃機関用点火コイルを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、この発明の内燃機関用点火コイルは、中央鉄心と同心の関係で一次コイルと二次コイルを有し、それらは熱硬化性樹脂が注入された絶縁ケース内部に固定され、さらにそれらと同心の関係で外装鉄心を有して成り、エンジンブロックに穿たれたプラグホール内に収容して用いる主本体部分の外径が22mm乃至25mm、及び点火コイル取付面から点火プラグ頭部電極迄の距離が少なくとも100mm以上とする内燃機関点火コイルにおいて、上記中央鉄心の両端に外装鉄心に臨むように中継ぎ鉄心を設けるとともに、上記中央鉄心と上記中央鉄心の一端側の中継ぎ鉄心との間に、中央鉄心より大きい外径を有する薄肉円板状の永久磁石を介在させ、その永久磁石と中央鉄心との間に、中央鉄心より大きい外径を有する薄肉円板状の補助鉄心を介在させ、また中央鉄心の他端側に直接中継ぎ鉄心を備え、中央鉄心→補助鉄心・永久磁石→中継ぎ鉄心→外装鉄心→中継ぎ鉄心→中央鉄心から成る閉磁路を構成し、中央鉄心、一次コイル及び二次コイルの長さを点火コイル取付面から点火プラグ頭部電極迄の50%以下とし、且つ点火コイル取付面に近い方に配設した、ことを特徴としている。
【0009】
【発明の実施の形態】
以下にこの発明の実施の形態を図面に基づいて詳細に説明する。
図1はこの発明の内燃機関用点火コイルの概略構成を示す断面図である。
【0010】
図において、内燃機関用点火コイル(以下、「点火コイル」という)1は、内燃機関のプラグホールに搭載されるプラグホール収容型のものである。
円筒形の絶縁ケース7は合成樹脂等の電気的絶縁材にて成形したものであり、この絶縁ケース7の中には、ほぼその中心軸に沿って、珪素鋼板に代表される磁性金属板を円柱状に積層して成る中央鉄心2が収められ、その中央鉄心2の外周に絶縁紙3が巻回されている。この中央鉄心2の外径は、後述する外装鉄心の外径の40〜50%となっている。
絶縁紙3は、例えばガラス基布にエポキシ樹脂を含浸した厚さ0.2mmの耐熱性絶縁紙であり、この絶縁紙3上に一次コイル4が、φ0.4mmの線径で巻幅30mmにわたって130回巻回して形成されている。
【0011】
一次コイル4の外周には、合成樹脂製で複数の分割巻線溝51…を有する二次ボビン5が嵌合され、この分割巻線溝51…から成る二次ボビン5には、φ0.04mmの線径で巻幅30mmにわたって13000回巻回して、二次コイル6が形成され、絶縁ケース7の内周面に対向している。
【0012】
絶縁ケース7の外周には、珪素鋼板に代表される磁性金属板で形成した、外径が22mm乃至25mmの薄肉円筒状の外装鉄心11が嵌合されている。
【0013】
そして、中央鉄心2の長さ方向両端と絶縁ケース7との間には、中継ぎ鉄心13,13が、それぞれ絶縁ケース7外周の外装鉄心11に臨むように配設されている。すなわち、図1において中央鉄心2の長さ方向上端面には、補助鉄心15および永久磁石14を介して中継ぎ鉄心13が、また中央鉄心2の長さ方向下端面には直接中継ぎ鉄心13が、それぞれ配設されている。
【0014】
中継ぎ鉄心13は、図2に示すように、左右対称な凹部131,131を有する円板状の方向性珪素鋼板を厚さ2〜3mm程度に積層して構成したものであり、そのI−I断面での断面積、すなわち磁路に垂直な断面積は、中央鉄心2の軸方向とは直角方向での円形状断面積と同等になっている。なお、中継ぎ鉄心13の凹部131,131は、一次端子10と一次コイル4との接続線(図示せず)、及び高圧端子8と二次コイル6との接続線(図示せず)を通すためのものである。
【0015】
永久磁石14と補助鉄心15とは、共に中央鉄心2より大きい外径を有し、その水平断面積は中央鉄心2の円形状断面積の2倍で、厚さ1mmの薄肉円板状のものである。
【0016】
絶縁ケース7の下端には、同心状に突出するプラグ係合部7aが絶縁ケース7と一体に形成され、そのプラグ係合部7a上端側の孔には、絶縁ケース7の下端側を閉塞するように、高圧端子8が嵌合されている。プラグ係合部7aには、上端の高圧端子8からその下端に掛けてスプリング16が収納されている。その下端外周には筒型ブーツ17が嵌合され、この筒型ブーツ17を先頭にしてエンジンブロックに穿たれたプラグホール(図示省略)に挿入することで、プラグホールの底から突出する点火プラグ(図示省略)の頭部電極をスプリング16に接触させ、高圧端子8と電気的に導通させている。
なお、プラグ係合部7aは、絶縁ケース7とは別体とし、熱硬化性樹脂12を絶縁ケース7へ注型後にコイル部と接合するようにしてもよい。
【0017】
絶縁ケース7の上端は開口しており、その上端外周の一部には、一次端子座9が突き出すようにして設けてある。この一次端子座9には、絶縁ケース7の外壁を貫通して一次端子10が取り付けてある。この絶縁ケース7の上端の開口部分には、パワースイッチ18が収納されて、一次端子10や一次コイル4との間で所定の配線が成されている。
一次端子10は図示しない内部配線により、上記の中継ぎ鉄心13の凹部131を通って一次コイル4に接続され、高圧端子8も図示しない内部配線により、上記の中継ぎ鉄心13の凹部131を通って二次コイル6に接続されている。
【0018】
絶縁ケース7の開口した上端から、例えばエポキシ樹脂などの絶縁性を有する熱硬化性樹脂12を注入し、これにより、絶縁ケース7内部の中央鉄心2、一次コイル4、二次コイル6、パワースイッチ18等の各部材を固定するとともに、部材間相互の絶縁を保っている。
【0019】
そして、使用時には、内燃機関のエンジンハーネス(プラグ)を一次端子座9に嵌合することで、所定の電気的接続が成され、これにより、一次コイル4は、内燃機関側の制御に従って、通電・遮断され、それに応じて二次コイル6に発生した高電圧が、高圧端子8、スプリング16を介して点火プラグに供給され、その先端の電極間に火花が出るようになっている。
【0020】
また、絶縁ケース7の上端外周で一次端子10とは反対側の位置にコイル取付部30を延設してあり、点火コイル1をプラグホールに挿入したとき、コイル取付部30の下端面はエンジンブロックに当接して点火コイル取付面p1となり、その当接状態でコイル取付部30のボルト孔(図示せず)に挿通したボルトでエンジンブロック側にボルト締めすることにより、点火コイル1をエンジンブロック側に取り付け固定する。
そして、上記の点火コイル1では、この点火コイル取付面p1から、スプリング16が点火プラグの頭部電極に接触するその点火プラグ頭部電極位置p2迄の距離Lは、少なくとも100mm以上を有し、中央鉄心2、一次コイル4および二次コイル6から成るコイル部は、その距離Lのうち点火コイル取付面p1寄りに配設してあり、しかもコイル部の長さL1は距離Lの50%以下となっている。
【0021】
この実施形態では、上記のように、中央鉄心2の両端に外装鉄心11に臨むように中継ぎ鉄心13,13を設けたので、点火コイル1には、中央鉄心2→補助鉄心15・永久磁石14→上端側中継ぎ鉄心13→外装鉄心11→下端側中継ぎ鉄心13→中央鉄心2から成る閉磁路が構成され、一次コイル4で発生した磁束は、漏れることなく当該閉磁路を効率よく流れる。したがって、磁気効率が大幅に改善されて大きな二次エネルギを得ることができるようになり、中央鉄心2、一次コイル4および二次コイル6から成るコイル部の長さを短くしても充分に二次エネルギを得ることができ、その結果コイル部を、その長さが点火コイル取付面p1から点火プラグ頭部電極位置p2迄の距離Lの50%以下となるように小型化し、且つ点火コイル取付面p1に近い方に配設することとした。
【0022】
このようにコイル部を小型化できたことにより、コイル部長さ方向の引っ張り応力を大幅に低減でき、したがって熱硬化性樹脂12のクラックは無くなり、信頼性も大きく向上させることができた。
【0023】
また、コイル部を点火コイル1の全長の一端側に、エンジンのシリンダからは遠い所に配設できるようになったので、コイル部が受ける熱的影響は緩和され、この点からもコイル部長さ方向の引っ張り応力を低減でき、熱硬化性樹脂のクラック発生を防止できる。
【0024】
さらに、中央鉄心2の上端面と中継ぎ鉄心13との間に永久磁石14と補助鉄心15を配設することにより、二次エネルギーを従来の約4倍に向上させることができた。
ここで、永久磁石14は、上記のコイル部の小型化に寄与すべく、薄肉化してしかも上端側にのみ設けたが、一方、磁気逆バイアス効果を確保するために断面積を大きくとっている。このように、断面積を大きく取ると、中央鉄心2との間で磁束の流れが乱れるが、この実施形態では、補助鉄心15を介在させることにより、中央鉄心2と永久磁石14との間の磁束の流れを円滑なものとしている。
【0025】
なお、上記の説明では、外装鉄心11を絶縁ケース7の外周に設けるようにしたが、内周に設けてもよく、その場合でも磁気的効果は変わらない。
【0026】
【発明の効果】
以上説明したように、この発明の内燃機関用点火コイルによれば、中央鉄心の両端に外装鉄心に臨むように中継ぎ鉄心を設けるとともに、中央鉄心、一次コイルおよび二次コイルから成るコイル部の長さを点火コイル取付面から点火プラグ頭部電極位置迄の距離の50%以下となるように小型化し、且つそのコイル部を点火コイル取付面に近い方に配設することとした。
【0027】
このようにコイル部を小型化したことにより、コイル部長さ方向の引っ張り応力を大幅に低減でき、したがって熱硬化性樹脂のクラックは無くなり、信頼性も大きく向上させることができる。
【0028】
また、コイル部を点火コイルの全長の一端側に、エンジンのシリンダからは遠い所に配設したので、コイル部が受ける熱的影響は緩和され、この点からもコイル部長さ方向の引っ張り応力を低減でき、熱硬化性樹脂のクラック発生を防止できる。
【0029】
また、中央鉄心と中継ぎ鉄心との間に永久磁石を配設したことにより、二次エネルギーを従来の約4倍に向上させることができた。
【0030】
さらに、永久磁石と中央鉄心との間に補助鉄心を介在させたので、永久磁石の外径を中央鉄心より大きくしても、中央鉄心と永久磁石との間の磁束は乱れることなく、円滑なものとすることができる。
【図面の簡単な説明】
【図1】この発明の内燃機関用点火コイルの概略構成を示す断面図である。
【図2】中継ぎ鉄心を示す図で、(A)は平面図、(B)は(A)のI−I線断面図である。
【図3】エンジンのプラグホールに搭載される従来の内燃機関用点火コイルの概略構成を示す断面図である。
【符号の説明】
1 点火コイル
2 中央鉄心
3 絶縁紙
4 一次コイル
5 二次ボビン
6 二次コイル
7 絶縁ケース
7a プラグ係合部
8 高圧端子
9 一次端子座
10 一次端子
11 外装鉄心
12 熱硬化性樹脂
13 中継ぎ鉄心
131 凹部
14 永久磁石
15 補助鉄心
16 スプリング
17 筒形ブーツ
18 パワースイッチ
30 点火コイル取付部
p1 点火コイル取付面
p2 点火プラグ頭部電極位置
L 点火コイル取付面p1から点火プラグ頭部電極位置p2までの距離
L1 コイル部の長さ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ignition coil for an internal combustion engine for generating spark discharge in an ignition plug of an automobile internal combustion engine, and more particularly to an ignition coil for an internal combustion engine mounted in a plug hole formed in an engine block.
[0002]
[Prior art]
Conventionally, as an ignition coil for an internal combustion engine mounted in a plug hole of an internal combustion engine, a primary coil 4A, a secondary coil 6A, and the two coils 4A and 6A are magnetically coupled as shown in FIG. A cylindrical central iron core 2A is disposed inside the cylindrical case 7A, and magnetic lines 20A generated from both ends of the central iron core 2A flow in to form an open magnetic path with the central iron core 2A. There is known an ignition coil 1A for an internal combustion engine in which an iron core 11A is arranged on the outer periphery of a case 7A.
[0003]
Since the internal combustion engine ignition coil 1A is planned to be used in a thin and long plug hole (not shown) formed in the engine block, a dimensional restriction is inevitably generated, and the plug hole In relation to the inner diameter, the outer diameter of the insulating case 7A is kept to about 25 mm even if it is thicker from 22 mm.
[0004]
[Problems to be solved by the invention]
As described above, in the above-described conventional ignition coil 1A for an internal combustion engine, the outer diameter of the case 7A is restricted, and consequently, the sectional area of the central core 2A, the winding sectional areas of the primary coil 4A, and the secondary coil 6A are also restricted. Accordingly, sufficient ignition energy could not be obtained unless the coil portion composed of the central iron core 2A, the primary coil 4A and the secondary coil 6A is made long to secure the number of turns.
[0005]
Further, since the magnetic circuit is an open magnetic circuit, the magnetic efficiency is poor, and even if the permanent magnets 14A and 14A are provided at both ends of the central iron core 2A and the magnetic reverse bias is applied, there is a limit in improving the performance. Therefore, sufficient ignition energy could not be obtained unless the coil portion was made long.
[0006]
On the other hand, since the ignition coil 1A for an internal combustion engine is required to have high heat resistance and repeated heat and cold resistance, it is filled with a high heat-resistant thermosetting resin 12A to insulate each member. Due to the difference in thermal expansion between 5A and the insulating case 7A and the thermosetting resin 12A during the cooling, a tensile stress in the length direction (arrow M in FIG. 3) is generated in the coil portion during repeated cooling, and the tensile stress generates heat. Cracks may occur in the curable resin 12A. The conventional ignition coil for internal combustion engine 1A has a problem that since the length of the coil portion is long, the possibility of occurrence of cracks is particularly great, and the reliability as a product is impaired.
[0007]
The present invention has been proposed in view of the above. An ignition coil for an internal combustion engine that can obtain sufficient ignition energy even when the length of the coil portion is shortened and does not generate cracks in the filled thermosetting resin. The purpose is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the ignition coil for an internal combustion engine of the present invention has a primary coil and a secondary coil concentrically with the central iron core, which are fixed inside an insulating case injected with a thermosetting resin. is further made with a sheath core in their concentric relationship, spark plug from the outer diameter of 22mm to 25 mm, and the ignition coil mounting surface of the main body portion for use in housed in the plug hole drilled in the engine block In an internal combustion engine ignition coil having a distance to the head electrode of at least 100 mm or more, a center core is provided at both ends of the central core so as to face the outer core, and the central core and a core at one end of the central core are provided. A thin disc-shaped permanent magnet having an outer diameter larger than that of the central iron core is interposed between the permanent magnet and the central iron core, and an outer diameter larger than that of the central iron core is interposed between the permanent magnet and the central iron core. To is interposed a thin disk-shaped auxiliary core, also includes a direct relay core to the other end of the central core, a closed magnetic circuit consisting of a central core → auxiliary core-permanent magnet → the relay core → outer core → the relay core → central core The length of the central iron core, primary coil, and secondary coil is 50% or less from the ignition coil mounting surface to the spark plug head electrode, and is disposed closer to the ignition coil mounting surface. It is said.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view showing a schematic configuration of an ignition coil for an internal combustion engine according to the present invention.
[0010]
In the figure, an internal combustion engine ignition coil (hereinafter referred to as “ignition coil”) 1 is of a plug hole accommodating type mounted in a plug hole of the internal combustion engine.
The cylindrical insulating case 7 is formed of an electrically insulating material such as a synthetic resin. In the insulating case 7, a magnetic metal plate represented by a silicon steel plate is provided along the central axis. A central iron core 2 formed in a cylindrical shape is accommodated, and an insulating paper 3 is wound around the outer periphery of the central iron core 2. The outer diameter of the central iron core 2 is 40 to 50% of the outer diameter of the exterior iron core described later.
The insulating paper 3 is, for example, a heat-resistant insulating paper having a thickness of 0.2 mm in which a glass base cloth is impregnated with an epoxy resin. A primary coil 4 is formed on the insulating paper 3 with a wire diameter of φ0.4 mm over a winding width of 30 mm. It is formed by winding 130 times.
[0011]
A secondary bobbin 5 made of synthetic resin and having a plurality of divided winding grooves 51 is fitted to the outer periphery of the primary coil 4. The secondary bobbin 5 including the divided winding grooves 51 is provided with a diameter of 0.04 mm. The secondary coil 6 is formed by winding 13000 times over a winding width of 30 mm with a wire diameter of 2 mm, and faces the inner peripheral surface of the insulating case 7.
[0012]
A thin cylindrical outer core 11 having an outer diameter of 22 mm to 25 mm, which is formed of a magnetic metal plate typified by a silicon steel plate, is fitted to the outer periphery of the insulating case 7.
[0013]
Further, between the lengthwise ends of the central iron core 2 and the insulating case 7, intermediate iron cores 13 and 13 are arranged so as to face the outer core 11 on the outer periphery of the insulating case 7, respectively. That is, in FIG. 1, the intermediate iron core 13 is provided on the upper end surface in the length direction of the central iron core 2 via the auxiliary iron core 15 and the permanent magnet 14, and the intermediate iron core 13 is directly provided on the lower end surface in the length direction of the central iron core 2. Each is arranged.
[0014]
As shown in FIG. 2, the intermediate iron core 13 is formed by laminating disc-shaped directional silicon steel plates having symmetrical recesses 131, 131 to a thickness of about 2 to 3 mm. The cross-sectional area in the cross section, that is, the cross-sectional area perpendicular to the magnetic path is equivalent to the circular cross-sectional area in the direction perpendicular to the axial direction of the central iron core 2. The recesses 131 of the intermediate core 13 pass through a connection line (not shown) between the primary terminal 10 and the primary coil 4 and a connection line (not shown) between the high voltage terminal 8 and the secondary coil 6. belongs to.
[0015]
Each of the permanent magnet 14 and the auxiliary iron core 15 has an outer diameter larger than that of the central iron core 2, and its horizontal cross-sectional area is twice the circular cross-sectional area of the central iron core 2 and is a thin disk-like one having a thickness of 1 mm. It is.
[0016]
A plug engaging portion 7a that protrudes concentrically is formed integrally with the insulating case 7 at the lower end of the insulating case 7, and the lower end side of the insulating case 7 is closed in the hole on the upper end side of the plug engaging portion 7a. Thus, the high voltage terminal 8 is fitted. A spring 16 is housed in the plug engaging portion 7a from the high voltage terminal 8 at the upper end to the lower end thereof. A cylindrical boot 17 is fitted on the outer periphery of the lower end, and the ignition plug protrudes from the bottom of the plug hole by inserting the cylindrical boot 17 into a plug hole (not shown) drilled in the engine block. A head electrode (not shown) is brought into contact with the spring 16 and is electrically connected to the high-voltage terminal 8.
The plug engaging portion 7a may be separated from the insulating case 7 and may be joined to the coil portion after casting the thermosetting resin 12 into the insulating case 7.
[0017]
The upper end of the insulating case 7 is opened, and the primary terminal seat 9 is provided so as to protrude from a part of the outer periphery of the upper end. A primary terminal 10 is attached to the primary terminal seat 9 through the outer wall of the insulating case 7. A power switch 18 is accommodated in the opening at the upper end of the insulating case 7, and a predetermined wiring is formed between the primary terminal 10 and the primary coil 4.
The primary terminal 10 is connected to the primary coil 4 through an inner wiring (not shown) through the recess 131 of the intermediate core 13, and the high-voltage terminal 8 is also connected to the primary coil 10 through an inner wiring (not shown) through the concave 131 of the intermediate core 13. It is connected to the next coil 6.
[0018]
An insulating thermosetting resin 12 such as an epoxy resin is injected from the opened upper end of the insulating case 7, whereby the central iron core 2, the primary coil 4, the secondary coil 6, and the power switch inside the insulating case 7. Each member such as 18 is fixed and insulation between the members is maintained.
[0019]
In use, the engine harness (plug) of the internal combustion engine is fitted to the primary terminal seat 9 to establish a predetermined electrical connection, whereby the primary coil 4 is energized according to the control on the internal combustion engine side. The high voltage generated in the secondary coil 6 in response to the interruption is supplied to the spark plug via the high voltage terminal 8 and the spring 16, and a spark is generated between the electrodes at the tip.
[0020]
Further, a coil mounting portion 30 is extended at a position opposite to the primary terminal 10 on the outer periphery of the upper end of the insulating case 7, and when the ignition coil 1 is inserted into the plug hole, the lower end surface of the coil mounting portion 30 is the engine. The ignition coil mounting surface p1 is brought into contact with the block, and the ignition coil 1 is bolted to the engine block side with a bolt inserted into a bolt hole (not shown) of the coil mounting portion 30 in the contacted state. Fix it to the side.
In the ignition coil 1, the distance L from the ignition coil mounting surface p1 to the ignition plug head electrode position p2 where the spring 16 contacts the head electrode of the ignition plug has at least 100 mm or more. The coil portion composed of the central iron core 2, the primary coil 4 and the secondary coil 6 is disposed near the ignition coil mounting surface p1 in the distance L, and the length L1 of the coil portion is 50% or less of the distance L. It has become.
[0021]
In this embodiment, since the intermediate cores 13 and 13 are provided at both ends of the central iron core 2 so as to face the outer iron core 11 as described above, the ignition coil 1 includes the central iron core 2 → the auxiliary iron core 15 and the permanent magnet 14. A closed magnetic circuit composed of the upper end side relay core 13 → the outer core 11 → the lower end side core 13 → the central core 2 is configured, and the magnetic flux generated in the primary coil 4 efficiently flows through the closed magnetic circuit without leaking. Therefore, the magnetic efficiency is greatly improved, and a large secondary energy can be obtained. Even if the length of the coil portion including the central core 2, the primary coil 4, and the secondary coil 6 is shortened, the secondary energy can be sufficiently obtained. Secondary energy can be obtained, and as a result, the coil portion is reduced in size so that its length is 50% or less of the distance L from the ignition coil mounting surface p1 to the spark plug head electrode position p2, and the ignition coil mounting It was decided to be disposed closer to the surface p1.
[0022]
Since the coil portion can be reduced in size as described above, the tensile stress in the length direction of the coil portion can be greatly reduced. Therefore, the crack of the thermosetting resin 12 is eliminated, and the reliability can be greatly improved.
[0023]
Further, since the coil portion can be disposed at one end side of the entire length of the ignition coil 1 and at a position far from the cylinder of the engine, the thermal influence on the coil portion is mitigated. The tensile stress in the direction can be reduced, and the occurrence of cracks in the thermosetting resin can be prevented.
[0024]
Further, by arranging the permanent magnet 14 and the auxiliary iron core 15 between the upper end surface of the central iron core 2 and the intermediate iron core 13, the secondary energy can be improved about four times as compared with the conventional case.
Here, in order to contribute to the downsizing of the coil portion, the permanent magnet 14 is thinned and provided only on the upper end side. On the other hand, the permanent magnet 14 has a large cross-sectional area in order to ensure the magnetic reverse bias effect. . As described above, when the cross-sectional area is increased, the flow of magnetic flux between the central iron core 2 is disturbed. In this embodiment, the auxiliary iron core 15 is interposed between the central iron core 2 and the permanent magnet 14. The flow of magnetic flux is made smooth.
[0025]
In the above description, the outer iron core 11 is provided on the outer periphery of the insulating case 7, but may be provided on the inner periphery, and in that case, the magnetic effect does not change.
[0026]
【The invention's effect】
As described above, according to the ignition coil for an internal combustion engine of the present invention, the intermediate iron core is provided at both ends of the central iron core so as to face the outer iron core, and the length of the coil portion including the central iron core, the primary coil, and the secondary coil is long. The size was reduced to 50% or less of the distance from the ignition coil mounting surface to the spark plug head electrode position, and the coil portion was arranged closer to the ignition coil mounting surface.
[0027]
By reducing the size of the coil portion in this way, the tensile stress in the length direction of the coil portion can be greatly reduced, and therefore there is no crack in the thermosetting resin, and the reliability can be greatly improved.
[0028]
In addition, since the coil part is arranged on one end of the ignition coil at a distance from the engine cylinder, the thermal effect on the coil part is alleviated. From this point, the tensile stress in the coil part length direction is also reduced. This can reduce the occurrence of cracks in the thermosetting resin.
[0029]
In addition, by arranging a permanent magnet between the central iron core and the intermediate iron core, the secondary energy can be improved to about four times the conventional energy.
[0030]
Furthermore, since the auxiliary iron core is interposed between the permanent magnet and the central iron core, even if the outer diameter of the permanent magnet is larger than the central iron core, the magnetic flux between the central iron core and the permanent magnet is not disturbed and smooth. Can be.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of an ignition coil for an internal combustion engine according to the present invention.
2A and 2B are diagrams showing a core iron core, in which FIG. 2A is a plan view, and FIG. 2B is a cross-sectional view taken along line II of FIG.
FIG. 3 is a sectional view showing a schematic configuration of a conventional ignition coil for an internal combustion engine mounted in a plug hole of the engine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ignition coil 2 Central iron core 3 Insulation paper 4 Primary coil 5 Secondary bobbin 6 Secondary coil 7 Insulation case 7a Plug engaging part 8 High voltage terminal 9 Primary terminal seat 10 Primary terminal 11 Exterior iron core 12 Thermosetting resin 13 Middle iron core 131 Concave portion 14 Permanent magnet 15 Auxiliary iron core 16 Spring 17 Cylindrical boot 18 Power switch 30 Ignition coil attachment portion p1 Ignition coil attachment surface p2 Spark plug head electrode position L Distance from ignition coil attachment surface p1 to ignition plug head electrode position p2 L1 Length of coil part

Claims (2)

中央鉄心と同心の関係で一次コイルと二次コイルを有し、それらは熱硬化性樹脂が注入された絶縁ケース内部に固定され、さらにそれらと同心の関係で外装鉄心を有して成り、エンジンブロックに穿たれたプラグホール内に収容して用いる主本体部分の外径が22mm乃至25mm、及び点火コイル取付面から点火プラグ頭部電極迄の距離が少なくとも100mm以上とする内燃機関点火コイルにおいて、
上記中央鉄心の両端に外装鉄心に臨むように中継ぎ鉄心を設けるとともに、上記中央鉄心と上記中央鉄心の一端側の中継ぎ鉄心との間に、中央鉄心より大きい外径を有する薄肉円板状の永久磁石を介在させ、その永久磁石と中央鉄心との間に、中央鉄心より大きい外径を有する薄肉円板状の補助鉄心を介在させ、また中央鉄心の他端側に直接中継ぎ鉄心を備え、中央鉄心→補助鉄心・永久磁石→中継ぎ鉄心→外装鉄心→中継ぎ鉄心→中央鉄心から成る閉磁路を構成し、
中央鉄心、一次コイル及び二次コイルの長さを点火コイル取付面から点火プラグ頭部電極迄の50%以下とし、且つ点火コイル取付面に近い方に配設した、
ことを特徴とする内燃機関用点火コイル。
It has a primary coil and a secondary coil in a concentric relationship with the central iron core, they are fixed inside the insulating case injected with thermosetting resin , and further have an outer iron core in a concentric relationship with them. In an internal combustion engine ignition coil in which an outer diameter of a main body portion used by being accommodated in a plug hole drilled in a block is 22 mm to 25 mm, and a distance from an ignition coil mounting surface to an ignition plug head electrode is at least 100 mm or more,
A center core is provided at both ends of the central core so as to face the outer core, and a thin disk-shaped permanent core having an outer diameter larger than that of the central core is provided between the central core and the core at one end of the central core. A magnet is interposed, and a thin disk-shaped auxiliary iron core having an outer diameter larger than that of the central iron core is interposed between the permanent magnet and the central iron core, and a central core is provided directly on the other end of the central iron core. Construct a closed magnetic circuit consisting of iron core → auxiliary iron core / permanent magnet → relay iron core → exterior iron core → relay iron core → central iron core,
The lengths of the central iron core, primary coil and secondary coil are 50% or less from the ignition coil mounting surface to the spark plug head electrode, and are arranged closer to the ignition coil mounting surface.
An ignition coil for an internal combustion engine.
上記中央鉄心は方向性珪素鋼板を短冊状にしたものを積層して、外径が円に近づくように形成し、その外径は主本体部分の外径の40〜50%とした、
ことを特徴とする請求項1に記載の内燃機関用点火コイル。
The central iron core is formed by laminating strips of directional silicon steel sheets, and formed so that the outer diameter approaches a circle. The outer diameter is 40 to 50% of the outer diameter of the main body part.
The ignition coil for an internal combustion engine according to claim 1.
JP23609097A 1997-09-01 1997-09-01 Ignition coil for internal combustion engine Expired - Fee Related JP4068693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23609097A JP4068693B2 (en) 1997-09-01 1997-09-01 Ignition coil for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23609097A JP4068693B2 (en) 1997-09-01 1997-09-01 Ignition coil for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH1187157A JPH1187157A (en) 1999-03-30
JP4068693B2 true JP4068693B2 (en) 2008-03-26

Family

ID=16995582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23609097A Expired - Fee Related JP4068693B2 (en) 1997-09-01 1997-09-01 Ignition coil for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4068693B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239224B2 (en) 2005-03-28 2007-07-03 Denso Corporation Ignition coil having center core

Also Published As

Publication number Publication date
JPH1187157A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
JP2981702B2 (en) Ignition coil for internal combustion engine
US5101803A (en) Ignition coil
JPH11111543A (en) Ignition coil device for internal combustion engine
KR100246976B1 (en) Ignition coil for an internal combustion engine
US5128646A (en) Ignition coil for an internal combustion engine
JPH03149805A (en) Ignition coil for internal combustion engine
JPH09186029A (en) Ignition coil for internal combustion engine
US7626481B2 (en) Ignition coil
JP4068693B2 (en) Ignition coil for internal combustion engine
US7098765B2 (en) Ignition coil having magnetic flux reducing inner structure
JP3046779U (en) Ignition coil for internal combustion engine
JP2827046B2 (en) Ignition coil for internal combustion engine
JP2936242B2 (en) Ignition coil for internal combustion engine
JP3128096B2 (en) Ignition coil for internal combustion engine
JP4020998B2 (en) Ignition coil for internal combustion engine
JP3200794B2 (en) Ignition coil for internal combustion engine
JP3031158U (en) Ignition coil for internal combustion engine
JP2952701B2 (en) Ignition coil for internal combustion engine
JPH10294228A (en) Ignition coil for internal combustion engine
JPH1074650A (en) Engine spark coil device
JP2003017342A (en) Ignition coil for internal combustion engine
JP2000294437A (en) Coil device
JP3040488U (en) Ignition coil for internal combustion engine
JPH09306761A (en) Ignition coil for internal combustion engine
JPH03136219A (en) Ignition coil for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees