JPH09304725A - Video display device - Google Patents

Video display device

Info

Publication number
JPH09304725A
JPH09304725A JP11749396A JP11749396A JPH09304725A JP H09304725 A JPH09304725 A JP H09304725A JP 11749396 A JP11749396 A JP 11749396A JP 11749396 A JP11749396 A JP 11749396A JP H09304725 A JPH09304725 A JP H09304725A
Authority
JP
Japan
Prior art keywords
diffraction
light
order light
order
diffraction efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11749396A
Other languages
Japanese (ja)
Inventor
Kazunari Hanano
花野和成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11749396A priority Critical patent/JPH09304725A/en
Publication of JPH09304725A publication Critical patent/JPH09304725A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a video display device where color slurring is little and which has a large pupil while eliminating trouble such as ghost caused by unnecessary light by changing diffraction efficiency according to a spot on the grating surface of a diffraction grating. SOLUTION: This device is provided with a video display means displaying a video, and an ocular optical system forming the image of the video on the retina of a user. In such a case, a 1st diffraction means 1 and a 2nd diffraction means 2 are arranged in an optical path where an exit pupil is formed by the video display means and the ocular optical system, and the 2nd diffraction means 2 is provided with plural areas having different diffraction efficiency characteristic along the diffraction surface. It is conceivable that the diffraction efficiency characteristic is continuously changed on the diffraction surface or it is constituted of a center part where the diffraction efficiency of zero-order light is high and a peripheral part where the diffraction efficiency of zero-order light is low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、映像表示装置に関
し、特に、コンパクトな光学系を使用しながら大きな射
出瞳径を持つ頭部装着式映像表示装置等の映像表示装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image display device, and more particularly to an image display device such as a head-mounted image display device having a large exit pupil diameter while using a compact optical system.

【0002】[0002]

【従来の技術】本出願人は、特開平7−72422号に
おいて、2つの回折格子を用いて頭部装着式映像表示装
置等の接眼光学系の射出瞳径を拡大する方式を提案し
た。すなわち、液晶表示素子とその表示映像を使用者の
網膜上に投影する接眼レンズとを有する映像表示装置に
おいて、接眼レンズと接眼レンズにより形成される射出
瞳の間の光路中に第1の回折格子と第2の回折格子を設
け、映像の各波長に対する第2の回折格子による回折角
が、第1の回折格子による回折角と略一致するように第
1の回折格子と第2の回折格子を構成すると、射出瞳が
分割され大きな瞳が得られる。特開平7−72422号
の場合は、表示映像の画角として30°等を意図してお
り、広画角を意識してはいない。
2. Description of the Related Art The applicant of the present application has proposed in Japanese Patent Laid-Open No. 7-72422 a method of enlarging the exit pupil diameter of an eyepiece optical system such as a head-mounted image display device by using two diffraction gratings. That is, in a video display device having a liquid crystal display element and an eyepiece for projecting a display image thereof on a user's retina, a first diffraction grating is provided in an optical path between the eyepiece and an exit pupil formed by the eyepiece. And a second diffraction grating are provided, and the first diffraction grating and the second diffraction grating are arranged so that the diffraction angle of the second diffraction grating with respect to each wavelength of the image substantially matches the diffraction angle of the first diffraction grating. When configured, the exit pupil is divided and a large pupil is obtained. In the case of Japanese Patent Laid-Open No. 7-72422, the angle of view of the displayed image is intended to be 30 °, and the wide angle of view is not taken into consideration.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、表示映
像の画角が広くなってくると、この回折を利用した眼球
の直前にて瞳径を拡大する方法においては、回折現象に
特有な色ズレという現象が顕在化してくる。これは、通
常の回折格子の回折効率は波長依存性を持っているた
め、赤、緑、青の3色を用いたフルカラー映像を回折格
子を通して見ると、中央部分と周辺部分とで色が変化し
てしまうという現象である。実際には、図15に示すよ
うに、第1の回折格子1により+1次光と−1次光のみ
を生じさせ、第2の回折格子2によりその回折角と一致
する−1次光と−1次光のみを生じさせ、0次光を発生
させずに±1次光のみ用いるような方法では、以下のよ
うになる。
However, when the angle of view of the displayed image becomes wider, in the method of enlarging the pupil diameter immediately before the eyeball utilizing this diffraction, there is a color shift peculiar to the diffraction phenomenon. Phenomena become apparent. This is because the diffraction efficiency of a normal diffraction grating has wavelength dependence, so when viewing a full-color image using three colors of red, green, and blue through the diffraction grating, the colors change in the central part and the peripheral part. It is a phenomenon that it does. Actually, as shown in FIG. 15, the first diffraction grating 1 causes only the + 1st-order light and the −1st-order light to be generated, and the second diffraction grating 2 causes the −first-order light and the −third-order light having the same diffraction angle. A method in which only the first-order light is generated and only the ± first-order lights are used without generating the zero-order light is as follows.

【0004】例えば、図16に示すように、縦方向、横
方向それぞれ用に1次元回折格子1、2の2枚からなる
ペアを用いて瞳を4つに分離拡大すると、図17に示す
ような瞳ができあがるが、図示のように、この瞳におい
て画角が広いと回折による色ズレが目立ってきて、瞳の
位置が波長によって異なってきてしまう。この瞳に観察
者の瞳孔を配し映像を観察すると、色づいた映像が見え
てしまう。
For example, as shown in FIG. 16, a pair of two one-dimensional diffraction gratings 1 and 2 for the vertical and horizontal directions is used to separate and expand the pupil into four, as shown in FIG. However, as shown in the figure, when the angle of view is wide in this pupil, color shift due to diffraction becomes noticeable, and the position of the pupil differs depending on the wavelength. If an observer's pupil is placed in this pupil and an image is observed, a colored image will be seen.

【0005】そこで、回折格子の表面の凹凸形状を0次
光を発生するような構成にして分割形成される中央の瞳
を0次光で形成することによって、観察頻度の高い中央
の瞳を結果的に色ズレの少ないものにすることができ
る。すなわち、図18に示すように、第1の回折格子1
により+1次光、0次光、−1次光を生じさせ、第2の
回折格子2によりその回折角と一致する−1次光、0次
光、−1次光を生じさせ、図示のように、中央に0次光
による瞳を形成させる。
Therefore, the unevenness of the surface of the diffraction grating is configured to generate 0th-order light, and the central pupil that is divided and formed is formed of 0th-order light. It can be made to have little color shift. That is, as shown in FIG. 18, the first diffraction grating 1
Causes the + 1st order light, the 0th order light and the −1st order light to be generated, and the second diffraction grating 2 generates the −1st order light, the 0th order light and the −1st order light, which are as shown in the figure. Then, a pupil is formed by the 0th order light in the center.

【0006】しかしながら、実際には、図18のように
0次光を発生させて瞳を作り上げる方法だと、以下のよ
うな問題がある。図18では1次元方向に瞳を分割形成
する配置であるが、縦方向1ペア、横方向1ペアで2次
元方向に瞳を分割形成する配置にすれば、図19に示す
ような9つの瞳ができあがる。このとき分割形成された
9つ瞳の中で中央の瞳は0次光による瞳なので、映像中
の中央、周辺に関わらず瞳位置での波長による位置ズレ
はない。すなわち、波長によらず瞳位置の入射角依存性
が一定である。映像を観察するとき、観察者は映像の中
心付近を観察していることが多い傾向があるので、中央
の瞳は観察者が映像を観察するとき比較的瞳孔に入りや
すい瞳である。この中央の瞳が波長による位置ズレがな
いということは、この瞳で映像を観察したときに映像が
色づくことなく観察できることを意味する。また、9つ
の回折光による瞳ができるので、瞳拡大率が大きいとい
う利点もある。この色ズレの少ない中央の瞳を作り出す
には、第1の回折手段1と第2の回折手段2は0次光を
発生するような表面形状にする必要がある。
However, in practice, the method of generating the 0th order light to form the pupil as shown in FIG. 18 has the following problems. In FIG. 18, the pupils are divided and formed in the one-dimensional direction, but if the arrangement is such that one pair in the vertical direction and one pair in the horizontal direction are divided and formed in the two-dimensional direction, nine pupils as shown in FIG. Is completed. At this time, of the nine pupils divided and formed, the central pupil is the pupil due to the 0th-order light, so there is no positional deviation due to the wavelength at the pupil position regardless of the center or the periphery in the image. That is, the incident angle dependency of the pupil position is constant regardless of the wavelength. When observing an image, the observer often tends to observe the vicinity of the center of the image. Therefore, the central pupil is a pupil which is relatively likely to enter the pupil when the observer observes the image. The fact that the central pupil has no positional deviation due to the wavelength means that the image can be observed without being colored when the image is observed with this pupil. In addition, the pupil can be formed by nine diffracted lights, so that there is an advantage that the pupil expansion rate is large. In order to create the central pupil with less color shift, the first diffracting means 1 and the second diffracting means 2 need to have surface shapes that generate 0th order light.

【0007】しかし、回折格子で0次光を発生させる
と、別の現象が持ち上がってくる。一般的に、0次光が
発生するような表面形状構成にすると、±2次光の回折
効率も低くはなくなってくる。0次光を発生するような
表面形状にすることによって、これらの0次光と2次光
が関与した不要光が新たに顕著になってくる。特に2次
光が関与した不要光は、瞳位置においてより瞳孔に入り
やすい光束群である。
However, when the diffraction grating generates 0th-order light, another phenomenon is brought up. In general, when the surface shape is configured so that the 0th order light is generated, the diffraction efficiency of the ± 2nd order light is not low. By forming the surface shape so as to generate the 0th-order light, the unnecessary light in which the 0th-order light and the 2nd-order light are involved becomes more prominent. In particular, unnecessary light that is involved in the secondary light is a light flux group that is more likely to enter the pupil at the pupil position.

【0008】すなわち、0次光、±2次光の回折効率が
高くなってくると、以下の不要光が顕著になってくる。
簡単のため、1次元(横方向のみ)に限って説明する。
図20に示すのが、1ペア2枚の回折格子1、2によっ
て光線が回折する様子を示した図である。図中、例えば
(1、−2)は1枚目の回折格子1で1次、2枚目の回
折格子2で−2次の回折光という意味である。図では、
映像表示素子から発せられる光束を映像表示素子中央
(図(a))と、映像表示素子周辺(図(b))に分け
て光線図にしてある。これらの光線図において、(1、
−2)次光、(−1、2)次光といった光束が、目に一
番近い不要光である。これらの光束は、0次光を発生さ
せるような表面形状にすると新たに目立ってくる不要光
であり、±2次の回折効率は高くなくても0でなけれ
ば、±1次の回折効率が高いので、(1、−2)次光、
(−1、2)次光のエネルギー値としては無視できない
レベルになる。
That is, as the diffraction efficiency of the 0th order light and the ± 2nd order light becomes higher, the following unnecessary light becomes remarkable.
For simplicity, only one dimension (horizontal direction) will be described.
FIG. 20 is a diagram showing how a light beam is diffracted by two diffraction gratings 1 and 2 in a pair. In the figure, for example, (1, -2) means that the first diffraction grating 1 is the first-order diffraction light and the second diffraction grating 2 is the -second-order diffraction light. In the figure,
The luminous flux emitted from the image display element is divided into a center of the image display element (FIG. (A)) and the periphery of the image display element (FIG. (B)) to form a ray diagram. In these ray diagrams, (1,
Light fluxes such as -2) secondary light and (-1, 2) secondary light are unnecessary light closest to the eyes. These luminous fluxes are unnecessary light that newly stands out when the surface shape is such that the 0th-order light is generated. Even if the ± 2nd-order diffraction efficiency is not high, the ± 1st-order diffraction efficiency is Because it is expensive, (1, -2) next light,
The energy value of the (-1, 2) next light is at a level that cannot be ignored.

【0009】また、目に入りやすいのは、映像周辺から
発せられたこれらの光束である。なぜならば、この
(1、−2)次光には、映像周辺から発せられる光束が
1枚目の回折格子1への入射角がきつくなると、言い換
えれば画角が広くなってくると、正規の射出瞳位置に近
づく性質があるからである。これは、入射角がきつくな
ると、図21に示すように、±1次光の0次光に対する
角度ΘA 、ΘB の値は入射角によらず略同じであるた
め、第2の回折格子2上での+1次光と0次光の距離A
は−1次光と0次光の距離Bに比べて大きくなる。その
ため、周辺光のときの(1、−2)次の不要光は正規の
瞳位置に近づき目に入りやすくなる(図において、映像
周辺の光束程(1、−2)次の不要光による瞳が図の左
へ移動してくる。)。このように、色ズレを目立たなく
するために0次光を用いるが、それによって新たに目に
入りやすい不要光が発生してしまう。
Further, it is these light fluxes emitted from the periphery of the image that are likely to enter the eye. This is because, for the (1, -2) th order light, when the incident angle of the light beam emitted from the periphery of the image on the first diffraction grating 1 becomes tight, in other words, when the angle of view becomes wide, This is because it has the property of approaching the exit pupil position. This is because when the incident angle becomes tight, as shown in FIG. 21, the values of the angles Θ A and Θ B of the ± 1st order light with respect to the 0th order light are substantially the same regardless of the incident angle, and therefore the second diffraction grating Distance A between + 1st order light and 0th order light on 2
Is larger than the distance B between the −1st order light and the 0th order light. Therefore, unnecessary light of the (1, -2) th order in the case of ambient light easily approaches the normal pupil position and easily enters the eye (in the figure, the luminous flux of the peripheral part of the image is the pupil by the unnecessary light of the (1, -2) th order). Will move to the left in the figure.). As described above, the 0th-order light is used in order to make the color shift inconspicuous, but this causes unnecessary light that is easily visible to the eyes.

【0010】本発明は上述の従来技術が有する広画角の
場合の望ましくない現象を回避するためになされたもの
であり、その目的は、広画角の場合にも対応できるよう
に、回折格子の格子面上で場所により回折効率を変化さ
せることで、不要光によるゴーストの問題を解消しつ
つ、色ズレの少ない瞳の大きな液晶表示装置等の映像表
示装置を実現することである。
The present invention has been made in order to avoid the above-mentioned undesired phenomenon in the case of a wide angle of view, which is related to the prior art. The purpose of the present invention is to cope with the case of a wide angle of view. By changing the diffraction efficiency depending on the location on the lattice plane of (1), it is possible to solve the problem of ghost due to unnecessary light and realize an image display device such as a liquid crystal display device with a large pupil with little color shift.

【0011】なお、本発明における回折手段には特に限
定はなく、公知のもので適用できる全てのものを意味す
る。
There is no particular limitation on the diffracting means in the present invention, and any known means can be applied.

【0012】[0012]

【課題を解決するための手段】上記目的を達成する本発
明の映像表示装置は、映像を表示する映像表示手段と、
前記映像を使用者の網膜上に結像する接眼光学系とを有
する映像表示装置において、前記映像表示手段と前記接
眼光学系により射出瞳を形成する光路中に第1の回折手
段と第2の回折手段が設けられ、前記第2の回折手段が
回折面上に沿って回折効率特性の異なる複数の領域を有
することを特徴とするものである。
According to the present invention, there is provided an image display apparatus for displaying an image, comprising:
In an image display device having an eyepiece optical system for forming an image on the retina of the user, a first diffractive unit and a second diffractive unit are provided in an optical path forming an exit pupil by the image display unit and the eyepiece optical system. A diffractive means is provided, and the second diffractive means has a plurality of regions having different diffraction efficiency characteristics along the diffractive surface.

【0013】この場合、第2の回折手段の回折効率特性
が回折面上で連続的に変化しているようにしてもよい。
In this case, the diffraction efficiency characteristic of the second diffraction means may be changed continuously on the diffraction surface.

【0014】また、第2の回折手段は、0次光の回折効
率が高い中央部と、0次光の回折効率が低い周辺部とで
構成されていることが望ましい。
Further, it is desirable that the second diffracting means is composed of a central portion where the diffraction efficiency of 0th order light is high and a peripheral portion where the diffraction efficiency of 0th order light is low.

【0015】本発明においては、回折手段の回折面上で
領域によって回折効率特性が異なることによって、使用
する回折次数を変えたり、不要な回折次数の回折効率を
抑えたりすることができ、回折による色づきを抑えた
り、不要光の発生を抑制したりして、回折手段を使用状
況に適したものにすることができる。
In the present invention, since the diffraction efficiency characteristic differs depending on the region on the diffraction surface of the diffractive means, it is possible to change the diffraction order to be used or suppress the diffraction efficiency of an unnecessary diffraction order, and it is possible to reduce the diffraction efficiency. By suppressing coloring and suppressing generation of unnecessary light, the diffractive means can be made suitable for the situation of use.

【0016】また、回折効率特性が回折面上で連続的に
変化していることによって、光束が回折手段を通過する
場所の回折効率に応じた回折光によって瞳が形成され、
回折による色づきを徐々に抑えたり、不要光の発生を徐
々に抑制したりして、回折手段を使用状況に適したもの
にすることができる。
Further, since the diffraction efficiency characteristic continuously changes on the diffraction surface, the pupil is formed by the diffracted light corresponding to the diffraction efficiency at the place where the light flux passes through the diffracting means.
The coloring due to diffraction can be gradually suppressed, or the generation of unnecessary light can be gradually suppressed, so that the diffractive means can be made suitable for the usage situation.

【0017】また、第1の回折手段で発生した回折によ
る色収差を、第2の回折手段では色の目立ちやすい中央
で0次光の回折効率を高くすることによって色づきを目
立ち難くし、0次光や2次光による不要光を、第2の回
折手段で目に入りやすい周辺部において0次光の回折効
率を低くすることによって防ぐことができ、結果的に第
1の回折手段で発生した色や不要光を第2の回折手段で
補正することができる。
Further, the chromatic aberration due to the diffraction generated by the first diffracting means is made less noticeable by increasing the diffraction efficiency of the 0th order light at the center where the second diffracting means tends to stand out, thereby making the 0th order light inconspicuous. And unnecessary light due to the secondary light can be prevented by lowering the diffraction efficiency of the 0th-order light in the peripheral portion that is easily seen by the second diffraction means, and as a result, the color generated by the first diffraction means. The unnecessary light can be corrected by the second diffracting means.

【0018】また、第1の回折手段で発生した色づきや
不要光を第2の回折手段で補正するときに、第2の回折
手段の0次光の回折効率が中央部から周辺にかけて徐々
に低くなるように連続的に変化していることによって、
不要光の色ズレの対処の仕方が2段階なものではなく連
続的なものになり、このトレードオフの関係にあるどち
らかの問題をどちらかだけ対処するというのではなく、
状況に応じて入射角に適した色づきと不要光に対する対
処ができる。
Further, when the coloring and unnecessary light generated by the first diffracting means are corrected by the second diffracting means, the diffraction efficiency of the 0th order light of the second diffracting means gradually decreases from the central portion to the periphery. By continuously changing so that
The method of dealing with the color shift of unnecessary light is not a two-step method but a continuous method, and it is not a matter of dealing with either one of the problems in this trade-off relationship,
Depending on the situation, it is possible to deal with coloring suitable for the incident angle and unnecessary light.

【0019】また、第2の回折格子面上の中央部では0
次光の回折効率が高くなるように、周辺部では0次光、
±2次光の回折効率が低くなるように、回折手段の表面
形状のデューティー比を構成し、ピッチと深さは第1の
回折手段と同じ構成で一定にすることによって、回折角
を変えることなく、効果的に中央部では回折による色を
抑え、周辺部で目に入りやすい不要光の発生を抑制する
ことができる。
Further, at the central portion on the second diffraction grating surface, 0
In order to increase the diffraction efficiency of the next-order light, the 0th-order light is
Changing the diffraction angle by configuring the duty ratio of the surface shape of the diffracting means so that the diffraction efficiency of the ± 2nd-order light becomes low, and making the pitch and depth constant with the same configuration as the first diffracting means. Instead, it is possible to effectively suppress the color due to diffraction in the central portion, and to suppress the generation of unnecessary light that tends to enter the peripheral portion.

【0020】また、第2の回折格子面上の中央では0次
光の回折効率が高く、周辺に行くに従い0次光、±2次
光の回折効率が連続的に低くなるように、回折手段の表
面形状のデューティー比を変化させる構成にし、ピッチ
と溝深さは第1の回折手段と同じ構成で一定にすること
よって、回折角を変えることなく、効果的に映像中で回
折による色が出やすい中央において色を抑え、周辺に行
くに従って目に入りやすくなる不要光の発生を抑制する
ことができる。不要光と色ズレの対処の仕方が2段階な
ものではなく連続的なものになり、このトレードオフの
関係にあるどちらかの問題をどちらかだけ対処するとい
うのではなく、状況に応じて入射角に適した色と不要光
に対する対処ができる。
Further, the diffraction efficiency of the 0th-order light is high at the center on the second diffraction grating surface, and the diffraction efficiency of the 0th-order light and the ± 2nd-order light continuously decreases toward the periphery, so that the diffractive means By changing the duty ratio of the surface shape of the No. 3 and making the pitch and groove depth constant with the same structure as the first diffracting means, the color due to diffraction can be effectively displayed in the image without changing the diffraction angle. It is possible to suppress the color in the center where it is easy to come out, and to suppress the generation of unnecessary light that tends to enter the eyes toward the periphery. The method of dealing with unwanted light and color misregistration is not a two-step procedure but a continuous one, and it is not a matter of dealing with either of the problems in this trade-off relationship, but depending on the situation. It is possible to deal with colors suitable for corners and unnecessary light.

【0021】さらに、第2の回折手段は、回折面上にお
いて表面の凹凸形状が変化していることにより、0次光
の回折効率が高い領域と0次光の回折効率が低い領域を
有し、回折手段の光軸から光束が回折する側に、次式で
示されるDまでの領域が0次光の解決効率が高い領域で
あり、Dより外側が0次光の回折効率が低い領域である
ようにすることが望ましい。
Further, the second diffracting means has a region where the diffraction efficiency of the 0th order light is high and a region where the diffraction efficiency of the 0th order light is low because the uneven shape of the surface changes on the diffractive surface. On the side where the light beam is diffracted from the optical axis of the diffracting means, the region up to D shown by the following equation is the region where the resolution efficiency of the 0th order light is high, and the region outside D is the region where the diffraction efficiency of the 0th order light is low. It is desirable to have it.

【0022】D=atanθ0 =btanθ1−(b−
a)tan{sin-1(λ/p+sinθ1 )} ただし、光軸からの距離をDとすると、 第2の回折手段から射出瞳位置までの距離:a 第1の回折手段から射出瞳位置までの距離:b 第1の回折手段と第2の回折手段の間隔:b−a 第2の回折手段の0次光の回折効率が高い領域に第1の
回折手段の0次光が入射するときの第1の回折手段への
最大入射角度:θ0 第2の回折手段の0次光の回折効率が高い領域に第1の
回折手段の1次光が入射するときの第1の回折手段への
最小入射角度:θ1 第1の回折手段及び第2の回折手段の溝ピッチ:p 波長:λ である(図8参照)。
D = atan θ 0 = btan θ 1- (b-
a) tan {sin −1 (λ / p + sin θ 1 )} However, when the distance from the optical axis is D, the distance from the second diffracting means to the exit pupil position: a From the first diffracting means to the exit pupil position Distance: b distance between the first diffracting means and the second diffracting means: b-a when the 0th order light of the first diffracting means is incident on a region where the diffraction efficiency of the 0th order light of the second diffracting means is high. Angle of incidence on the first diffracting means: θ 0 to the first diffracting means when the first order light of the first diffracting means is incident on the region where the diffraction efficiency of the 0 th order light of the second diffracting means is high. Angle of incidence: θ 1 groove pitch of the first and second diffracting means: p 1 wavelength: λ 2 (see FIG. 8).

【0023】このようにすることにより、表示画角に合
わせて回折による色収差を抑えるために中央からどのく
らい周辺まで0次光を発生させ、不要光を抑えるために
周辺からどのくらいまで0次光を発生させないかが決定
でき、使用状況に適した回折格子を用いることができ
る。
By doing so, the 0th-order light is generated from the center to the periphery in order to suppress the chromatic aberration due to the diffraction in accordance with the display angle of view, and the 0th-order light is generated from the periphery to suppress the unnecessary light. It is possible to determine whether or not to do so, and it is possible to use a diffraction grating suitable for the usage situation.

【0024】[0024]

【発明の実施の形態】本発明は、従来の特開平7−72
422号と同様、映像表示手段とその表示映像を使用者
の網膜上に投影する接眼レンズとを有する映像表示装置
において、接眼レンズと接眼レンズにより形成される射
出瞳の間の光路中に第1の回折格子と第2の回折格子を
設け、映像の各波長に対する第2の回折格子による回折
角が、第1の回折格子による回折角と略一致するように
第1の回折格子と第2の回折格子を構成するものであ
る。すなわち、図1に示すように、例えば、液晶表示素
子4に表示された映像を接眼光学系の凸レンズ5で拡大
像として使用者の眼球に投影するもので、液晶表示素子
4はその背後に配置された照明系3により照明され、そ
の表示映像が映し出されるようになっている。そして、
接眼光学系の凸レンズ5とその射出瞳6の間に同じ格子
間隔を持つ回折格子1、2を2枚平行に格子方向が一致
するように配置する。このように、2枚の回折格子1、
2を配置すると、凸レンズ5を透過した平行光は、まず
回折格子1に入射し、0次光、1次光、−1次光と分か
れる。これらの光は、次に同じ格子間隔を持つ回折格子
2に入射する。これらの光は再び回折して一部は平行光
となる。結果として、回折格子1入射前の光束径aは、
射出後光束径bと拡がる。そのため、実効的な瞳径が大
きくなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a conventional Japanese Unexamined Patent Publication No. 7-72.
Similar to No. 422, in a video display device having a video display means and an eyepiece for projecting the displayed video on the user's retina, a first device is provided in the optical path between the eyepiece and the exit pupil formed by the eyepiece. Of the first diffraction grating and the second diffraction grating are provided so that the diffraction angle of the second diffraction grating with respect to each wavelength of the image substantially matches the diffraction angle of the first diffraction grating. It constitutes a diffraction grating. That is, as shown in FIG. 1, for example, the image displayed on the liquid crystal display element 4 is projected as a magnified image on the eyeball of the user by the convex lens 5 of the eyepiece optical system, and the liquid crystal display element 4 is arranged behind it. It is adapted to be illuminated by the illuminated illumination system 3 and to display its display image. And
Between the convex lens 5 of the eyepiece optical system and the exit pupil 6 thereof, two diffraction gratings 1 and 2 having the same grating interval are arranged in parallel so that the grating directions coincide with each other. In this way, the two diffraction gratings 1,
When 2 is arranged, the parallel light transmitted through the convex lens 5 first enters the diffraction grating 1 and is divided into 0th-order light, 1st-order light, and -1st-order light. These lights then enter the diffraction grating 2 having the same grating spacing. These lights are diffracted again and part of them becomes parallel light. As a result, the luminous flux diameter a before entering the diffraction grating 1 is
After emission, the beam diameter is expanded to b. Therefore, the effective pupil diameter is increased.

【0025】そして、本発明に基づき、この2枚1ペア
として瞳を拡大する回折格子1、2において、格子板上
で表面の凹凸形状のピッチは一定のままで、凹凸形状の
デューティー比を変化させることによって、入射角によ
って回折効率を変化させ、回折現象に特有な波長依存性
の問題を改善しつつ、不要光を目に入り難くするもので
ある。以下、本発明に実施例について図面を参照にして
説明する。
Then, according to the present invention, in the diffraction gratings 1 and 2 for enlarging the pupil as a pair of two sheets, the pitch of the uneven shape of the surface on the grating plate remains constant, and the duty ratio of the uneven shape is changed. By doing so, it is possible to change the diffraction efficiency depending on the incident angle, improve the problem of wavelength dependence peculiar to the diffraction phenomenon, and make unnecessary light hard to see. Embodiments of the present invention will be described below with reference to the drawings.

【0026】〔実施例1〕従来例について述べたよう
に、広画角における回折による色づきと不要光の対策は
相反する関係にあり、両立は難しい。したがって、よく
目にしやすい中央の瞳においては色づきを防ぐために0
次光を使用し、不要光が目に入ってきやすい周辺におい
ては不要光を防ぐため0次光を使用しないことで、回折
格子手段の最適化を図る。
[Example 1] As described in the conventional example, coloring due to diffraction at a wide angle of view and countermeasures against unnecessary light are in a conflicting relationship, and it is difficult to achieve both at the same time. Therefore, in order to prevent coloring in the central pupil, which is easily visible, 0
The diffraction grating means is optimized by using the second-order light and not using the 0th-order light in order to prevent the unnecessary light in the vicinity where the unnecessary light easily enters the eyes.

【0027】以上のことを実現するために、回折格子の
表面の凹凸形状は矩形形状にする。矩形形状回折格子の
特徴は、0次の回折効率が最小になる溝深さと、1次の
回折効率が最大になる溝深さが略一致していることであ
る。したがって、回折格子の溝深さをこの付近の溝深さ
に設定すると、0次、1次共に回折効率の溝深さ依存性
は小さくなるため、色ズレの問題は小さくなる。そのた
め、溝深さにおける製作誤差の許容範囲も大きくなる。
In order to realize the above, the uneven shape on the surface of the diffraction grating is made rectangular. A feature of the rectangular diffraction grating is that the groove depth at which the 0th-order diffraction efficiency is minimized and the groove depth at which the 1st-order diffraction efficiency is maximized are substantially the same. Therefore, if the groove depth of the diffraction grating is set to a groove depth in the vicinity of this, the dependence of the diffraction efficiency on the groove depth for both the 0th order and the 1st order becomes small, and the problem of color misregistration becomes small. Therefore, the allowable range of the manufacturing error in the groove depth becomes large.

【0028】ここで、第1の回折手段1、具体的には回
折格子1枚目では、表面の矩形形状のデューティー比を
格子面の全域において、0次光を発生するような値、例
えば図3に回折効率の溝深さ依存性を示すような0.2
65にし、さらにその溝深さを図3のd1 のような値に
する。ここで、d1 は例えばピッチが1〜2μmの回折
格子において、0.5〜0.6μmのような値である。
ピッチは回折角を決定する。第2の回折手段2、具体的
には2枚目の回折格子では、表面の矩形形状のデューテ
ィー比を、図2に示すように、格子溝方向に垂直な方向
において中央付近は0次光を発生するような値、例えば
回折効率の溝深さ依存性を図3に示すように0.265
し、さらに、溝深さを図3のd1 のような値にし、周辺
付近は0次光を発生しないような値、例えば図4に回折
効率の溝深さ依存性を示すようなデューティー比0.5
とし、さらに、溝深さを図4中のd2 のような値で構成
する。ここで、デューティー比とは、図5に示すよう
に、表面の凹凸形状のピッチPにおいて、凹凸1周期の
長さPに対する凸部分の長さTの比T/Pである。ま
た、上記の溝深さd1 はd2 に略等しい値である。な
お、図3には2次の回折効率を記載したが、図4では2
次の回折効率は低いので記載していない。
Here, in the first diffracting means 1, specifically, the first diffraction grating, the duty ratio of the rectangular shape on the surface is a value that generates 0th order light over the entire area of the grating surface, for example, as shown in FIG. 3 shows that the diffraction efficiency depends on the groove depth.
The groove depth is set to 65 and the groove depth is set to a value such as d 1 in FIG. Here, d 1 is a value such as 0.5 to 0.6 μm in a diffraction grating having a pitch of 1 to 2 μm.
The pitch determines the diffraction angle. In the second diffracting means 2, specifically, the second diffraction grating, the duty ratio of the rectangular shape on the surface is zero-order light near the center in the direction perpendicular to the grating groove direction as shown in FIG. As shown in FIG. 3, the value that occurs, for example, the dependency of the diffraction efficiency on the groove depth is 0.265.
In addition, the groove depth is set to a value such as d 1 in FIG. 3, and a value that does not generate 0th-order light in the vicinity of the groove, for example, a duty ratio that shows the groove depth dependence of diffraction efficiency in FIG. 0.5
Further, the groove depth is set to a value such as d 2 in FIG. Here, the duty ratio is the ratio T / P of the length T of the convex portion to the length P of one cycle of the irregularities in the pitch P of the irregularities on the surface, as shown in FIG. The groove depth d 1 is approximately equal to d 2 . Note that the diffraction efficiency of the second order is shown in FIG.
Since the diffraction efficiency of the following is low, it is not described.

【0029】この実施例において、図6に示すように、
第2の回折手段2はデューティー比が中央と周辺で異な
るが、格子溝のピッチは第1の回折手段1と第2の回折
手段2とを一致させ、さらに、両手段1、2共格子面全
域で一定のままである。これにより、回折角は両手段で
同一な関係が保たれ、(1、−1)次、(−1、1)
次、(0、0)次の正規の光束が作り上げる瞳を見るこ
とによって、映像を歪みなく見ることができる。
In this embodiment, as shown in FIG.
The duty ratio of the second diffractive means 2 is different between the center and the periphery, but the pitch of the grating grooves is the same for the first diffractive means 1 and the second diffractive means 2. It remains constant throughout. As a result, the diffraction angles maintain the same relationship in both means, and the (1, -1) th order and (-1, 1)
An image can be viewed without distortion by looking at the pupil formed by the next (0, 0) -th order regular luminous flux.

【0030】第2の回折手段2で中央からどれだけの領
域で0次光を発生し、周辺からどれだけの領域で0次光
を発生しないかは、瞳の位置6において瞳孔がどれだけ
の範囲動くかによって最適な値にする。
The area of the second diffracting means 2 from which the 0th-order light is generated and the area of the periphery from which the 0th-order light is not generated depends on how much the pupil is located at the pupil position 6. Set the optimum value depending on whether the range moves.

【0031】すなわち、映像を観察するときに瞳孔の移
動範囲は画角の大きさに比例する。瞳孔の移動量が大き
い場合、最低限不要光が瞳孔の移動範囲に入らないよう
にしなければならないので、それだけ周辺の不要光が発
生しないように、第2の回折手段2の表面の凹凸形状の
デューティー比を0次光を発生させない、発生してもそ
れによる不要光が障害のないレベルである程に低い回折
効率になるような値にする必要が生じる。
That is, when observing an image, the range of movement of the pupil is proportional to the size of the angle of view. When the amount of movement of the pupil is large, it is necessary to prevent unnecessary light from entering the range of movement of the pupil at least, so that the surface of the second diffracting means 2 has a concavo-convex shape so that unnecessary peripheral light is not generated. It is necessary to set the duty ratio to a value that does not generate 0th-order light, and that even if it occurs, unnecessary light due to it has a low diffraction efficiency to such a level that there is no obstacle.

【0032】構成の一例として、水平画角45°の映像
において、接眼レンズ5のすぐ後で瞳径aがφ2.5m
mであった瞳を第1の回折手段1と第2の回折手段2に
よって瞳を3つに分離拡大し、水平方向にb=約φ6.
5mmに実効的に広げるケースをあげる。回折手段1、
2の格子溝ピッチを1.3μmとすると、±1次の回折
角は中心波長0.5μmで約±22.6°になる。この
とき、両回折格子1、2間の距離(図8参照)は、分離
後の各瞳が接するようにするには両回折格子1、2間の
距離は2.5/tan22.6°=6mmであるが、図
7に示すように、瞳を多少オーバーラップさせることを
考え、4.5mmとする。また、第2の回折手段2から
瞳孔までの距離を23.5mmとする。
As an example of the configuration, in an image having a horizontal angle of view of 45 °, a pupil diameter a of φ2.5 m is provided immediately after the eyepiece lens 5.
The pupil which was m was separated and enlarged into three by the first diffracting means 1 and the second diffracting means 2, and b = about φ6.
I will give you a case that effectively expands to 5 mm. Diffractive means 1,
If the grating groove pitch of 2 is 1.3 μm, the ± 1st-order diffraction angle is about ± 22.6 ° at the central wavelength of 0.5 μm. At this time, the distance between the two diffraction gratings 1 and 2 (see FIG. 8) is 2.5 / tan22.6 ° so that the pupils after separation are in contact with each other. Although it is 6 mm, it is set to 4.5 mm in consideration of overlapping the pupils as shown in FIG. Further, the distance from the second diffracting means 2 to the pupil is set to 23.5 mm.

【0033】回折手段1、2の溝の断面形状は矩形であ
り、図8において第2の回折格子2の中央から長さDの
位置まで0次光を発生させるとする。それより外側のハ
ッチング部分が0次光を発生させないか又は回折効率が
低い領域である。このとき、図中イの光線の0次の光線
とロの光線の1次の光線との2枚目の回折格子2での到
達位置が、第2の回折格子2の0次を発生させる領域と
発生させない領域との境界(中心から距離Dの位置)に
なるようにして条件を求める。
It is assumed that the grooves of the diffracting means 1 and 2 have a rectangular cross section, and that the 0th order light is generated from the center of the second diffraction grating 2 to the position of length D in FIG. A hatched portion outside the area does not generate 0th-order light or has a low diffraction efficiency. At this time, the arrival positions of the 0th-order ray of the ray of A and the 1st-order ray of the ray of B in the second diffraction grating 2 are areas where the 0th order of the second diffraction grating 2 is generated. The condition is determined so that it becomes a boundary (a position with a distance D from the center) between the area and the area where it does not occur.

【0034】イの光線から見れば、D=23.5tan
θ0 と書ける。また、ロの1次回折光の射出角はθ1
=sin-1(λ/p+sinθ1 )と書ける。ここで、
pは回折格子1のピッチであり、いま1.3μmとして
いる。したがって、図中A=28tanθ1 、B=4.
5tanθ1 ’と書ける。D=A−Bより、以下の式が
導出される。
From the ray of B, D = 23.5 tan
It can be written as θ 0 . In addition, the exit angle of the 1st-order diffracted light of B is θ 1 '
= Sin −1 (λ / p + sin θ 1 ). here,
p is the pitch of the diffraction grating 1, which is 1.3 μm. Therefore, in the figure, A = 28 tan θ 1 , B = 4.
It can be written as 5 tan θ 1 '. The following equation is derived from D = AB.

【0035】 D=23.5tanθ0 =28tanθ1−4.5tan{sin-1(λ/1.
3+sinθ1 )} λ:波長 映像表示素子4からの光束の入射角において、中央から
8°まで0次光を出し、つまり、θ0 =8とし、波長λ
=0.62μm(赤色)において中央から18°、つま
りθ1 =18の光線から周辺(外側)の光線を0次光を
発生させないようにするには、上式からD=3.3mm
になる。
D = 23.5 tan θ 0 = 28 tan θ 1 −4.5 tan {sin −1 (λ / 1.
3 + sin θ 1 )} λ: wavelength At the incident angle of the light flux from the image display element 4, 0th-order light is emitted from the center to 8 °, that is, θ 0 = 8, and the wavelength λ
= 0.62 μm (red), 18 ° from the center, that is, in order to prevent the 0th-order light from being emitted from the light ray at θ 1 = 18, D = 3.3 mm from the above equation.
become.

【0036】よって、1枚目の回折格子手段1全面と2
枚目の回折格子手段2の中央から3.3mmのところま
でをデューティー比を0.265にし、2枚目の回折格
子手段2の中央から3.3mmのところから外側をデュ
ーティー比0.5にすればよい。
Therefore, the entire surface of the first diffraction grating means 1 and 2
The duty ratio is 0.265 from the center of the second diffraction grating means 2 to 3.3 mm, and the duty ratio is 0.5 from the center of the second diffraction grating means 2 to 3.3 mm from the center. do it.

【0037】このとき、波長λ=0.55μm(緑
色)、波長λ=0.44μm(青色)はそれぞれθ1
15、θ1 =13となる。一番目に入りやすい不要光
は、長波長側の周辺から発せられる(1、−2)次光で
ある。上記のようにした場合、0次光がない領域では2
次光の回折効率も低くなり、図8において太線で示した
(1、−2)次光の不要光がなくなる。このときの瞳の
様子を図9に示す。この図9において、上記のようなデ
ューティー比の構成にしたときに、矢印の瞳が中央から
18°の周辺から発せられた(1、−2)次光による瞳
である。18°より周辺(外側)、画角45°の半画角
22.5°までの(1、−2)次光による瞳はさらに正
規の瞳に近づいてくるが、これら18°から22.5°
までの不要光の瞳がなくなるので、不要光が目に入り難
くなる。中心位置から5.6mmのところにあった入射
角22.5°の(1、−2)次光による不要な瞳から
7.2mmのところにあった入射角18°の(1、−
2)次光による不要な瞳までがなくなり、不要光の中最
初に目に入ってくるものが1.6mm外側になるので、
より不要光が目に入り難くなる。
At this time, the wavelength λ = 0.55 μm (green) and the wavelength λ = 0.44 μm (blue) are θ 1 =
15, θ 1 = 13. The unnecessary light that is most likely to enter is the (1, -2) secondary light emitted from the periphery on the long wavelength side. If the above is done, it is 2 when there is no 0th order light.
The diffraction efficiency of the secondary light is also reduced, and the unnecessary light of the (1, -2) secondary light shown by the thick line in FIG. 8 is eliminated. The state of the pupil at this time is shown in FIG. In FIG. 9, when the duty ratio is configured as described above, the pupil of the arrow is the pupil of the (1, -2) th order light emitted from the periphery of 18 ° from the center. The pupil by the (1, -2) th order light from the periphery (outer side) of 18 ° to the half angle of view 22.5 ° of the angle of view of 45 ° comes closer to the normal pupil, but from these 18 ° to 22.5 °. °
Since the pupil of unnecessary light up to is eliminated, it becomes difficult for the unnecessary light to enter the eyes. The incident angle was 22.5 ° from the center position and the incident angle was 22.5 ° (1, −2) due to the unnecessary light.
2) There is no unnecessary pupil due to the next light, and the first thing that comes into the eye is 1.6mm outside of the unnecessary light.
It becomes more difficult for unwanted light to enter the eyes.

【0038】上記に示してきた実施例は、第2の回折格
子2において、回折効率の異なる複数の領域を有すると
して説明してきたが、回折効率の異なる複数の領域を有
するのが、第2の回折手段2でなく、第1の回折手段1
である場合は効果がない。図10は、回折効率の異なる
複数の領域を有するのが、第2の回折手段2でなく、第
1の回折手段1である例を示す図である。図11は、本
発明により2枚目の回折格子手段2に複数の領域を設け
る方法を示す図であり、図12は、従来の2枚共0次光
を発生させない方法を示す図であり、図13は、従来の
2枚共0次光を発生させる方法を示す図である。図10
〜図13において、ハッチングの部分が0次光が発生し
ない部分又は0次光の回折効率が低い部分であり、ハッ
チングがついていない白い部分が0次光を発生させる部
分又は0次光の回折効率が高い部分である。また、不要
光は点線で示してある。ここには、(1、1)次や(−
1、−1)次といった不要光は瞳孔に入るような正規の
射出瞳位置からは遠く離れた位置に到達し、問題がない
ので取り上げておらず、また記述もしていない。なお、
各図において、(a)は映像表示素子の中央から入射す
る光を、(b)は映像表示素子の周辺から入射する光を
示す。
Although the above-described embodiments have been described as having a plurality of regions having different diffraction efficiencies in the second diffraction grating 2, the second diffraction grating 2 has a plurality of regions having different diffraction efficiencies. The first diffractive means 1 instead of the diffractive means 2.
Has no effect. FIG. 10 is a diagram showing an example in which it is the first diffracting means 1 instead of the second diffracting means 2 that has a plurality of regions having different diffraction efficiencies. FIG. 11 is a diagram showing a method of providing a plurality of regions on the second diffraction grating means 2 according to the present invention, and FIG. 12 is a diagram showing a conventional method of not generating zero-order light for two sheets. FIG. 13 is a diagram showing a conventional method for generating zero-order light for two sheets. FIG.
In FIG. 13, a hatched portion is a portion in which 0th-order light is not generated or a portion having low diffraction efficiency of 0th-order light, and a white portion without hatching is a portion in which 0th-order light is generated or diffraction efficiency of 0th-order light. Is the high part. The unnecessary light is shown by the dotted line. Here, (1, 1) order and (-
Unwanted light such as 1 and -1) reaches a position far away from the normal exit pupil position that enters the pupil, and is not taken up or described because there is no problem. In addition,
In each figure, (a) shows light incident from the center of the image display element, and (b) shows light incident from the periphery of the image display element.

【0039】図10に示す回折効率の異なる複数の領域
を有するのが、第2の回折手段2でなく、第1の回折手
段1である場合は、中央光においては(0、0)といっ
た色のついていない瞳があるので色の問題はないが、周
辺光において0次光ひいては−2次光に起因する目に入
りやすい不要光が発生してしまっている。
In the case where the first diffracting means 1 is provided instead of the second diffracting means 2 having a plurality of regions having different diffraction efficiencies shown in FIG. 10, a color such as (0, 0) in the central light is obtained. Since there is an unmarked pupil, there is no problem in color, but unnecessary light that easily enters the eyes is generated in the ambient light due to the 0th-order light and then the −2nd-order light.

【0040】図12に示す2枚共0次光を発生させない
方法では、中央、周辺を問わず目に入りやすい不要光は
発生しないが、中央光において(0、0)次光がないの
で、色づいていない瞳がないことにより、映像を観察す
ると中央付近は色づいて見えてしまう。
In the method of not generating the 0th-order light in the two sheets shown in FIG. 12, unnecessary light which is easy to enter the center or the periphery is not generated, but there is no (0, 0) th order light in the center light. Since there are no uncolored eyes, the image near the center appears colored when the image is viewed.

【0041】図13は2枚共0次光を発生させる方法で
あるが、これでは中央光においては色の問題が解消され
ているものの、周辺光において目に入りやすい0次光ひ
いては−2次光に起因する不要光が発生してしまってい
る。
FIG. 13 shows a method of generating zero-order light for both two sheets. With this method, although the problem of color is solved in the central light, the 0th-order light and then the −second-order light which are easily noticeable in the ambient light. Unwanted light caused by light has been generated.

【0042】それら回折による色づきと目に入りやすい
周辺の不要光を解消したのが、図11に示す本発明であ
る。なお、以上の説明において、0次光を発生させな
い、発生させるという表現は、使用状況によっては0次
光の回折効率が低い、0次光の回折効率が高いという表
現に置き換えられる。
The present invention shown in FIG. 11 eliminates the coloring caused by the diffraction and the unnecessary light in the periphery which is easy to see. In the above description, the expression that the 0th-order light is not generated or that it is generated can be replaced with the expression that the 0th-order light has a low diffraction efficiency and the 0th-order light has a high diffraction efficiency depending on the usage conditions.

【0043】〔実施例2〕上記実施例1においては、第
2の回折格子2にて0次光を発生させる領域と発生させ
ない領域とは2段階で0次の回折効率を変化させたが、
瞳の強度を連続的に変化させるため、デューティー比を
中央から外側に連続的に変化させる例を示す。この場
合、色づきに関しては、中央では色づきがないように
(0、0)次の瞳で構成するため、第2の回折手段2は
光軸付近は0次の回折効率を格子中一番高い値になるよ
うにデューティー比を設定し、以下周辺に行くに従って
0次の回折効率が低くなって行き、正規光の射出瞳の範
囲に近づく周辺光の瞳においては、0次光の回折効率、
±2次光の回折効率が0に近い値になるようにする。例
として、2枚目の回折格子2を中央から周辺に向かって
5段階に回折効率特性が異なる領域に分かれているもの
をあげる。図14に示すように、1枚目の回折格子1と
2枚目の回折格子2の間隔を4.5mmとし、2枚目の
回折格子2から観察者の眼球までの距離を23.5mm
とし、映像の画角を45°とする。2枚目の回折格子2
の領域を以下のように分割する。中央から1.91mm
の領域を第1領域21、1.91mmから3.64mm
までを第2領域22、3.64mmから5.43mmま
でを第3領域23、5.43mmから6.21mmまで
を第4領域24、6.21mmから周辺までを第5領域
25とする計5領域である。これらの領域21〜25
を、中央の方からデューティー比が0.5から徐々に数
値を低くなるようにする。例えば、第1領域21を0.
5、第2領域22を0.45、第3領域23を0.4、
第4領域24を0.35、第5領域25を0.3といっ
た値にする。この場合、ピッチは格子全域で一定にす
る。このとき、図14に示すように、第1領域21の最
周辺を通る光線は入射角4.65°の0次光と入射角1
0°の1次光である。以下、同様に、第2領域22の最
周辺を通る光線は入射角8.8°の0次光と入射角15
°の1次光、第3領域23の最周辺を通る光線は入射角
13°の0次光と入射角20°の1次光、第4領域24
の最周辺を通る光線は入射角14.8°の0次光と入射
角20°の1次光である。この構成にした場合、第2の
回折格子2における0次光ひいては2次光の回折効率は
外側の領域に行くに従って低くなる。そこでの回折効率
を中央の領域から強、やや強、中、弱、微弱というよう
にランク付けすると、不要光と回折による色づきが中央
から周辺に向かって次の表のように段階的に変化する。
[Embodiment 2] In Embodiment 1, the 0th-order diffraction efficiency is changed in two steps between the region where the 0th-order light is generated and the region where it is not generated in the second diffraction grating 2.
An example is shown in which the duty ratio is continuously changed from the center to the outside in order to continuously change the intensity of the pupil. In this case, regarding the coloring, since the (0, 0) th order pupil is formed so that there is no coloring in the center, the second diffraction means 2 has the highest diffraction efficiency of the 0th order in the grating near the optical axis. The duty ratio is set so that the diffraction efficiency of the 0th-order becomes lower toward the periphery, and the diffraction efficiency of the 0th-order light is reduced in the pupil of the peripheral light approaching the range of the exit pupil of the normal light.
The diffraction efficiency of ± second-order light is set to a value close to 0. As an example, an example in which the second diffraction grating 2 is divided into regions having different diffraction efficiency characteristics in five steps from the center to the periphery will be given. As shown in FIG. 14, the distance between the first diffraction grating 1 and the second diffraction grating 2 is 4.5 mm, and the distance from the second diffraction grating 2 to the observer's eye is 23.5 mm.
And the angle of view of the image is 45 °. Second diffraction grating 2
The region of is divided as follows. 1.91mm from center
The area of 1st area 21, 1.91mm to 3.64mm
Up to the second region 22, from 3.64 mm to 5.43 mm to the third region 23, from 5.43 mm to 6.21 mm to the fourth region 24, and from 6.21 mm to the periphery to the fifth region 25, a total of 5 Area. These areas 21-25
The duty ratio is gradually reduced from 0.5 toward the center. For example, if the first area 21 is 0.
5, the second region 22 is 0.45, the third region 23 is 0.4,
The fourth region 24 has a value of 0.35, and the fifth region 25 has a value of 0.3. In this case, the pitch is constant throughout the grating. At this time, as shown in FIG. 14, a ray passing through the outermost periphery of the first region 21 is a 0th-order light with an incident angle of 4.65 ° and an incident angle of 1.
It is 0 ° primary light. Hereinafter, similarly, a ray passing through the outermost periphery of the second region 22 is a 0th-order light having an incident angle of 8.8 ° and an incident angle of 15 °.
The primary light having an incident angle of 13 °, the rays passing through the outermost periphery of the third region 23 are the 0th-order light having an incident angle of 13 °, the primary light having an incident angle of 20 °, and the fourth region 24.
The rays passing through the outermost periphery of are the 0th-order light with an incident angle of 14.8 ° and the 1st-order light with an incident angle of 20 °. With this configuration, the diffraction efficiency of the 0th-order light, and thus the 2nd-order light, in the second diffraction grating 2 becomes lower toward the outer region. When the diffraction efficiency there is ranked from the central region to strong, moderately strong, medium, weak, and weak, the coloring due to unnecessary light and diffraction changes stepwise from the center to the periphery as shown in the following table. .

【0044】 [0044] .

【0045】この実施例での利点は、色づき方と不要光
の出方が2段階なものではなく連続的なものであるた
め、このトレードオフの関係にあるどちらかの問題をど
ちらかだけ対処するというのではなく、状況に応じて入
射角に適した色と不要光に対する対処ができる点であ
る。例えば、画角45°において、入射角15°等の中
間の角度においては色と不要光を半々や6:4のウエー
ト等で対処するのがよい。
The advantage of this embodiment is that the coloring and the emission of unwanted light are continuous rather than two-stage, so either one of the problems in this trade-off relationship is addressed. Instead of doing so, it is possible to deal with colors and unnecessary light suitable for the incident angle depending on the situation. For example, at an angle of view of 45 °, and at an intermediate angle such as an incident angle of 15 °, it is preferable to deal with the color and unnecessary light by a half and a 6: 4 weight.

【0046】上記の例では、回折格子2を中央から5つ
の領域21〜25に分けたが、さらに細かい領域に分割
し実質連続的とみなせれば、連続的に不要光と色ズレが
対処できる。しかし、実際は1ピッチ毎にデューティー
比を変化させるのは製作性が悪いので、領域毎に分割し
た方が製作性は良くなる。
In the above example, the diffraction grating 2 is divided into five regions 21 to 25 from the center, but if it is divided into smaller regions and can be regarded as substantially continuous, unnecessary light and color misregistration can be continuously dealt with. . However, in reality, changing the duty ratio for each pitch is poor in manufacturability. Therefore, the manufacturability is improved when the duty ratio is divided for each region.

【0047】以上、本発明の映像表示装置をその原理と
実施例に基づいて説明してきたが、本発明はこれら実施
例に限定されず種々の変形が可能である。なお、以上の
本発明の映像表示装置は、例えば次のように構成するこ
とができる。 〔1〕 映像を表示する映像表示手段と、前記映像を使
用者の網膜上に結像する接眼光学系とを有する映像表示
装置において、前記映像表示手段と前記接眼光学系によ
り射出瞳を形成する光路中に第1の回折手段と第2の回
折手段が設けられ、前記第2の回折手段が回折面上に沿
って回折効率特性の異なる複数の領域を有することを特
徴とする映像表示装置。
Although the image display apparatus of the present invention has been described based on its principle and embodiments, the present invention is not limited to these embodiments and various modifications can be made. The above-described image display device of the present invention can be configured as follows, for example. [1] In an image display device having an image display means for displaying an image and an eyepiece optical system for forming the image on the retina of a user, an exit pupil is formed by the image display means and the eyepiece optical system. An image display device characterized in that a first diffractive means and a second diffractive means are provided in an optical path, and the second diffractive means has a plurality of regions having different diffraction efficiency characteristics along a diffractive surface.

【0048】〔2〕 前記第2の回折手段の回折効率特
性が回折面上で連続的に変化していることを特徴とする
上記〔1〕記載の映像表示装置。
[2] The image display device according to the above [1], wherein the diffraction efficiency characteristic of the second diffracting means is continuously changed on the diffraction surface.

【0049】〔3〕 前記第2の回折手段は、0次光の
回折効率が高い中央部と、0次光の回折効率が低い周辺
部とで構成されていることを特徴とする上記〔1〕記載
の映像表示装置。
[3] The second diffracting means is composed of a central portion where the diffraction efficiency of 0th order light is high and a peripheral portion where the diffraction efficiency of 0th order light is low. ] The image display device described.

【0050】〔4〕 前記第2の回折手段は、中央部か
ら周辺にかけて0次光の回折効率が徐々に低くなって行
くことを特徴とする上記〔2〕記載の映像表示装置。
[4] The image display device according to the above [2], wherein the diffraction efficiency of the 0th-order light of the second diffracting means gradually decreases from the central portion to the periphery.

【0051】〔5〕 前記第2の回折手段は、回折面上
全域において表面の凹凸のピッチ、溝深さは第1の回折
手段と一致した値で、表面の凹凸のデューティー比は中
央部において0次光の回折効率が高く、周辺部において
0次光の回折効率が低くなる値で構成してあることを特
徴とする上記〔1〕又は〔3〕記載の映像表示装置。
[5] In the second diffractive means, the pitch and groove depth of the surface irregularities are the same values as those of the first diffractive means over the entire diffractive surface, and the duty ratio of the surface irregularities is at the central portion. The image display device according to the above [1] or [3], characterized in that the diffraction efficiency of 0th-order light is high and the diffraction efficiency of 0th-order light is low in the peripheral portion.

【0052】〔6〕 前記第2の回折手段は、回折面上
全域において表面の凹凸のピッチ、溝深さは第1の回折
手段と一致した値で、表面の凹凸のデューティー比は中
央から周辺にかけて0次光の回折効率が連続的に低くな
る値で構成してあることを特徴とする上記〔2〕又は
〔4〕記載の映像表示装置。
[6] In the second diffractive means, the pitch and the groove depth of the surface unevenness are the same values as those of the first diffractive means over the entire diffraction surface, and the duty ratio of the unevenness of the surface is from the center to the periphery. The image display device according to the above [2] or [4], characterized in that the diffraction efficiency of 0th-order light is continuously reduced over time.

【0053】〔7〕 前記第1の回折手段は、全域にわ
たって0次光を発生させる表面の凹凸形状を有し、前記
第2の回折手段は、回折面上において表面の凹凸形状が
変化していることにより、0次光の回折効率が高い領域
と0次光の回折効率が低い領域を有し、回折手段の光軸
から光束が回折する側に、次式で示されるDまでの領域
が0次光の解決効率が高い領域であり、Dより外側が0
次光の回折効率が低い領域であることを特徴とする上記
〔1〕、〔3〕又は〔5〕記載の映像表示装置。 D=atanθ0 =btanθ1−(b−a)tan
{sin-1(λ/p+sinθ1 )} ただし、光軸からの距離をDとすると、 第2の回折手段から射出瞳位置までの距離:a 第1の回折手段から射出瞳位置までの距離:b 第1の回折手段と第2の回折手段の間隔:b−a 第2の回折手段の0次光の回折効率が高い領域に第1の
回折手段の0次光が入射するときの第1の回折手段への
最大入射角度:θ0 第2の回折手段の0次光の回折効率が高い領域に第1の
回折手段の1次光が入射するときの第1の回折手段への
最小入射角度:θ 第1の回折手段及び第2の回折手段の溝ピッチ:p 波長:λ である。
[7] The first diffractive means has an uneven surface shape for generating 0th-order light over the entire area, and the second diffractive means has a surface uneven shape on the diffractive surface. Accordingly, there is a region where the diffraction efficiency of the 0th-order light is high and a region where the diffraction efficiency of the 0th-order light is low, and a region up to D shown by the following equation is present on the side where the light beam is diffracted from the optical axis of the diffracting means. It is a region where the resolution efficiency of 0th-order light is high, and 0 is outside the D
The image display device according to the above [1], [3] or [5], which is a region where the diffraction efficiency of the next light is low. D = atan θ 0 = btan θ 1 − (b−a) tan
{Sin −1 (λ / p + sin θ 1 )} However, when the distance from the optical axis is D, the distance from the second diffracting means to the exit pupil position: a the distance from the first diffracting means to the exit pupil position: b Distance between the first diffracting means and the second diffracting means: b-a The first diffracting means when the 0th order light of the first diffracting means is incident on a region where the diffraction efficiency of the 0th order light is high. Angle of incidence on the diffractive means: θ 0 Minimum incident on the first diffractive means when the first-order light of the first diffractive means is incident on the region where the diffraction efficiency of the 0th-order light of the second diffractive means is high. Angle: θ 1 Groove pitch of first diffractive means and second diffractive means: p Wavelength: λ

【0054】[0054]

【発明の効果】以上の説明から明らかなように、本発明
によると、第2の回折手段が回折面上に沿って回折効率
特性の異なる複数の領域を有するようにすることによっ
て、使用する回折次数を変えたり、不要な回折次数の回
折効率を抑えたりすることができ、映像表示装置が広画
角になっても、不要光によるゴーストの問題を解消しつ
つ、色ズレの少ない瞳の大きな液晶表示装置等の映像表
示装置を実現することができる。
As is apparent from the above description, according to the present invention, the second diffractive means is provided with a plurality of regions having different diffraction efficiency characteristics along the diffractive surface so that the diffractive element to be used is diffracted. It is possible to change the order and suppress the diffraction efficiency of unnecessary diffraction orders. Even if the image display device has a wide angle of view, the problem of ghost due to unnecessary light can be solved, and the large pupil with small color misalignment can be solved. A video display device such as a liquid crystal display device can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による映像表示装置の基本構成を示す図
である。
FIG. 1 is a diagram showing a basic configuration of an image display device according to the present invention.

【図2】本発明の実施例1の映像表示装置における回折
手段の作用を示すための図である。
FIG. 2 is a diagram showing an operation of the diffracting means in the image display device according to the first embodiment of the present invention.

【図3】デューティー比0.265の矩形回折格子の回
折効率の溝深さ依存性を示す図である。
FIG. 3 is a diagram showing groove depth dependence of diffraction efficiency of a rectangular diffraction grating having a duty ratio of 0.265.

【図4】デューティー比0.5の矩形回折格子の回折効
率の溝深さ依存性を示す図である。
FIG. 4 is a diagram showing the groove depth dependence of the diffraction efficiency of a rectangular diffraction grating with a duty ratio of 0.5.

【図5】デューティー比の定義を説明するための図であ
る。
FIG. 5 is a diagram for explaining the definition of duty ratio.

【図6】実施例1の第2の回折手段のデューティー比の
分布を示す図である。
FIG. 6 is a diagram showing a duty ratio distribution of the second diffracting means of the first embodiment.

【図7】実施例1の具体的数値例における瞳の状態を示
す図である。
FIG. 7 is a diagram showing a state of a pupil in a specific numerical example of the first embodiment.

【図8】実施例1の具体的数値例における回折光の光線
図である。
FIG. 8 is a ray diagram of diffracted light in a specific numerical example of Example 1.

【図9】図8の場合の瞳の様子を示す図である。9 is a diagram showing the appearance of the pupil in the case of FIG. 8;

【図10】第1の回折手段に回折効率の異なる複数の領
域を有する場合の回折光の光線図である。
FIG. 10 is a ray diagram of diffracted light when the first diffracting means has a plurality of regions having different diffraction efficiencies.

【図11】本発明により第2の回折手段に回折効率の異
なる複数の領域を有する場合の回折光の光線図である。
FIG. 11 is a ray diagram of diffracted light when the second diffracting means according to the present invention has a plurality of regions having different diffraction efficiencies.

【図12】従来の2枚の回折手段共に0次光を発生させ
ない場合の回折光の光線図である。
FIG. 12 is a ray diagram of diffracted light in the case where 0th-order light is not generated in both conventional two diffracting means.

【図13】従来の2枚の回折手段共に0次光を発生させ
る場合の回折光の光線図である。
FIG. 13 is a ray diagram of diffracted light in the case where both conventional two diffracting means generate 0th-order light.

【図14】実施例2の回折光の光線図である。FIG. 14 is a ray diagram of diffracted light in Example 2.

【図15】従来の0次光を発生させずに±1次光のみ用
いる方法を説明するための図である。
FIG. 15 is a diagram for explaining a conventional method of using only ± first-order light without generating zero-order light.

【図16】縦方向、横方向それぞれ図15の1次元回折
格子ペアを用いて瞳を4つに分離拡大する様子を示す図
である。
16 is a diagram showing a manner of separating and enlarging the pupil into four by using the one-dimensional diffraction grating pair of FIG. 15 in each of the vertical direction and the horizontal direction.

【図17】図16の配置による瞳の様子を示す図であ
る。
FIG. 17 is a diagram showing a state of a pupil in the arrangement of FIG.

【図18】従来の±1次光と共に0次光を用いる方法を
説明するための図である。
FIG. 18 is a diagram for explaining a conventional method of using 0th-order light together with ± 1st-order light.

【図19】図18の配置による瞳の様子を示す図であ
る。
FIG. 19 is a diagram showing a state of a pupil in the arrangement of FIG.

【図20】0次光、±2次光の回折効率が高い場合の不
要光の発生の様子を示す光線図である。
FIG. 20 is a ray diagram showing how unnecessary light is generated when the diffraction efficiency of 0th order light and ± 2nd order light is high.

【図21】目に入りやすい不要光の正規光に対する位置
関係を説明するための図である。
FIG. 21 is a diagram for explaining the positional relationship of unnecessary light that tends to enter the eye with respect to regular light.

【符号の説明】[Explanation of symbols]

1…第1の回折格子(回折手段) 2…第2の回折格子(回折手段) 3…照明系 4…液晶表示素子 5…凸レンズ 6…射出瞳 21…第1領域 22…第2領域 23…第3領域 24…第4領域 25…第5領域 DESCRIPTION OF SYMBOLS 1 ... 1st diffraction grating (diffraction means) 2 ... 2nd diffraction grating (diffraction means) 3 ... Illumination system 4 ... Liquid crystal display element 5 ... Convex lens 6 ... Exit pupil 21 ... 1st area 22 ... 2nd area 23 ... Third region 24 ... Fourth region 25 ... Fifth region

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 映像を表示する映像表示手段と、前記映
像を使用者の網膜上に結像する接眼光学系とを有する映
像表示装置において、前記映像表示手段と前記接眼光学
系により射出瞳を形成する光路中に第1の回折手段と第
2の回折手段が設けられ、前記第2の回折手段が回折面
上に沿って回折効率特性の異なる複数の領域を有するこ
とを特徴とする映像表示装置。
1. An image display device having an image display means for displaying an image and an eyepiece optical system for forming the image on the retina of a user, wherein an exit pupil is formed by the image display means and the eyepiece optical system. An image display characterized in that a first diffractive means and a second diffractive means are provided in an optical path to be formed, and the second diffractive means has a plurality of regions having different diffraction efficiency characteristics along a diffractive surface. apparatus.
【請求項2】 前記第2の回折手段の回折効率特性が回
折面上で連続的に変化していることを特徴とする請求項
1記載の映像表示装置。
2. The image display device according to claim 1, wherein the diffraction efficiency characteristic of the second diffractive means is continuously changed on the diffractive surface.
【請求項3】 前記第2の回折手段は、0次光の回折効
率が高い中央部と、0次光の回折効率が低い周辺部とで
構成されていることを特徴とする請求項1記載の映像表
示装置。
3. The second diffractive means is composed of a central portion where the diffraction efficiency of 0th order light is high and a peripheral portion where the diffraction efficiency of 0th order light is low. Video display device.
JP11749396A 1996-05-13 1996-05-13 Video display device Withdrawn JPH09304725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11749396A JPH09304725A (en) 1996-05-13 1996-05-13 Video display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11749396A JPH09304725A (en) 1996-05-13 1996-05-13 Video display device

Publications (1)

Publication Number Publication Date
JPH09304725A true JPH09304725A (en) 1997-11-28

Family

ID=14713100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11749396A Withdrawn JPH09304725A (en) 1996-05-13 1996-05-13 Video display device

Country Status (1)

Country Link
JP (1) JPH09304725A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483613B1 (en) * 1998-08-04 2002-11-19 Sharp Kabushiki Kaisha Reflective display device and a light source for a display device
JP2007233171A (en) * 2006-03-02 2007-09-13 Nikon Corp Display device, image observation apparatus, camera and image observation method
JP2015049376A (en) * 2013-09-02 2015-03-16 セイコーエプソン株式会社 Optical device and image display apparatus
JP2016095444A (en) * 2014-11-17 2016-05-26 セイコーエプソン株式会社 Luminous flux diameter expansion element and display device
JP2016177232A (en) * 2015-03-23 2016-10-06 セイコーエプソン株式会社 Light flux diameter expansion element and display device
JP2018138999A (en) * 2010-11-08 2018-09-06 シーリアル テクノロジーズ ソシエテ アノニムSeereal Technologies S.A. Display unit
WO2019130988A1 (en) * 2017-12-26 2019-07-04 ソニーセミコンダクタソリューションズ株式会社 Image display device and display device
WO2019142641A1 (en) * 2018-01-16 2019-07-25 株式会社ニコン Diffractive optical element, optical system, optical device and method for producing diffractive optical element
JP2019534468A (en) * 2016-08-22 2019-11-28 マジック リープ, インコーポレイテッドMagic Leap,Inc. Dithering method and apparatus for wearable display devices
CN112071886A (en) * 2020-09-17 2020-12-11 云谷(固安)科技有限公司 Display panel and display device
CN114136443A (en) * 2021-11-23 2022-03-04 中北大学 Broadband symmetrical blazed grating structure for laser warning

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483613B1 (en) * 1998-08-04 2002-11-19 Sharp Kabushiki Kaisha Reflective display device and a light source for a display device
JP2007233171A (en) * 2006-03-02 2007-09-13 Nikon Corp Display device, image observation apparatus, camera and image observation method
JP2018138999A (en) * 2010-11-08 2018-09-06 シーリアル テクノロジーズ ソシエテ アノニムSeereal Technologies S.A. Display unit
JP2015049376A (en) * 2013-09-02 2015-03-16 セイコーエプソン株式会社 Optical device and image display apparatus
JP2016095444A (en) * 2014-11-17 2016-05-26 セイコーエプソン株式会社 Luminous flux diameter expansion element and display device
JP2016177232A (en) * 2015-03-23 2016-10-06 セイコーエプソン株式会社 Light flux diameter expansion element and display device
US11428859B2 (en) 2016-08-22 2022-08-30 Magic Leap, Inc. Projector architecture incorporating artifact mitigation
US11822112B2 (en) 2016-08-22 2023-11-21 Magic Leap, Inc. Projector architecture incorporating artifact mitigation
JP2019534468A (en) * 2016-08-22 2019-11-28 マジック リープ, インコーポレイテッドMagic Leap,Inc. Dithering method and apparatus for wearable display devices
US11604310B2 (en) 2016-08-22 2023-03-14 Magic Leap, Inc. Multi-layer diffractive eyepiece with front cover plate and wavelength-selective reflector
WO2019130988A1 (en) * 2017-12-26 2019-07-04 ソニーセミコンダクタソリューションズ株式会社 Image display device and display device
JPWO2019142641A1 (en) * 2018-01-16 2020-12-17 株式会社ニコン Diffractive optical element, optical system, optical equipment and method for manufacturing diffractive optical element
WO2019142641A1 (en) * 2018-01-16 2019-07-25 株式会社ニコン Diffractive optical element, optical system, optical device and method for producing diffractive optical element
CN112071886A (en) * 2020-09-17 2020-12-11 云谷(固安)科技有限公司 Display panel and display device
CN114136443A (en) * 2021-11-23 2022-03-04 中北大学 Broadband symmetrical blazed grating structure for laser warning

Similar Documents

Publication Publication Date Title
US5742262A (en) Image display apparatus
JP6736911B2 (en) Luminous flux diameter expanding element and image display device
JP5003291B2 (en) Video display device
US5619373A (en) Optical system for a head mounted display
US5943166A (en) Stereoscopic image display apparatus including a parallax barrier and an optical element including diffraction means
JP6477051B2 (en) Image display device
JP2018087949A (en) Video display device and light guide device
JP2017090562A (en) Light flux diameter expansion element and display
JPH09304725A (en) Video display device
JP2005106948A (en) Projection optical system and picture projection device
CN113777790A (en) Waveguide diffraction device and display glasses
JPH08166556A (en) Video display device
JP3300143B2 (en) Head mounted video display
JP6318670B2 (en) projector
EP3109688B1 (en) Optical element and heads-up display
JP2000155286A (en) Video display device
US6621640B2 (en) Projection display apparatus
JP4700953B2 (en) Projection zoom lens and projector apparatus
JP7183981B2 (en) virtual image display
JP2007240731A (en) Projection optical system and image projection device
JPH05346508A (en) Hologram lens and display device using the same
JP2001075007A (en) Projective lens system
JP2017219630A (en) Zoom lens for projection and projection type image display device
JPH08220482A (en) Optical system including diffraction optical element
JP6784563B2 (en) Projection zoom lens and projection image display device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805