JP2005106948A - Projection optical system and picture projection device - Google Patents

Projection optical system and picture projection device Download PDF

Info

Publication number
JP2005106948A
JP2005106948A JP2003337564A JP2003337564A JP2005106948A JP 2005106948 A JP2005106948 A JP 2005106948A JP 2003337564 A JP2003337564 A JP 2003337564A JP 2003337564 A JP2003337564 A JP 2003337564A JP 2005106948 A JP2005106948 A JP 2005106948A
Authority
JP
Japan
Prior art keywords
reduction
conjugate position
optical system
lens
side conjugate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003337564A
Other languages
Japanese (ja)
Inventor
Hiroki Nakayama
博喜 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003337564A priority Critical patent/JP2005106948A/en
Priority to CNB2004100565978A priority patent/CN1297835C/en
Priority to US10/916,142 priority patent/US6989939B2/en
Publication of JP2005106948A publication Critical patent/JP2005106948A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optimum projection lens system for a projector using reflection type liquid crystal for a display device, which is bright and realizes miniaturization. <P>SOLUTION: In the projection optical system, a distance between a reduction-side conjugate position on a side where conjugate length is short and an optical device nearest to the reduction-side conjugate position is 2.5 times or more as long as the diameter of an effective image circle at the reduction-side conjugate position. Assuming that the diameter of the effective image circle is ϕ and a distance from the reduction-side conjugate position at a wide angle end to a pupil position seen from the reduction-side conjugate position side near an optical axis is (tk), the projection optical system satisfies ¾ϕ/tk¾<0.12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、画像を、固定された有限距離にてスクリーンに拡大投写するプロジェクション装置に用いられるズームレンズに関し、特に表示体に色光ごとに複数の反射型液晶を用い、色合成して1本の投写レンズを介して、高精細な画像投写を行うテレセントリックズームレンズに関するものである。   The present invention relates to a zoom lens used in a projection device that enlarges and projects an image onto a screen at a fixed finite distance, and in particular, uses a plurality of reflective liquid crystals for each color light as a display body and performs color synthesis to produce a single lens. The present invention relates to a telecentric zoom lens that projects high-definition images via a projection lens.

プロジェクタ用の投射レンズ(ズームレンズ)によって画像を表示するデバイスとして液晶を用いることは広く知られている。また、液晶においても表示する手段として、透過型で表示する方法と反射型で表示する方法がある。   It is widely known that liquid crystal is used as a device for displaying an image by a projection lens (zoom lens) for a projector. In addition, as a means for displaying liquid crystal, there are a transmission type display method and a reflection type display method.

従来透過型液晶を用いたプロジェクタレンズはその中には特許文献1、2のような投射レンズが数多く提案されているが、透過型液晶、反射型液晶には以下のような特徴があった。
(1)透過型液晶は画素に対する発光部(光線透過部)は、液晶表面に配線等を施す必要があるために不感帯部が発生し開口率(透過率)は必然的に少なくなりがちで、明るさを重視する場合は、不利であった。その点反射型液晶は、配線等を反射面の裏側に設定等できるため不感体部を少なく或いはなくすことができ明るさで有利である。
(2)小型化のため、液晶サイズを小型化していくと、透過型液晶では液晶表面の配線等不感帯の割合が増えていき、開口率は更に不利となる。一方反射型液晶型は1と同様な理由で小型化には有利である。
(3)過型液晶型の場合は、レンズの縮小側に3色の合成系を配置するだけで比較的小型に構成できるが、反射型液晶型では色の3色の分離・合成を同じレンズ縮小側領域で行うため大型化してしまう。
このように、デバイスに透過型液晶を選択した場合、色合成系を小型化できるという利点があるが、色合成系の小型化が可能という反面明るさ向上には不向きであり、デバイスの小型化、明るさ向上のためには反射型液晶のほうが有利である。
特開平11−190821号公報 特開2000−019400号公報
Conventionally, many projector lenses as disclosed in Patent Documents 1 and 2 have been proposed as projector lenses using transmissive liquid crystals. However, transmissive liquid crystals and reflective liquid crystals have the following characteristics.
(1) In the transmissive liquid crystal, the light emitting part (light transmissive part) for the pixel needs to be provided with a wiring or the like on the surface of the liquid crystal. It was disadvantageous when brightness was important. The point reflection type liquid crystal is advantageous in brightness because it can set the wiring and the like on the back side of the reflection surface and can reduce or eliminate the insensitive part.
(2) When the liquid crystal size is reduced for downsizing, the ratio of dead zones such as wiring on the liquid crystal surface increases in the transmissive liquid crystal, and the aperture ratio becomes further disadvantageous. On the other hand, the reflective liquid crystal type is advantageous for miniaturization for the same reason as 1.
(3) In the case of the over-type liquid crystal type, it is possible to construct a relatively small size by simply arranging a three-color combining system on the lens reduction side. Since it is performed in the reduction side area, the size is increased.
In this way, when transmissive liquid crystal is selected for the device, there is an advantage that the color synthesis system can be downsized, but the color synthesis system can be downsized, but it is not suitable for improving brightness, and the device is downsized. In order to improve the brightness, the reflective liquid crystal is more advantageous.
Japanese Patent Laid-Open No. 11-190821 JP 2000-019400 A

本発明では上記した透過型の不利な点を排除し、小型で明るい投写系に有利な反射型液晶に最適な投写レンズ構成を提案することを目的とする。   The object of the present invention is to eliminate the above-mentioned disadvantages of the transmission type and to propose an optimum projection lens configuration for a reflective liquid crystal that is advantageous for a small and bright projection system.

上述したように反射型表示画像をスクリーンに拡大投写する際、特に液晶表示体を複数の色に分けて用い、各色光を合成して1本の投写レンズにて投写する場合、以下の条件を満足することが必要となる。
(1)複数の色光を合成する時の、色合成ダイクロイックミラーの角度依存の影響を排除する為に、また表示体面上での反射光をレンズにて有効に取り込む為に、縮小側(パネル側)の瞳(射出瞳)が遠方にある所謂テレセントリック光学系であること。
(2)表示体体と投射レンズの間に介在する色分離、色合成素子のスペースを確保する為に、長いバックフォーカスを必要とすることである。
(3)レンズ縮小側バックフォーカス部に色分離・合成素子としてプリズムブロックを用いるが、レンズが明るい開口を有する場合バックフォーカスが長い分プリズム自体も大きくする必要がある。
(4)またズーミングや距離合せによって射出瞳が変動するのは好ましくない。パネルに対して絞りを固定するか、複数のレンズ群の動きで瞳位置の変動を小さくい抑える必要がある。
As described above, when enlarging and projecting a reflective display image on a screen, particularly when a liquid crystal display is divided into a plurality of colors and each color light is synthesized and projected by a single projection lens, the following conditions are satisfied. Satisfaction is required.
(1) In order to eliminate the influence of the angle dependency of the color composition dichroic mirror when combining multiple color lights, and to effectively capture the reflected light on the display surface with the lens, the reduction side (panel side ) Is a so-called telecentric optical system in which the pupil (exit pupil) is far away.
(2) A long back focus is required to secure a space for color separation and color synthesis elements interposed between the display body and the projection lens.
(3) Although a prism block is used as a color separation / combination element in the lens reduction side back focus portion, if the lens has a bright aperture, the prism itself needs to be enlarged as the back focus is longer.
(4) It is not preferable that the exit pupil fluctuates due to zooming or distance adjustment. It is necessary to fix the diaphragm with respect to the panel or to suppress the fluctuation of the pupil position by movement of a plurality of lens groups.

上記、要求事項に対し、これまでの特に透過型を前提とした従来例では、射出瞳位置(縮小側の瞳位置)は有限であり、またバックフォーカスも十分に長いとは言い難い。また瞳の変動についても充分に考慮されているとは言い難かった。   With respect to the above requirements, in the conventional example based on the conventional transmission type, the exit pupil position (the pupil position on the reduction side) is finite and the back focus is not sufficiently long. In addition, it was difficult to say that pupil variation was fully considered.

また反射型での提案においても、スクリーンに明るく投写するのに、充分な明るさを備えたレンズではないものが多かった。   Many of the proposals of the reflection type are not lenses with sufficient brightness to project brightly on the screen.

本発明は、上記条件を満足しつつ、明るく、小型化を図り、反射型液晶を表示デバイスとして用いるプロジェクター用の最適な投写レンズ系を提供することを目的とする。   An object of the present invention is to provide an optimum projection lens system for a projector that satisfies the above-described conditions, is bright and downsized, and uses a reflective liquid crystal as a display device.

上記目的の達成の為に、本発明の投射光学系は、共役長が短い側の縮小側共役位置と、前記縮小側共役位置に最も近い光学素子との間の距離が、前記縮小側共役位置における有効像円の直径の2.5倍以上の間隔があり、該有効像円(イメージサークル、画像投射装置においては画像表示素子を囲む円)の直径をφ、広角端での前記縮小側共役位置から近軸における前記縮小側共役位置側から見た瞳位置までの距離をtkとしたとき、
|φ/tk| < 0.12 (1)
を満足することを特徴としている。
In order to achieve the above object, the projection optical system of the present invention is configured such that the distance between the reduction side conjugate position on the short conjugate length side and the optical element closest to the reduction side conjugate position is the reduction side conjugate position. The effective image circle has an interval of at least 2.5 times the diameter of the effective image circle, the diameter of the effective image circle (image circle, circle surrounding the image display element in the image projection apparatus) is φ, and the reduction side conjugate at the wide angle end When the distance from the position to the pupil position viewed from the reduction-side conjugate position side on the paraxial axis is tk,
| Φ / tk | <0.12 (1)
It is characterized by satisfying.

また、複数のレンズ群を有しており、前記縮小側共役位置に最も近いレンズ群がズーミング中固定の正レンズ群であることを特徴とする請求項1記載の投射光学系。   2. The projection optical system according to claim 1, further comprising a plurality of lens groups, wherein the lens group closest to the reduction-side conjugate position is a positive lens group fixed during zooming.

ここで、前記投射光学系の前記縮小側共役位置側での主光線の、前記縮小側共役位置における、前記投射光学系の光軸と垂直な平面とのなす角度をθとすると、
|θ|<0.8° (2)
を満足するように構成すると尚好ましい。
Here, if the angle between the principal ray on the reduction side conjugate position side of the projection optical system and the plane perpendicular to the optical axis of the projection optical system at the reduction side conjugate position is θ,
| Θ | <0.8 ° (2)
It is still more preferable if it is configured so as to satisfy the above.

また、前記縮小側共役位置に最も近い正レンズの直径をD、前記縮小側共役位置に最も近い光学素子から前記縮小側共役位置までの距離をbfとするとき
0.6<D/bf<0.92 (3)
を満足するように構成すると尚好ましい。
When the diameter of the positive lens closest to the reduction side conjugate position is D and the distance from the optical element closest to the reduction side conjugate position to the reduction side conjugate position is bf, 0.6 <D / bf <0 .92 (3)
It is still more preferable if it is configured so as to satisfy the above.

また、前記縮小側共役位置に最も近い正レンズの直径をDとしたとき、
1.5<D/φ<2.5 (4)
を満足するように構成すると尚好ましい。
When the diameter of the positive lens closest to the reduction side conjugate position is D,
1.5 <D / φ <2.5 (4)
It is still more preferable if it is configured so as to satisfy the above.

また、本発明の画像投射装置は、少なくとも1つの反射型画像表示素子と、該少なくとも1つの反射型画像表示素子からの光を被投射面に投射する投射光学系を有する画像投射装置であって、上述の投射光学系を備えることを特徴としている。   An image projection apparatus according to the present invention is an image projection apparatus having at least one reflection-type image display element and a projection optical system that projects light from the at least one reflection-type image display element onto a projection surface. The above-described projection optical system is provided.

また、本発明の画像投射装置は、少なくとも1つの反射型画像表示素子と、該少なくとも1つの反射型画像表示素子からの光を被投射面に投射する投射光学系を有する画像投射装置であって、共役長が短い側の縮小側共役位置と、前記縮小側共役位置に最も近い光学素子との間の距離が、前記縮小側共役位置における有効像円の直径の2.5倍以上の厚さを有するガラスブロック(プリズムブロック、もしくは色合成系のダイクロイックプリズム又は偏光ビームスプリッター)を有し、該有効像円の直径をφ、広角端での前記縮小側共役位置から近軸における前記縮小側共役位置側から見た瞳位置までの距離をtkとしたとき、
|φ/tk| < 0.12
を満足することを特徴としている。
An image projection apparatus according to the present invention is an image projection apparatus having at least one reflection-type image display element and a projection optical system that projects light from the at least one reflection-type image display element onto a projection surface. The distance between the reduction-side conjugate position on the shorter conjugate length side and the optical element closest to the reduction-side conjugate position is at least 2.5 times the diameter of the effective image circle at the reduction-side conjugate position. A glass block (a prism block, or a color synthesis dichroic prism or a polarizing beam splitter), the diameter of the effective image circle is φ, and the reduction side conjugate in the paraxial direction from the reduction side conjugate position at the wide angle end When the distance from the position side to the pupil position is tk,
| Φ / tk | <0.12
It is characterized by satisfying.

以上説明したように構成することにより、反射型液晶デバイスを表示体として、スクリーンに明るく投写するのに、充分な明るさを供給できるレンズを達成するための投射光学系を提供することができた。   By constructing as described above, it was possible to provide a projection optical system for achieving a lens capable of supplying sufficient brightness to project brightly on a screen using a reflective liquid crystal device as a display body. .

まず初めに、上述の条件式について簡単に説明する。   First, the above conditional expression will be briefly described.

条件式(1)は、本実施例の投射レンズが表示体面上での反射光をレンズにて有効に取り込む為に必要な条件である。この条件を逸脱すると、どんなに明るく、周辺光量の多いレンズでも、有効にスクリーン上に投写することが難しくなる。   Conditional expression (1) is a condition necessary for the projection lens of this embodiment to effectively capture the reflected light on the display body surface with the lens. Beyond this condition, it becomes difficult to effectively project even a bright lens with a large amount of peripheral light on the screen.

このことを詳細に説明すると、透過型液晶を用いる場合、ランプ側から液晶を透過する光束の主光線(光束の中心の光線)は、おおよそ液晶に垂直(テレセントリック)に入射するように配置され、その光束に対してほぼテレセントリックな(瞳が十分長い)レンズを投写レンズとしておけば、レンズ側での損失はレンズの開口効率にほぼ依存しており、照明光学系からの照明有効部に対して、レンズ有効光束が略同一であれば、ほぼレンズの損失がないといえる。照明光束とレンズ有効光束はそれぞれ独立していることになる。   Explaining this in detail, when using a transmissive liquid crystal, the principal ray of the light beam transmitted through the liquid crystal from the lamp side (the light beam at the center of the light beam) is arranged so as to be incident substantially perpendicularly (telecentric) to the liquid crystal, If a lens that is almost telecentric with respect to the luminous flux (with a sufficiently long pupil) is used as the projection lens, the loss on the lens side depends almost on the aperture efficiency of the lens, and the effective illumination part from the illumination optical system If the lens effective luminous flux is substantially the same, it can be said that there is almost no lens loss. The illumination light beam and the lens effective light beam are independent of each other.

これに対して反射型液晶を用いる場合は、ランプ側からの照明光の主光線がテレセントリックからはずれれば液晶表面の反射戻り光をレンズで取り込めず(反射光線がレンズ内に戻らない)効率が開口効率以上に悪くなる。即ち反射型投写系においては、『照明光の反射光=レンズに取り込む光束』となり、これがレンズの有効径で張る角度と一致すれば最も光効率が良いこととなり、照明光束とレンズ有効光束は従属関係になっていることになる。簡単に言うと液晶に向かう光束と液晶で反射して帰ってくる光束が同じであれば効率が良いこととなる。液晶に向かう光束が液晶(デバイス)の法線からθずれると、反射光は相対的に2θのずれとなっていく。できる限りこのθが小さいほうが効率がよく、これにより透過型液晶を使うより、反射型液晶を使うほうが、瞳の長さが明るさに影響しやすいこととなる。   On the other hand, when a reflective liquid crystal is used, if the principal ray of illumination light from the lamp side deviates from telecentricity, the reflected return light on the liquid crystal surface cannot be captured by the lens (the reflected light does not return into the lens). It becomes worse than opening efficiency. That is, in the reflection type projection system, “reflected light of illumination light = light flux taken into the lens”, and if this coincides with the angle stretched by the effective diameter of the lens, the light efficiency is the best, and the illumination light flux and the lens effective light flux are dependent. It will be a relationship. In simple terms, efficiency is good if the light flux going to the liquid crystal and the light flux reflected back by the liquid crystal are the same. When the light beam traveling toward the liquid crystal is deviated by θ from the normal line of the liquid crystal (device), the reflected light is relatively shifted by 2θ. It is more efficient if this θ is as small as possible. As a result, the length of the pupil is more likely to affect the brightness when the reflective liquid crystal is used than when the transmissive liquid crystal is used.

プリズムのサイズについては、プリズムサイズが小さくなると明るく広い範囲での光量を透過できず、明るい開口を持つレンズの効率を充分に生かしきれない。また特に反射型液晶を用いる場合は、色分離した光束を投写レンズの光路に投入し、更に色合成を同一な空間で行う必要があるため、レンズの縮小側にイメージサークル(有効像円)の2.5倍以上の厚さのプリズムブロックを有することは、明るいレンズを反射型で用いる際は必要である。また色合成、分離をダイクロミラー等で行うと空気換算のバックフォーカスが更に長く必要となり大型化するだけでなく、ミラーを透過する際に偏芯系となり像劣化(非点格差)を発生し適当でない。   As for the size of the prism, if the prism size is reduced, the amount of light in a bright and wide range cannot be transmitted, and the efficiency of a lens having a bright aperture cannot be fully utilized. In particular, in the case of using a reflective liquid crystal, it is necessary to inject the color-separated light flux into the optical path of the projection lens and to perform color synthesis in the same space. Therefore, an image circle (effective image circle) is formed on the reduction side of the lens. Having a prism block with a thickness of 2.5 times or more is necessary when a bright lens is used in a reflective type. In addition, if color synthesis and separation are performed with a dichroic mirror, etc., the back focus in terms of air is required to be longer and not only becomes large, but also becomes an eccentric system when passing through the mirror, causing image degradation (astigmatic disparity). Not.

特に、ズーミング中瞳の変動を少なくし、しかも瞳を遠くに設定するため、レンズの最も縮小側にズーミング中固定の正レンズ群を有することが好ましい。   In particular, in order to reduce the fluctuation of the pupil during zooming and set the pupil far, it is preferable to have a positive lens group fixed during zooming on the most reduction side of the lens.

次に条件式(2)において、θは無収差レンズであれば像高によって一定にできるが実際には収差が発生し、像高やズーミング等で変動する。この式も表示体面上での反射光をレンズにて更に有効に取り込む為に必要な条件である。この式を逸脱したレンズを配置するとスクリーンに投写された像の明るさを充分にすることができない。   Next, in the conditional expression (2), θ can be made constant according to the image height in the case of a non-aberration lens, but actually an aberration occurs and fluctuates due to image height, zooming, and the like. This equation is also a necessary condition for more effectively capturing the reflected light on the display surface with the lens. If a lens that deviates from this equation is arranged, the brightness of the image projected on the screen cannot be made sufficient.

また一般に最大像高yで周辺光量が最小となり、中間像高においては光量に余裕があれば、すべての像高において(2)式を満たさなくとも、最も周辺光量の少ない少なくとも最大像高yにおいて上記(2)式を満たしていることは必要である。またそのためにも上述したようにレンズの最も縮小側にズーミング中固定の正レンズ群を有することが好ましい。   In general, if the maximum image height y minimizes the amount of peripheral light and the intermediate image height has a sufficient amount of light, all the image heights do not satisfy equation (2), but at least at the maximum image height y with the least amount of peripheral light. It is necessary to satisfy the above equation (2). For this purpose, it is preferable to have a positive lens group fixed during zooming on the most reduction side of the lens as described above.

また、条件式(3)の範囲を逸脱すると適正なバックフォーカスを維持しつつ明るいレンズを達成できなくなる。パネルの光軸中心及び周辺において適当な角度を持ってレンズに光束を取り込めないと暗い光学系となる。具体的には光軸中心はパネルからFNOに従った角度を以ってレンズへ照射される。(FNo=1/(2sinρ):光軸±ρはパネルからの軸上光線の張る角)また周辺部も開口効率が大きければ、光軸と同等の角度を以って照射される。従ってこの範囲を逸脱するとレンズとして明るいものは難しくなる。   Further, if the range of conditional expression (3) is deviated, a bright lens cannot be achieved while maintaining an appropriate back focus. If the light beam cannot be taken into the lens at an appropriate angle at the center and the periphery of the optical axis of the panel, a dark optical system is obtained. Specifically, the center of the optical axis is irradiated from the panel to the lens at an angle according to FNO. (FNo = 1 / (2 sin ρ): the optical axis ± ρ is an angle formed by axial rays from the panel) If the aperture efficiency is large in the peripheral portion, the light is irradiated at an angle equivalent to the optical axis. Therefore, if it deviates from this range, a bright lens becomes difficult.

この際明るい光学系を達成するにはFNoは3以下が好ましい。   In this case, FNo is preferably 3 or less in order to achieve a bright optical system.

またここで言うレンズの径Dはそのレンズの有効径Deに対して3%から5%大きくなるものを指している。   Further, the lens diameter D referred to here indicates that which is 3% to 5% larger than the effective diameter De of the lens.

条件式(4)は周辺光量を明るく適切に設定するための条件である。下限を逸脱すると周辺光量が不足するだけでなく、周辺までの瞳の長さを長くすることが難しくなる。又上限を逸脱するとレンズ系が大型化して適当ではない。   Conditional expression (4) is a condition for setting the peripheral light quantity brightly and appropriately. When deviating from the lower limit, not only the amount of peripheral light is insufficient, but also it is difficult to increase the length of the pupil to the periphery. If the upper limit is exceeded, the lens system becomes large and is not suitable.

条件式(5)は色分離、色合成に使われるプリズムの入るバックフォーカスの間隔を適当に保ち、また前述したレンズの最も縮小側にズーミング中固定の正レンズ群のパワーfkを適切に設定するのに必要な式である。この式を逸脱すると、ズーミング中瞳の変動が大きくなり、しかも瞳を遠くに設定できなくなる。   Conditional expression (5) appropriately maintains the back focus interval in which the prisms used for color separation and color synthesis enter, and appropriately sets the power fk of the positive lens group fixed during zooming to the most reduction side of the lens. This is a necessary formula. If this formula is deviated, the pupil variation during zooming increases, and the pupil cannot be set far away.

上記目的を達成するためには、レンズ系の構成は具体的に、最も拡大側に負レンズ群、最も縮小側には前述のように正レンズ群を配置しているのが好ましい。特にバックフォーカスを長くするために第1レンズ群(拡大側)は負のパワー、瞳を長く設定するためには最終レンズ群(縮小側)は正のパワーが必要となる。   In order to achieve the above object, it is preferable that the lens system is specifically configured such that the negative lens group is arranged on the most enlargement side and the positive lens group is arranged on the most reduction side as described above. In particular, the first lens group (enlargement side) needs negative power to increase the back focus, and the last lens group (reduction side) requires positive power to set a long pupil.

また、最も縮小側のレンズ群の焦点距離をfkとするとき、
0.9<bf/fk<2.0 (5)
を満足することが好ましい。この式は色分離、色合成に使われるプリズムの入るバックフォーカスの間隔を適当に保ち、また前述したレンズの最も縮小側にズーミング中固定の正レンズ群のパワーfkを適切に設定するのに必要な式である。この式を逸脱すると、ズーミング中瞳の変動が大きくなり、しかも瞳を遠くに設定できなくなる。
Further, when the focal length of the lens unit closest to the reduction side is fk,
0.9 <bf / fk <2.0 (5)
Is preferably satisfied. This formula is necessary to keep the back focus interval where the prism used for color separation and color composition enters appropriately, and to properly set the power fk of the positive lens group fixed during zooming to the most reduction side of the lens mentioned above. It is a formula. If this formula is deviated, the pupil variation during zooming increases, and the pupil cannot be set far away.

上記目的を達成するためには、レンズ系の構成は具体的に、最も拡大側に負レンズ群、最も縮小側には前述のように正レンズ群を配置しているのが好ましい。特にバックフォーカスを長くするために第1レンズ群(拡大側)は負のパワー、瞳を長く設定するためには最終レンズ群(縮小側)は正のパワーが必要となる。また特に有効像円φと空気換算バックフォーカスbfには以下の関係があることが好ましい。   In order to achieve the above object, it is preferable that the lens system is specifically configured such that the negative lens group is arranged on the most enlargement side and the positive lens group is arranged on the most reduction side as described above. In particular, the first lens group (enlargement side) needs negative power to increase the back focus, and the last lens group (reduction side) requires positive power to set a long pupil. In particular, it is preferable that the effective image circle φ and the air equivalent back focus bf have the following relationship.

0.3<φ/bf<0.47 (6)
この式は有効像円に対して、適切に色分離・合成系のプリズムを有効な大きさで配置するための条件である。上限を超えると適切なバックフォーカスが確保できず、下限を超えると大型化する。
0.3 <φ / bf <0.47 (6)
This equation is a condition for appropriately arranging a color separation / combination prism with an effective size with respect to the effective image circle. If the upper limit is exceeded, adequate back focus cannot be secured, and if the lower limit is exceeded, the size increases.

以下に本発明の実施例を図を用いて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

まず、数値実施例1〜10のレンズデータを表1〜10に示す。この表1〜10において、fは焦点距離を、fnoはFナンバーを、frは各面の曲率を、dは各面と次の面との間隔を、nは各面と次の面との間の硝材の屈折率を(空欄の部分は空気間隔)、vは各面と次の面との間の硝材の分散を示している。表11は、上記の各条件式の値を各実施例に関して計算した結果を示した表である。   First, lens data of Numerical Examples 1 to 10 are shown in Tables 1 to 10. In Tables 1 to 10, f is the focal length, fno is the F number, fr is the curvature of each surface, d is the distance between each surface, and n is the distance between each surface and the next surface. The refractive index of the glass material in between (the blank part is the air spacing), and v indicates the dispersion of the glass material between each surface and the next surface. Table 11 is a table showing the results of calculating the values of the above conditional expressions for each example.

次に、実施例1のレンズ構成の概略図を図1に示す。図中Pは色分離・色合成プリズム等のガラスブロックを示す。このブロックは投写レンズの縮小側にあれば良く、実施例では2つのブロックで構成してあるように記載してあるが更に多くのブロックで分けても良く、適当な厚みで空気間隔を置いて分離させても良い。この色分離・色合成プリズムPはダイクロプリズム、PS分離素子、色フィルター等で構成されている。   Next, a schematic diagram of the lens configuration of Example 1 is shown in FIG. In the figure, P denotes a glass block such as a color separation / color synthesis prism. This block only needs to be on the reduction side of the projection lens. In the embodiment, it is described as being composed of two blocks, but it may be divided into a larger number of blocks, with an air gap of an appropriate thickness. It may be separated. The color separation / color synthesis prism P is composed of a dichroic prism, a PS separation element, a color filter, and the like.

実施例1の広角端における収差図を図11(a)に、望遠端における収差図を図11(b)に示す。収差図に示しているのは、左から、球面収差、像面湾曲、歪曲収差、倍率色収差である。収差図はそれぞれ球面収差、非点収差(像面湾曲)、歪曲(%)倍率色収差を示し、上段に広角端(WIDE)、下段に望遠端(TELE)に記している。球面収差は550nmと470nmと620nmのものを示す。倍率色収差は550nm基準で470nm,620nmの値を示す。非点収差において実線はサジタル断面、鎖線はメリディオナル断面を示す。   FIG. 11A shows an aberration diagram at the wide-angle end of Example 1, and FIG. 11B shows an aberration diagram at the telephoto end. From the left, the aberration diagram shows spherical aberration, curvature of field, distortion, and lateral chromatic aberration. The aberration diagrams show spherical aberration, astigmatism (field curvature), and distortion (%) lateral chromatic aberration, respectively, and are shown at the wide-angle end (WIDE) on the top and the telephoto end (TELE) on the bottom. The spherical aberrations are those at 550 nm, 470 nm and 620 nm. The lateral chromatic aberration shows values of 470 nm and 620 nm on the basis of 550 nm. In astigmatism, a solid line indicates a sagittal section and a chain line indicates a meridional section.

また、実施例1〜10のうち、実施例1〜4は、共役長が短い側の共役点(縮小側共役点)から射出瞳までの距離が2.85m、実施例5〜10は共役長が短い側の共役点(縮小側共役点)から射出瞳までの距離が2.1mとしている。   Among Examples 1 to 10, Examples 1 to 4 have a distance from the conjugate point with a shorter conjugate length (reduction side conjugate point) to the exit pupil of 2.85 m, and Examples 5 to 10 have a conjugate length. The distance from the shortest conjugate point (reduction side conjugate point) to the exit pupil is 2.1 m.

また、第1〜5実施例は拡大側から順に負の第1群、正の第2群、負の第3群、正の第4群という4つのレンズ群で構成され、第4レンズ群がズーミング中固定であり、この第4レンズ群近傍に開口絞りがあるものである。この第1〜5実施例においては、第1、2、3レンズ群が可動となっている。   In addition, the first to fifth embodiments are configured by four lens groups of a negative first group, a positive second group, a negative third group, and a positive fourth group in order from the enlargement side. It is fixed during zooming, and there is an aperture stop in the vicinity of the fourth lens group. In the first to fifth embodiments, the first, second and third lens groups are movable.

また、これらのうち第2、3実施例はFナンバーが1.6と大口径のものの実施例で、その他はFナンバーは2としている。   Of these, the second and third embodiments are those having a large aperture with an F number of 1.6, and the others have an F number of 2.

また第2,5実施例は縮小側最大像高yにおける主光線の、デバイス上での振れ角θはマイナス側、つまり収差込みの射出瞳位置がプラス側(デバイスより縮小側)にある例を示す。このような構成では最終レンズ(最も縮小側のレンズ)の径が大型化しがちとなる。   In the second and fifth embodiments, the chief ray at the reduction-side maximum image height y has a deflection angle θ on the device on the minus side, that is, the exit pupil position including aberration is on the plus side (the reduction side from the device). Show. In such a configuration, the diameter of the final lens (lens on the most reduction side) tends to be increased.

実施例6〜10は第1レンズ群と最終レンズ群が固定で、その他の群が移動する例である。開口絞りはそれぞれの移動群の中にある。   In Examples 6 to 10, the first lens group and the final lens group are fixed, and the other groups move. The aperture stop is in each moving group.

実施例6〜10を詳細に説明する。まず、第6実施例は負正負正正正の6群構成のものである。縮小側最大像高yにおける主光線の、デバイス上での振れ角θはマイナス側、つまり収差込みの射出瞳位置がプラス側(デバイスより縮小側)にある例である。   Examples 6 to 10 will be described in detail. First, the sixth embodiment has a six-group configuration of negative positive negative positive positive. This is an example in which the chief ray at the reduction-side maximum image height y has a deflection angle θ on the device, that is, the exit pupil position including aberration is on the plus side (the reduction side from the device).

第7〜9実施例は負正負正正の5群構成で、第7実施例は縮小側最大像高yにおける主光線の、デバイス上での振れ角θはマイナス側、つまり収差込みの射出瞳位置がプラス側(デバイスより縮小側)にある例である。   The seventh to ninth embodiments have a five-group configuration of negative positive, negative, positive and positive, and the seventh embodiment has a principal beam ray angle θ on the reduction side maximum image height y on the negative side, that is, an exit pupil including aberration. In this example, the position is on the plus side (the reduction side from the device).

第10実施例は負正負負正正の6群構成の例であり、縮小側最大像高yにおける主光線の、デバイス上での振れ角θはマイナス側、つまり収差込みの射出瞳位置がプラス側(デバイスより縮小側)にある例となっている。   The tenth embodiment is an example of a six-group configuration of negative positive negative negative positive positive, and the principal ray at the reduction-side maximum image height y has a negative deflection angle θ on the device, that is, the exit pupil position including aberration is positive. This is an example on the side (the reduction side from the device).

第5〜10実施例では開口絞りは可動群にあるが瞳位置の変動を抑えた構成となっているものである。   In the fifth to tenth embodiments, the aperture stop is in the movable group but has a configuration in which the fluctuation of the pupil position is suppressed.

また、ピント合わせは第1レンズ群で行うと述べたが、第1レンズ群と第2レンズ群同時に行う、または最終群で行うようにしても良いし、あるいは複数の群で、特に有限距離で各群別な移動量にて距離合わせをしてもよく、又全体にて行っても表示パネルを移動して行ってもよい。   In addition, although it has been described that the focusing is performed by the first lens group, it may be performed by the first lens group and the second lens group simultaneously, or may be performed by the final group, or may be performed by a plurality of groups, particularly at a finite distance. The distance may be adjusted by the amount of movement for each group, or may be performed as a whole or by moving the display panel.

また、本実施例は投射レンズ(ズームレンズ)について述べて来たが、勿論この限りではない。本実施例の投射レンズをプロジェクターの投射レンズとして用いることが可能である。   In the present embodiment, the projection lens (zoom lens) has been described. The projection lens of this embodiment can be used as a projection lens for a projector.

例えば、少なくとも1つ(好ましくは1つか3つか4つ)の画像表示素子(反射型液晶パネルやDMD等)と、その少なくとも1つの画像表示素子を光源からの光で照明する照明光学系と、その照明された画像表示素子からの光をスクリーン等の被投射面に投射する上述のような投射レンズを有するような画像投射装置に適用しても良い。   For example, at least one (preferably one, three, or four) image display elements (such as a reflective liquid crystal panel or DMD), and an illumination optical system that illuminates the at least one image display element with light from a light source, You may apply to the image projection apparatus which has the above projection lenses which project the light from the illuminated image display element on projection surfaces, such as a screen.

より詳細には、照明光学系は、照度均一化光学系(はえの目レンズ等の光束分割レンズ)や、光源からの光を色分解する色分解光学系等を有するように構成するのが良い。また、画像表示素子を3つ持つ場合には、投射レンズと画像表示素子との間に、各画像表示素子から出射した光を色合成する色合成光学系を配置する必要がある。この色合成光学系は、ダイクロイックミラーや偏光ビームスプリッターを備えているのが望ましく、さらに望ましくは波長選択性位相差板(特定の波長の光の偏光方向を90度回転させる素子)を備えるようにすると尚望ましい。   More specifically, the illumination optical system is configured to include an illuminance uniformizing optical system (a light beam splitting lens such as a fly-eye lens), a color separation optical system that separates light from a light source, and the like. good. Further, when three image display elements are provided, it is necessary to dispose a color combining optical system for color combining light emitted from each image display element between the projection lens and the image display element. The color synthesis optical system preferably includes a dichroic mirror and a polarization beam splitter, and more preferably includes a wavelength selective phase difference plate (an element that rotates the polarization direction of light of a specific wavelength by 90 degrees). It is still desirable.

Figure 2005106948
Figure 2005106948

Figure 2005106948
Figure 2005106948

Figure 2005106948
Figure 2005106948

Figure 2005106948
Figure 2005106948

Figure 2005106948
Figure 2005106948

Figure 2005106948
Figure 2005106948

Figure 2005106948
Figure 2005106948

Figure 2005106948
Figure 2005106948

Figure 2005106948
Figure 2005106948

Figure 2005106948
Figure 2005106948

Figure 2005106948
Figure 2005106948

実施例1のレンズ構成の概略図Schematic diagram of lens configuration of Example 1 実施例2のレンズ構成の概略図Schematic of lens configuration of Example 2 実施例3のレンズ構成の概略図Schematic of lens configuration of Example 3 実施例4のレンズ構成の概略図Schematic of lens configuration of Example 4 実施例5のレンズ構成の概略図Schematic of lens configuration of Example 5 実施例6のレンズ構成の概略図Schematic of lens configuration of Example 6 実施例7のレンズ構成の概略図Schematic of lens configuration of Example 7 実施例8のレンズ構成の概略図Schematic of lens configuration of Example 8 実施例9のレンズ構成の概略図Schematic of lens configuration of Example 9 実施例10のレンズ構成の概略図Schematic of lens configuration of Example 10 実施例1の収差図Aberration diagram of Example 1 実施例2の収差図Aberration diagram of Example 2 実施例3の収差図Aberration diagram of Example 3 実施例4の収差図Aberration diagram of Example 4 実施例5の収差図Aberration diagram of Example 5 実施例6の収差図Aberration diagram of Example 6 実施例7の収差図Aberration diagram of Example 7 実施例8の収差図Aberration diagram of Example 8 実施例9の収差図Aberration diagram of Example 9 実施例10の収差図Aberration diagram of Example 10

符号の説明Explanation of symbols

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
L5 第5レンズ群
L6 第6レンズ群
P プリズム体
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group L5 5th lens group L6 6th lens group P Prism body

Claims (7)

共役長が短い側の縮小側共役位置と、前記縮小側共役位置に最も近い光学素子との間の距離が、前記縮小側共役位置における有効像円の直径の2.5倍以上の間隔があり、該有効像円の直径をφ、広角端での前記縮小側共役位置から近軸における前記縮小側共役位置側から見た瞳位置までの距離をtkとしたとき、
|φ/tk| < 0.12
を満足することを特徴とする投射光学系。
The distance between the reduction-side conjugate position on the shorter conjugate length side and the optical element closest to the reduction-side conjugate position is at least 2.5 times the effective image circle diameter at the reduction-side conjugate position. , When the diameter of the effective image circle is φ, and the distance from the reduction-side conjugate position at the wide-angle end to the pupil position viewed from the reduction-side conjugate position side in paraxial is tk,
| Φ / tk | <0.12
A projection optical system characterized by satisfying
複数のレンズ群を有しており、前記縮小側共役位置に最も近いレンズ群がズーミング中固定の正レンズ群であることを特徴とする請求項1記載の投射光学系。   The projection optical system according to claim 1, wherein the projection optical system has a plurality of lens groups, and the lens group closest to the reduction-side conjugate position is a positive lens group fixed during zooming. 前記投射光学系の前記縮小側共役位置側での主光線の、前記縮小側共役位置における、前記投射光学系の光軸と垂直な平面とのなす角度をθとすると、
|θ|<0.8°
を満足することを特徴とする請求項1又は2記載の投射光学系。
When the angle between the principal ray on the reduction-side conjugate position side of the projection optical system and the plane perpendicular to the optical axis of the projection optical system at the reduction-side conjugate position is θ,
| Θ | <0.8 °
The projection optical system according to claim 1 or 2, wherein:
前記縮小側共役位置に最も近い正レンズの直径をD、前記縮小側共役位置に最も近い光学素子から前記縮小側共役位置までの距離をbfとするとき
0.6<D/bf<0.92
を満足することを特徴とする請求項1乃至3いずれかに記載の投射光学系。
When the diameter of the positive lens closest to the reduction-side conjugate position is D and the distance from the optical element closest to the reduction-side conjugate position to the reduction-side conjugate position is bf, 0.6 <D / bf <0.92
The projection optical system according to claim 1, wherein:
前記縮小側共役位置に最も近い正レンズの直径をDとしたとき、
1.5<D/φ<2.5
を満足することを特徴とする請求項1乃至4いずれかに記載の投射光学系。
When the diameter of the positive lens closest to the reduction side conjugate position is D,
1.5 <D / φ <2.5
The projection optical system according to claim 1, wherein:
少なくとも1つの反射型画像表示素子と、該少なくとも1つの反射型画像表示素子からの光を被投射面に投射する投射光学系を有する画像投射装置であって、
請求項1乃至5いずれかに記載の投射光学系を備えることを特徴とする画像投射装置。
An image projection apparatus having at least one reflection-type image display element and a projection optical system that projects light from the at least one reflection-type image display element onto a projection surface,
An image projection apparatus comprising the projection optical system according to claim 1.
少なくとも1つの反射型画像表示素子と、該少なくとも1つの反射型画像表示素子からの光を被投射面に投射する投射光学系を有する画像投射装置であって、
共役長が短い側の縮小側共役位置と、前記縮小側共役位置に最も近い光学素子との間の距離が、前記縮小側共役位置における有効像円の直径の2.5倍以上の厚さを有するガラスブロックを有し、該有効像円の直径をφ、広角端での前記縮小側共役位置から近軸における前記縮小側共役位置側から見た瞳位置までの距離をtkとしたとき、
|φ/tk| < 0.12
を満足することを特徴とする画像投射装置。
An image projection apparatus having at least one reflection-type image display element and a projection optical system that projects light from the at least one reflection-type image display element onto a projection surface,
The distance between the reduction-side conjugate position on the short conjugate length side and the optical element closest to the reduction-side conjugate position has a thickness that is at least 2.5 times the diameter of the effective image circle at the reduction-side conjugate position. When the diameter of the effective image circle is φ, and the distance from the reduced side conjugate position at the wide angle end to the pupil position viewed from the reduced side conjugate position side on the paraxial axis is tk,
| Φ / tk | <0.12
An image projection apparatus characterized by satisfying
JP2003337564A 2003-08-11 2003-09-29 Projection optical system and picture projection device Pending JP2005106948A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003337564A JP2005106948A (en) 2003-09-29 2003-09-29 Projection optical system and picture projection device
CNB2004100565978A CN1297835C (en) 2003-08-11 2004-08-11 Variable-focus optical system, projection optical system and image projection device using said system
US10/916,142 US6989939B2 (en) 2003-08-11 2004-08-11 Variable-power optical system, projection optical system, and image projection apparatus using the systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337564A JP2005106948A (en) 2003-09-29 2003-09-29 Projection optical system and picture projection device

Publications (1)

Publication Number Publication Date
JP2005106948A true JP2005106948A (en) 2005-04-21

Family

ID=34533350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337564A Pending JP2005106948A (en) 2003-08-11 2003-09-29 Projection optical system and picture projection device

Country Status (1)

Country Link
JP (1) JP2005106948A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308890A (en) * 2005-04-28 2006-11-09 Canon Inc Wide angle lens and zoom lens
JP2007286601A (en) * 2006-03-24 2007-11-01 Nikon Corp Zoom lens, imaging apparatus and method for varying focal length
JP2008158321A (en) * 2006-12-25 2008-07-10 Nikon Corp Variable power optical system having vibration-proofing function, imaging apparatus and method of varying magnification of variable power optical system
JP2008242402A (en) * 2007-03-29 2008-10-09 Canon Inc Image projection optical system and image projection device
US7878663B2 (en) 2006-10-03 2011-02-01 Canon Kabushiki Kaisha Image display apparatus
US8223435B2 (en) 2009-11-09 2012-07-17 Fujifilm Corporation Zoom lens for projection and projection-type display device
JP2012189971A (en) * 2010-04-12 2012-10-04 Fujifilm Corp Zoom lens for projection, variable power optical system for projection, and projection type display device
CN103293681A (en) * 2013-05-06 2013-09-11 湖北久之洋红外系统股份有限公司 Two-channel optical device with ultra large diameter and ultra long focal distance
JP2014126649A (en) * 2012-12-26 2014-07-07 Ricoh Imaging Co Ltd Zoom lens system and electronic imaging device including the same
JP2015040981A (en) * 2013-08-22 2015-03-02 キヤノン株式会社 Zoom lens and image projection device having the same
JP2015075533A (en) * 2013-10-07 2015-04-20 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2015127753A (en) * 2013-12-27 2015-07-09 株式会社リコー Zoom optical system for projection
JP2015127750A (en) * 2013-12-27 2015-07-09 株式会社リコー Projector device
JP2016105128A (en) * 2014-12-01 2016-06-09 コニカミノルタ株式会社 Projection lens with zooming capability and projector
US9405108B2 (en) 2012-11-19 2016-08-02 Fujifilm Corporation Projection zoom lens and projection type display device
US9541743B2 (en) 2012-11-19 2017-01-10 Fujifilm Corporation Projection zoom lens and projection type display device
US9557538B2 (en) 2012-11-19 2017-01-31 Fujifilm Corporation Projection zoom lens and projection type display device
JP2019066654A (en) * 2017-09-29 2019-04-25 キヤノン株式会社 Zoom lens and imaging apparatus
JP2019113700A (en) * 2017-12-22 2019-07-11 株式会社タムロン Zoom lens and image capturing device
US10437026B2 (en) 2006-07-21 2019-10-08 Nikon Corporation Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
CN110520777A (en) * 2017-04-05 2019-11-29 株式会社尼康 Variable-power optical system, Optical devices and the method for manufacturing variable-power optical system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160714A (en) * 1992-08-31 1994-06-07 Us Precision Lens Inc Zoom projection lens and its manufacture
JPH07270685A (en) * 1994-03-29 1995-10-20 Nikon Corp Zoom lens
JPH1031156A (en) * 1996-07-15 1998-02-03 Nikon Corp Zoom lens
JPH11202200A (en) * 1998-01-13 1999-07-30 Nikon Corp Zoom lens
JP2000009993A (en) * 1998-06-17 2000-01-14 Nikon Corp Wide-angle lens
JP2001013409A (en) * 1999-06-28 2001-01-19 Canon Inc Zoom lens
JP2001021799A (en) * 1999-07-06 2001-01-26 Canon Inc Retro focus type lens
JP2001141999A (en) * 1999-11-11 2001-05-25 Canon Inc Zoom lens
JP2002131641A (en) * 2000-10-25 2002-05-09 Canon Inc Zoom lens and projecting device using the same
JP2003131639A (en) * 2000-12-22 2003-05-09 Hunet Inc Voltage impression pattern table for liquid crystal display device and method of manufacturing the same
JP2004138678A (en) * 2002-10-15 2004-05-13 Matsushita Electric Ind Co Ltd Zoom lens, and video enlarging and projecting system, video projector, rear projector and multi-vision system using the same zoom lens

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160714A (en) * 1992-08-31 1994-06-07 Us Precision Lens Inc Zoom projection lens and its manufacture
JPH07270685A (en) * 1994-03-29 1995-10-20 Nikon Corp Zoom lens
JPH1031156A (en) * 1996-07-15 1998-02-03 Nikon Corp Zoom lens
JPH11202200A (en) * 1998-01-13 1999-07-30 Nikon Corp Zoom lens
JP2000009993A (en) * 1998-06-17 2000-01-14 Nikon Corp Wide-angle lens
JP2001013409A (en) * 1999-06-28 2001-01-19 Canon Inc Zoom lens
JP2001021799A (en) * 1999-07-06 2001-01-26 Canon Inc Retro focus type lens
JP2001141999A (en) * 1999-11-11 2001-05-25 Canon Inc Zoom lens
JP2002131641A (en) * 2000-10-25 2002-05-09 Canon Inc Zoom lens and projecting device using the same
JP2003131639A (en) * 2000-12-22 2003-05-09 Hunet Inc Voltage impression pattern table for liquid crystal display device and method of manufacturing the same
JP2004138678A (en) * 2002-10-15 2004-05-13 Matsushita Electric Ind Co Ltd Zoom lens, and video enlarging and projecting system, video projector, rear projector and multi-vision system using the same zoom lens

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308890A (en) * 2005-04-28 2006-11-09 Canon Inc Wide angle lens and zoom lens
JP4756903B2 (en) * 2005-04-28 2011-08-24 キヤノン株式会社 Wide-angle lens and zoom lens
JP2007286601A (en) * 2006-03-24 2007-11-01 Nikon Corp Zoom lens, imaging apparatus and method for varying focal length
US10437026B2 (en) 2006-07-21 2019-10-08 Nikon Corporation Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
US7878663B2 (en) 2006-10-03 2011-02-01 Canon Kabushiki Kaisha Image display apparatus
US8376553B2 (en) 2006-10-03 2013-02-19 Canon Kabushiki Kaisha Image display apparatus having stop shape control
JP2008158321A (en) * 2006-12-25 2008-07-10 Nikon Corp Variable power optical system having vibration-proofing function, imaging apparatus and method of varying magnification of variable power optical system
JP2008242402A (en) * 2007-03-29 2008-10-09 Canon Inc Image projection optical system and image projection device
US8223435B2 (en) 2009-11-09 2012-07-17 Fujifilm Corporation Zoom lens for projection and projection-type display device
JP2012189971A (en) * 2010-04-12 2012-10-04 Fujifilm Corp Zoom lens for projection, variable power optical system for projection, and projection type display device
US9557538B2 (en) 2012-11-19 2017-01-31 Fujifilm Corporation Projection zoom lens and projection type display device
US9541743B2 (en) 2012-11-19 2017-01-10 Fujifilm Corporation Projection zoom lens and projection type display device
US9405108B2 (en) 2012-11-19 2016-08-02 Fujifilm Corporation Projection zoom lens and projection type display device
JP2014126649A (en) * 2012-12-26 2014-07-07 Ricoh Imaging Co Ltd Zoom lens system and electronic imaging device including the same
CN103293681A (en) * 2013-05-06 2013-09-11 湖北久之洋红外系统股份有限公司 Two-channel optical device with ultra large diameter and ultra long focal distance
JP2015040981A (en) * 2013-08-22 2015-03-02 キヤノン株式会社 Zoom lens and image projection device having the same
JP2015075533A (en) * 2013-10-07 2015-04-20 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2015127750A (en) * 2013-12-27 2015-07-09 株式会社リコー Projector device
JP2015127753A (en) * 2013-12-27 2015-07-09 株式会社リコー Zoom optical system for projection
JP2016105128A (en) * 2014-12-01 2016-06-09 コニカミノルタ株式会社 Projection lens with zooming capability and projector
US9575297B2 (en) 2014-12-01 2017-02-21 Konica Minolta, Inc. Projection lens and projector with magnifying function
CN110520777A (en) * 2017-04-05 2019-11-29 株式会社尼康 Variable-power optical system, Optical devices and the method for manufacturing variable-power optical system
CN110520777B (en) * 2017-04-05 2021-12-10 株式会社尼康 Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
JP2019066654A (en) * 2017-09-29 2019-04-25 キヤノン株式会社 Zoom lens and imaging apparatus
JP6991814B2 (en) 2017-09-29 2022-01-13 キヤノン株式会社 Zoom lens and image pickup device
JP2019113700A (en) * 2017-12-22 2019-07-11 株式会社タムロン Zoom lens and image capturing device

Similar Documents

Publication Publication Date Title
JP4871517B2 (en) Zoom lens and image projection apparatus having the same
US7079324B2 (en) Zoom lens and image projection apparatus including the same
JP5069146B2 (en) Projection zoom lens and projection display device
JP2005106948A (en) Projection optical system and picture projection device
US7558002B2 (en) Projection zoom lens and projection-type display device
JP5302123B2 (en) Projection zoom lens and projection display device
JP5229951B2 (en) Projection zoom lens and projection display device
US7826147B2 (en) Zoom lens and image projection apparatus
JP2009003259A (en) Zoom lens for projection and projection type display device
JP2008083229A (en) Projection zoom lens and projection display device
JP2009020283A (en) Zoom lens for projection and projection type display device
JP2005181993A (en) Projection lens
KR20040032903A (en) Projection lens
JP2010160478A (en) Projection zoom lens and projection type display apparatus
JP2006039034A (en) Zoom lens and projection device
JP5307655B2 (en) Projection variable focus lens and projection display device
JP2007240731A (en) Projection optical system and image projection device
JP2006308890A (en) Wide angle lens and zoom lens
JP2005128487A (en) Projection lens, and projection display and rear projection display using this projection lens
JP4204797B2 (en) Zoom lens and projection display device using the same
JP2006145671A (en) Zoom lens for projection and projector device
JP2006039033A (en) Zoom lens and projection apparatus
JP2004138679A (en) Wide-angle lens, and video magnification projection system, video projector, rear projector, and multivision system using the same
JP2006003655A (en) Projection lens and projector using same
JP2005062212A (en) Converter lens and projecting apparatus with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630