JPH09304452A - Harmonic monitoring equipment - Google Patents

Harmonic monitoring equipment

Info

Publication number
JPH09304452A
JPH09304452A JP12459896A JP12459896A JPH09304452A JP H09304452 A JPH09304452 A JP H09304452A JP 12459896 A JP12459896 A JP 12459896A JP 12459896 A JP12459896 A JP 12459896A JP H09304452 A JPH09304452 A JP H09304452A
Authority
JP
Japan
Prior art keywords
harmonic
content
signal
value
alarm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12459896A
Other languages
Japanese (ja)
Inventor
Tsutomu Kamura
勉 加村
Koji Shirai
浩司 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP12459896A priority Critical patent/JPH09304452A/en
Publication of JPH09304452A publication Critical patent/JPH09304452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it sure to monitor a harmonic having possibility of damage generation, by obtaining and accumulating the content value or the content ratio of a specified order harmonic component of a signal to be measured, at a specified judgment time and interval, and generating an alarm when the judgment level is exceeded. SOLUTION: A signal to be measured is inputted in an input circuit 1. An I/O 5 outputs a timing signal, and delivers input signal data to a CPU 9. A memory card 7 sequentially stores measured each order harmonic data. The CPU 9 executes various kinds of processes on the basis of the program of an ROM 10, the setting condition of a key input part 13, etc. That is, the CPU 9 obtains repeatedly the content value or the content ratio of specific order harmonic component of the signal to be measured, at constant time intervals in a specific judgment time, and accumulates the frequency. When the content value or the content ratio of the previously determined cumulative frequency exceeds a previously determined judgment level, an alarm is generated. Thereby generation of excessive harmonic level in a short time is surely detected without being affected by transient harmonic, and the alarm signal can be outputted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電力系統や電気
負荷の電圧信号または電流信号の高調波成分を監視する
高調波監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a harmonic monitoring device for monitoring a harmonic component of a voltage signal or a current signal of a power system or an electric load.

【0002】[0002]

【従来の技術】従来より受変電設備や電気負荷に対する
高調波による障害を未然に防止するために、電力系統に
重畳されている高調波成分または電力系統に存在する電
気機器の発生する高調波成分を分析して監視する高調波
監視装置が用いられている。
2. Description of the Related Art Conventionally, in order to prevent obstacles caused by harmonics to power receiving and transforming equipment and electric loads, harmonic components superimposed on a power system or harmonic components generated by electric equipment existing in the power system A harmonic monitoring device is used to analyze and monitor.

【0003】高調波による障害の要因は次の3つに大別
できる。
The causes of disturbance due to harmonics can be roughly classified into the following three.

【0004】 機器への高調波電流の流入による異
音、振動、過熱、焼損等 機器への高調波電圧の印加による絶縁破壊等の損傷 機器への高調波電圧の印加によるゼロクロスポイン
トのふらつき等による誤制御・誤動作等 このうち、は高調波電圧電流レベルとその発生時間と
の積に関係し、,は主に高調波電圧のレベルおよび
波形に関係する。
Abnormal noise, vibration, overheating, burnout, etc. due to the inflow of harmonic current to the equipment. Damage such as dielectric breakdown due to the application of harmonic voltage to the equipment. Due to the fluctuation of the zero cross point due to the application of harmonic voltage to the equipment. Erroneous control / malfunction, etc. Among them, is related to the product of the harmonic voltage / current level and its generation time, and is mainly related to the level and waveform of the harmonic voltage.

【0005】上記障害を未然に防止するため、従来の高
調波監視装置は、高調波のレベルを常時監視し、一定の
判定レベルを超過したときに警報を発するようにしてい
る。
In order to prevent the above-mentioned troubles, the conventional harmonic monitoring device constantly monitors the level of harmonics and issues an alarm when a certain judgment level is exceeded.

【0006】その判定方式は次の通りである。The determination method is as follows.

【0007】n次の高調波電圧含有率をVn、n次の高
調波電流含有値をIn、総合電圧歪率をVTHD 、総合電
流歪をITHD とし、n次の高調波電圧含有率,高調波電
流含有値の判定レベルをそれぞれVhn,Ihnとすれ
ば、Vn≧Vhn,VTHD ≧VhTHD ,In≧Ihn,
THD ≧IhTHD のいずれかまたは全てが満足する状態
が設定時間継続した場合に警報信号を出力する。
The n-th harmonic voltage content rate is Vn, the n-th harmonic current content value is In, the total voltage distortion rate is V THD , and the total current distortion is I THD . Assuming that the determination levels of the harmonic current content value are Vhn and Ihn, respectively, Vn ≧ Vhn, V THD ≧ Vh THD , In ≧ Ihn,
An alarm signal is output when the condition where any or all of I THD ≧ Ih THD is satisfied continues for a set time.

【0008】[0008]

【発明が解決しようとする課題】ところが、このような
従来の高調波監視装置においては、高調波レベルとその
継続時間を基に単純に判定を行うものであるため、次の
ような問題が生じる場合があった。
However, in such a conventional harmonic monitoring device, since the determination is simply made based on the harmonic level and its duration, the following problems occur. There were cases.

【0009】 判定レベルを大きく超過する高調波の
発生状態と、判定レベルを僅かに超過する高調波の発生
状態との区別がつかない。
It is indistinguishable between the generation state of harmonics that greatly exceed the determination level and the generation state of harmonics that slightly exceed the determination level.

【0010】 判定レベルを超える高調波が継続する
場合であっても、その継続時間中に短時間でも高調波レ
ベルが判定レベルを下回って継続時間が設定時間に満た
なくなると警報が出力されない。
Even when the harmonics exceeding the determination level continue, if the harmonic level falls below the determination level for a short time during the duration and the duration does not reach the set time, the alarm is not output.

【0011】 高調波のレベルは、一般に、高調波を
発生する発生源の運転状態、負荷の大小、電力系統の構
成によって大きく変化し、そのため特定の負荷が短時間
運転している時にのみ高調波レベルが極端に高くなる場
合も生じるが、従来の高調波監視装置では判定レベルを
超える高調波が設定時間継続しない限り警報が出力され
ない。このような短時間の高調波レベルの増大を検知し
て警報を出力するために、上記設定時間を短く設定する
ことも考えられるが、その場合、上記の障害には結びつ
かない例えばモータやトランスなどの負荷に対する電源
投入時に生じる過渡的に増大する高調波レベルをも検出
して直ちに警報が出力されることになり、前述した高調
波による障害を防止する目的には適さなくなる。
[0011] The level of harmonics generally varies greatly depending on the operating state of the source that generates the harmonics, the magnitude of the load, and the configuration of the power system, so that the harmonics are generated only when a specific load is operating for a short time. Although the level may become extremely high, in the conventional harmonic monitoring device, the alarm is not output unless the harmonic exceeding the determination level continues for the set time. In order to detect the increase in the harmonic level in such a short time and output an alarm, it is conceivable to set the above setting time short, but in that case, it does not lead to the above-mentioned obstacles, for example, a motor or a transformer. The alarm level is immediately output upon detection of the transiently increasing harmonic level that occurs when the power supply to the load is turned on, and it is not suitable for the purpose of preventing the above-mentioned harmonic-induced failure.

【0012】この発明の目的は、機器への高調波電流の
流入による異音、振動、過熱、焼損等の障害が生じる危
険性のある高調波の発生有無を確実に監視し得る高調波
監視装置を提供することにある。
An object of the present invention is to provide a harmonic monitoring device capable of reliably monitoring the presence or absence of harmonics which may cause troubles such as abnormal noise, vibration, overheating, and burning due to the inflow of harmonic currents into the equipment. To provide.

【0013】この発明の他の目的は、過渡的に生じる高
調波による誤警報を発することなく、機器への高調波電
圧の印加による誤動作や誤制御等の障害が生じる危険性
のある高調波の発生有無を確実に監視し得る高調波監視
装置を提供することにある。
Another object of the present invention is to prevent the occurrence of harmonics that may cause malfunctions such as malfunction or erroneous control due to the application of a harmonic voltage to a device without giving a false alarm due to a transiently occurring harmonic. It is an object of the present invention to provide a harmonic monitoring device capable of reliably monitoring the occurrence or non-occurrence of occurrence.

【0014】[0014]

【課題を解決するための手段】この発明の高調波監視装
置は、例えばモータやトランス等の負荷に対する電源供
給開始時に流れる突入電流等により生じるごく過渡的な
高調波による影響を受けずに、且つ比較的短時間でも特
定負荷の運転等による過大な高調波レベルが生じたこと
を確実に検知して警報信号を出力できるようにするた
め、請求項1に記載のとおり、電力系統の電圧信号また
は電流信号を被測定信号として入力し、該被測定信号の
所定次数の高調波成分の含有値または含有率を、所定の
判定時間に一定時間間隔で繰り返し求めて、含有値また
は含有率の度数を累積するとともに、予め定めた累積度
数の含有値または含有率が予め定めた判定レベルを超え
るときに警報を発する。
The harmonic monitoring device of the present invention is not affected by a very transient harmonic generated by, for example, an inrush current flowing at the start of power supply to a load such as a motor or a transformer, and In order to reliably detect the occurrence of an excessive harmonic level due to the operation of a specific load or the like even for a relatively short time and to output an alarm signal, as described in claim 1, a voltage signal of a power system or The current signal is input as the signal to be measured, and the content value or content rate of the harmonic component of a predetermined order of the signal under measurement is repeatedly obtained at a predetermined time interval at a predetermined determination time, and the frequency of the content value or the content rate is calculated. While accumulating, an alarm is issued when the content value or content rate of a predetermined cumulative frequency exceeds a predetermined determination level.

【0015】このようにしたため、全度数より少し下回
った累積度数(全度数を100%とする累積確率度数で
表せば、例えば97%)となる含有値または含有率を上
記一定時間における最高値として見なすことになり、こ
の値が判定レベルを超えるとき警報を発することにな
る。
Because of this, the content value or content rate that is a cumulative frequency slightly lower than the total frequency (expressed as a cumulative probability frequency with 100% as the total frequency, for example, 97%) is set as the maximum value in the above-mentioned fixed time. It will be appreciated and an alarm will be issued when this value exceeds the judgment level.

【0016】ここで、m回の測定を行って求めた第n次
の高調波についての度数分布データをヒストグラムで表
せば、例えば図3に示すようになる。この例では、第n
次高調波の含有率は0〜9.0%に分布していて、含有
率の最高値は約9%(8.5〜9.0%に含まれる値)
である。本願発明は、このm回の測定における最高値9
%と判定レベルとを比較するのではなく、図3の例では
累積確率度数が97%となる含有率7.5%をm回の測
定における最高値と見なし、この値と判定レベルとの比
較を行う。すなわち、含有率が7.5%を超えるもの
(度数では全体の3%)を結果的に無視する。上述した
ようにモータやトランスなどの負荷に対する電源供給開
始時に発生する高調波成分はその含有率が相対的に高い
が、その発生時間は相対的に短く、m回の測定のうちに
占める割合は少ない。図3の例では、含有率が7.5%
を超える範囲(累積確率度数で98%〜100%の3
%)に入る。したがって、このような過渡的な高調波成
分で警報を発することなく、実質的に機器の誤制御や誤
動作に与える危険性を示す量を基に監視が行える。
Here, the histogram showing the frequency distribution data for the nth harmonic obtained by measuring m times is as shown in FIG. 3, for example. In this example, the nth
The content ratio of the second harmonic is distributed in 0 to 9.0%, and the highest content ratio is about 9% (value included in 8.5 to 9.0%).
It is. The present invention has a maximum value of 9 in the measurement of m times.
3 is not compared with the judgment level, but in the example of FIG. 3, the content rate 7.5% at which the cumulative probability frequency is 97% is regarded as the highest value in the measurement of m times, and this value is compared with the judgment level. I do. That is, the content of more than 7.5% (3% of the total frequency) is ignored as a result. As described above, the harmonic component generated at the start of power supply to a load such as a motor or a transformer has a relatively high content rate, but its generation time is relatively short, and its proportion in m measurements is Few. In the example of FIG. 3, the content rate is 7.5%.
Range (98% to 100% in cumulative probability)
%)to go into. Therefore, it is possible to perform monitoring based on the amount that indicates a risk of causing erroneous control or malfunction of the device without issuing an alarm with such a transient harmonic component.

【0017】また、この発明の高調波監視装置は、機器
への高調波電流の流入による実質的な過熱や焼損のおそ
れがあっても、従来の高調波監視装置における判定レベ
ルを設定時間継続せずに、その判定レベルを超えたり下
がったりして、いつまでも警報が出力されないといった
問題を解消するため、請求項2に記載のとおり、電力系
統の電圧信号または電流信号を被測定信号として入力
し、高調波分析によって被測定信号の所定次数の高調波
成分の含有値または含有率を求め、所定の判定時間に一
定時間間隔で繰り返し求められた含有値または含有率の
平均値を求め、その平均値が予め定めた判定レベルを超
えるときに警報を発する。
Further, the harmonic monitoring device of the present invention allows the judgment level in the conventional harmonic monitoring device to continue for a set time even if there is a risk of substantial overheating or burning due to the inflow of the harmonic current into the equipment. In order to solve the problem that the judgment level is exceeded or lowered, and the alarm is not output forever, the voltage signal or the current signal of the power system is input as the signal under measurement as described in claim 2, Obtain the content value or content rate of the harmonic component of a predetermined order of the signal under measurement by harmonic analysis, find the content value or the average value of the content rate repeatedly obtained at a fixed time interval at the predetermined judgment time, and then calculate the average value. Alarm is issued when exceeds a predetermined judgment level.

【0018】このように所定の判定時間に一定時間間隔
で繰り返し求めた高調波成分の含有値または含有率の平
均値を求めて、これが予め定めた判定レベルを超えた時
に警報を発するようにしたため、高調波レベルの変動パ
ターンに関わらず、実質的に機器への高調波電流の流入
による過熱や焼損のおそれがある時に確実に警報を発す
ることができるようになる。
Since the content value or the average value of the content ratios of the harmonic components repeatedly obtained at the predetermined determination time at the predetermined determination time is obtained as described above, an alarm is issued when the average value exceeds the predetermined determination level. , Regardless of the variation pattern of the harmonic level, the alarm can be reliably issued when there is a risk of overheating or burning due to the inflow of the harmonic current into the device.

【0019】また、この発明の高調波監視装置は、請求
項3に記載のとおり、上記累積度数によるものと上記平
均化によるものとを組み合わせて、累積度数による測定
結果および平均値が予め定めた判定レベルを超える時に
警報信号を外部へ出力する。この構成によって、比較的
高い高調波レベルまで、その度数分布が広がっていて、
且つ高調波レベルの平均値の高い場合にのみ警報を発す
るようになる。
Further, according to the harmonic monitoring apparatus of the present invention, as described in claim 3, by combining the above-mentioned cumulative frequency and the above-mentioned averaging, the measurement result and the average value by the cumulative frequency are predetermined. An alarm signal is output to the outside when the judgment level is exceeded. With this configuration, its frequency distribution extends to relatively high harmonic levels,
The alarm is issued only when the average value of the harmonic level is high.

【0020】さらに、発明の高調波監視装置は、請求項
4に記載のとおり、前記判定時間と判定レベルを複数組
設定できるようにする。これによって例えば比較的短時
間であればレベルの高い高調波を検出しても警報を発し
ないようにし、且つ高調波レベルが比較的低くともそれ
が長時間継続する場合には警報を発する、といった設定
も容易になる。
Further, the harmonic monitoring apparatus of the present invention, as set forth in claim 4, enables a plurality of sets of the judgment time and the judgment level to be set. As a result, for example, an alarm is not issued even if a high-level harmonic is detected for a relatively short time, and an alarm is issued if it continues for a long time even if the harmonic level is relatively low. Setting is also easy.

【0021】[0021]

【発明の実施の形態】この発明の第1の実施形態である
高調波監視装置の構成を図1〜図3を基に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The configuration of a harmonic monitoring apparatus according to a first embodiment of the present invention will be described with reference to FIGS.

【0022】図1は高調波監視装置の構成を示すブロッ
ク図である。図1においてCPU9はROM10に予め
書き込まれたプログラムを実行して、後述する各種処理
によって高調波監視を行う。RAM11はそのプログラ
ムの実行に際して、高調波成分分析のための演算用ワー
キングエリアなどとして用いる。入力回路1は電力系統
の被測定点の電圧信号または電流信号を被測定信号とし
て入力し、ローパスフィルタ(LPF)2はサンプリン
グによる折り返し誤差による影響を受けぬように、入力
信号の所定周波数帯域以上を除去する。サンプルホール
ド回路3はローパスフィルタ2の出力信号をサンプリン
グパルスに応じてサンプリングし、ホールドする。A/
Dコンバータ4はその電圧信号をディジタルデータに変
換する。I/Oポート5はサンプルホールド回路3およ
びA/Dコンバータ4に対しタイミング信号を出力する
とともにA/D変換された結果のデータを入力する。C
PU9はI/Oポート5を介して被測定信号のディジタ
ルデータを読み取る。時計回路(RTC)6は現在の日
付および時刻を計時し、CPU9はこのRTC6から現
在の日時を読み取る。メモリカード7は毎回の測定によ
り求めた各次高調波成分のデータを逐次記憶する。CP
U9はインタフェース8を介してその書込/読出制御を
行う。このメモリカード7は図1に示した高調波監視装
置を単に高調波測定器として用い、その判定による警報
信号の出力を別の装置で行う場合にデータの媒体として
用いる。キー入力部13は監視対象次数、測定間隔、デ
ータ数、指定累積確率度数および判定レベルなどの各種
条件を設定する入力装置として用いる。CPU9はイン
タフェース12を介してキー操作内容を読み取る。表示
部15はキー入力部13からの入力データの表示などを
行う。CPU9はインタフェース14を介してその表示
の制御を行う。CO16は接点信号出力回路であり、C
PU9は高調波測定の結果、警報信号を出力すべき時
に、この接点信号出力回路により警報接点信号を出力す
る。
FIG. 1 is a block diagram showing the configuration of the harmonic monitoring device. In FIG. 1, the CPU 9 executes a program written in advance in the ROM 10 to monitor harmonics by various processes described later. The RAM 11 is used as a calculation working area for analyzing harmonic components when the program is executed. The input circuit 1 inputs the voltage signal or the current signal at the measured point of the power system as the measured signal, and the low-pass filter (LPF) 2 has a predetermined frequency band of the input signal or more so as not to be affected by the folding error due to sampling. To remove. The sample hold circuit 3 samples the output signal of the low pass filter 2 in accordance with the sampling pulse and holds it. A /
The D converter 4 converts the voltage signal into digital data. The I / O port 5 outputs a timing signal to the sample and hold circuit 3 and the A / D converter 4, and inputs the data resulting from the A / D conversion. C
The PU 9 reads the digital data of the signal under measurement via the I / O port 5. The clock circuit (RTC) 6 measures the current date and time, and the CPU 9 reads the current date and time from the RTC 6. The memory card 7 sequentially stores the data of each harmonic component obtained by each measurement. CP
U9 controls the writing / reading via the interface 8. This memory card 7 uses the harmonic monitoring device shown in FIG. 1 simply as a harmonic measuring device, and uses it as a data medium when another device outputs an alarm signal according to the determination. The key input unit 13 is used as an input device for setting various conditions such as the monitoring target order, the measurement interval, the number of data, the designated cumulative probability frequency, and the determination level. The CPU 9 reads the key operation content via the interface 12. The display unit 15 displays the input data from the key input unit 13. The CPU 9 controls the display via the interface 14. CO16 is a contact signal output circuit, C
As a result of the harmonic measurement, the PU 9 outputs an alarm contact signal by this contact signal output circuit when an alarm signal should be output.

【0023】図2はCPUの処理手順を示すフローチャ
ートである。まず監視対象次数n、測定間隔t、データ
数m、指定累積確率度数xおよび判定レベルVhn
(x),VhTHD (x)などの各種パラメータを設定す
る。測定間隔tに応じた測定タイミングとなれば、被測
定信号(ここでは電圧信号)をサンプリングし、そのデ
ィジタルデータを読み取る。例えば基本波周波数の1周
期分に相当する期間について一定点数のサンプリングを
行う。続いてこの一定点数のサンプリングデータを基に
FFTにより各次高調波の含有値を算出し、さらに基本
波周波数の含有値に対する比率を各次高調波の含有率と
して算出する。その後、各次数高調波含有率の度数を加
算する。例えば0.5%ステップで含有率の度数をカウ
ントすることとし、今回算出した第n次の高調波の含有
率が5.35であれば、第n次の高調波についての含有
率が5.0〜5.5の度数を+1する。以上の処理をm
回繰り返して累積度数mの度数分布データを得る。第n
次の高調波についての度数分布データをヒストグラムで
表せば、図3に示したようになる。このm回の測定を行
った後は、各次数の累積確率度数データを作成するとと
もに、指定累積確率度数x%に対応する含有率Vn
(x)を抽出する。図3に示した例では、指定累積確率
度数97%に対応する含有率Vn(97%)は7.5%
である。この指定累積確率度数に対応する含有率は監視
対象次数だけでなく、測定により求めた全ての次数につ
いても同様に求め、それらの含有率を加算して指定累積
確率度数における総合電圧歪率VTHD (x)を抽出す
る。そして、Vn(x)またはVTHD (x)が予め定め
た判定レベルVhn(x)またはVhTHD (x)以上で
あるとき警報信号を出力する。この条件を満たさない場
合には警報信号を出力しない。以上の処理を繰り返すこ
とによって高調波監視を行う。
FIG. 2 is a flowchart showing the processing procedure of the CPU. First, the monitoring target order n, the measurement interval t, the number of data m, the designated cumulative probability frequency x, and the determination level Vhn
Set various parameters such as (x) and Vh THD (x). When the measurement timing corresponds to the measurement interval t, the signal under measurement (voltage signal in this case) is sampled and its digital data is read. For example, a fixed number of points are sampled for a period corresponding to one cycle of the fundamental wave frequency. Then, the content value of each harmonic is calculated by FFT based on the sampling data of this fixed point, and the ratio of the fundamental frequency to the content value is calculated as the content of each harmonic. After that, the frequencies of the harmonic content of each order are added. For example, the frequency of the content rate is counted in 0.5% steps, and if the content rate of the nth harmonic calculated this time is 5.35, the content rate of the nth harmonic is 5.35. Increment the frequency from 0 to 5.5. M above processing
Repeated times to obtain frequency distribution data with cumulative frequency m. Nth
The frequency distribution data of the next harmonic is represented by a histogram as shown in FIG. After the measurement is performed m times, the cumulative probability frequency data of each order is created, and the content rate Vn corresponding to the designated cumulative probability frequency x% is obtained.
(X) is extracted. In the example shown in FIG. 3, the content rate Vn (97%) corresponding to the designated cumulative probability frequency of 97% is 7.5%.
It is. The content rate corresponding to the specified cumulative probability frequency is not limited to the monitored order, but is similarly calculated for all orders obtained by measurement, and the content rates are added to add the total voltage distortion rate V THD at the specified cumulative probability frequency. Extract (x). Then, when Vn (x) or V THD (x) is equal to or higher than a predetermined determination level Vhn (x) or Vh THD (x), an alarm signal is output. If this condition is not met, no warning signal will be output. The harmonics are monitored by repeating the above processing.

【0024】次に、この発明の第2の実施形態である高
調波監視装置におけるCPUの処理手順をフローチャー
トとして図4に示す。まず監視対象次数n、測定間隔
t、データ数mおよび判定レベルIh等の各種パラメー
タを設定する。測定間隔tに応じた測定タイミングとな
れば、被測定信号(ここでは電流信号)を例えば基本波
周波数の1周期分に相当する期間について一定点数のサ
ンプリングを行い、そのデータを読み取る。続いてこの
一定点数のサンプリングデータを基にFFTにより各次
高調波の含有値を算出する。その後、全ての次数につい
ての含有値を2乗加算した値の平方根を総合電流歪I
THD として求め、第n次高調波電流の含有値Inと、総
合電流歪ITHD とをそれぞれ算術加算する。以上の処理
をm回繰り返した後、ΣInをmで除することによって
第n次の高調波電流の平均値In′を求め、またΣI
THD をmで除することによって総合電流歪の平均値I
THD ′を算出する。そして、In′またはITHD ′が予
め定めた判定レベルIhnまたはIhTHD 以上であると
き警報信号を出力する。この条件を満たさない場合には
警報信号を出力しない。以上の処理を繰り返すことによ
って高調波監視を行う。
Next, FIG. 4 is a flowchart showing a processing procedure of the CPU in the harmonic monitoring apparatus according to the second embodiment of the present invention. First, various parameters such as the monitored order n, the measurement interval t, the number of data m, and the determination level Ih are set. When the measurement timing corresponds to the measurement interval t, the signal under measurement (current signal in this case) is sampled at a certain number of points for a period corresponding to one cycle of the fundamental frequency, and the data is read. Then, the content value of each harmonic is calculated by FFT based on the sampling data of a certain number of points. After that, the square root of the value obtained by squaring the content values for all orders is the total current distortion I
THD is obtained, and the content value In of the nth harmonic current and the total current distortion ITHD are arithmetically added. After repeating the above processing m times, ΣIn is divided by m to obtain the average value In ′ of the nth harmonic current, and ΣI
By dividing THD by m, the average value of total current distortion I
Calculate THD '. Then, it outputs a warning signal when In 'or I THD' is a predetermined judgment level Ihn or Ih THD more. If this condition is not met, no warning signal will be output. The harmonics are monitored by repeating the above processing.

【0025】次に、この発明の第3の実施形態である高
調波監視装置におけるCPUの処理手順をフローチャー
トとして図5に示す。まず監視対象次数n、測定間隔
t、データ数m、指定累積確率度数xおよび判定レベル
Vhn(x),Vhnなどの各種パラメータを設定す
る。測定間隔tに応じた測定タイミングとなれば、被測
定信号(ここでは電圧信号)を一定点数サンプリング
し、そのディジタルデータを読み取る。続いてこの一定
点数のサンプリングデータを基にFFTにより各次高調
波の含有値を算出し、さらに基本波周波数の含有値に対
する比率を各次高調波の含有率として算出する。その
後、各次数の高調波含有率についてその度数を加算し、
また、第n次高調波電圧の含有率Vnを算術加算する。
以上の処理をm回繰り返した後は、第n次の累積確率度
数データを作成するとともに、指定累積確率度数x%に
対応する含有率Vn(x)を抽出する。また、ΣVnを
mで除することによって第n次の高調波電圧の平均値V
n′を求める。そして、Vn(x)が判定レベルVhn
(x)以上で且つVn′が判定レベルVhn以上である
とき警報信号を出力する。この条件を満たさない場合に
は警報信号を出力しない。以上の処理を繰り返すことに
よって高調波監視を行う。
Next, FIG. 5 is a flowchart showing a processing procedure of the CPU in the harmonic monitoring apparatus according to the third embodiment of the present invention. First, various parameters such as the monitored order n, the measurement interval t, the data number m, the designated cumulative probability frequency x, and the determination levels Vhn (x) and Vhn are set. When the measurement timing corresponds to the measurement interval t, the signal to be measured (voltage signal in this case) is sampled at a fixed number of points and its digital data is read. Then, the content value of each harmonic is calculated by FFT based on the sampling data of this fixed point, and the ratio of the fundamental frequency to the content value is calculated as the content of each harmonic. After that, add the frequencies for the harmonic content of each order,
Further, the content rate Vn of the nth harmonic voltage is arithmetically added.
After repeating the above process m times, the nth-order cumulative probability frequency data is created and the content rate Vn (x) corresponding to the designated cumulative probability frequency x% is extracted. Further, by dividing ΣVn by m, the average value V of the nth harmonic voltage is
Find n '. Then, Vn (x) is the determination level Vhn
When (x) or more and Vn 'is the determination level Vhn or more, an alarm signal is output. If this condition is not met, no warning signal will be output. The harmonics are monitored by repeating the above processing.

【0026】次に、この発明の第4の実施形態である高
調波監視装置におけるCPUの処理手順をフローチャー
トとして図6に示す。まず監視対象次数n、測定間隔
t、データ数m1,m2および判定レベルIhn1,I
hn2等の各種パラメータを設定する。測定間隔tに応
じた測定タイミングとなれば、被測定信号である電流信
号を一定点数サンプリングし、そのデータを読み取る。
続いてこの一定点数のサンプリングデータを基にFFT
により第n次高調波の含有値を算出し、さらに基本波周
波数の含有値に対する比率を含有率として算出する。そ
の後、この第n次高調波電流の含有値を、この例ではΣ
In1,ΣIn2として2系統で算術加算する。上記の
測定をm1回繰り返したとき、ΣIn1をm1で除する
ことによって第n次高調波電流のm1回の測定における
平均値In1′を求める。そして、In1′が予め定め
た判定レベルIhn1以上であるとき警報信号を出力す
る。また上記測定をm2回繰り返したとき、ΣIn2を
m2で除することによって第n次高調波電流のm2回の
測定における平均値In2′を求める。そして、In
2′が予め定めた判定レベルIhn2以上であるとき警
報信号を出力する。以上の処理を繰り返すことによって
高調波監視を行う。
Next, FIG. 6 is a flowchart showing a processing procedure of the CPU in the harmonic monitoring apparatus according to the fourth embodiment of the present invention. First, the monitoring target order n, the measurement interval t, the number of data m1 and m2, and the determination levels Ihn1 and I2.
Set various parameters such as hn2. At the measurement timing corresponding to the measurement interval t, the current signal, which is the signal to be measured, is sampled at a fixed point and the data is read.
Then, based on this fixed number of sampling data, FFT
Then, the content value of the nth harmonic is calculated, and the ratio of the fundamental frequency to the content value is calculated as the content rate. Then, the content value of the nth harmonic current is Σ in this example.
In1 and ΣIn2 are arithmetically added in two systems. When the above measurement is repeated m1 times, ΣIn1 is divided by m1 to obtain an average value In1 ′ of the m1 times measurement of the nth harmonic current. Then, when In1 'is equal to or higher than the predetermined determination level Ihn1, an alarm signal is output. When the above measurement is repeated m2 times, ΣIn2 is divided by m2 to obtain an average value In2 ′ of the m2 times measurement of the nth harmonic current. And In
When 2'is equal to or higher than the predetermined determination level Ihn2, an alarm signal is output. The harmonics are monitored by repeating the above processing.

【0027】上記第4の実施形態は、複数組の判定時間
と判定レベルを設定して監視する手法を平均化処理に適
用した例を示したが、累積確率度数を求める場合にも同
様に適用できる。すなわち、指定累積確率度数に対応す
る高調波成分の含有率を複数の異なる判定時間につい
て、すなわち複数の異なるデータ数についてそれぞれ求
めて、指定累積確率度数に対応する高調波成分の含有率
をそれぞれの判定時間毎に設定した判定レベルで判定す
ればよい。
The fourth embodiment has shown an example in which a method of setting and monitoring a plurality of sets of judgment time and judgment level is applied to the averaging process, but it is also applied to the case of obtaining the cumulative probability frequency. it can. That is, the content rate of the harmonic component corresponding to the designated cumulative probability frequency is obtained for each of a plurality of different determination times, that is, a plurality of different data numbers, and the content rate of the harmonic component corresponding to the designated cumulative probability frequency is calculated for each. The determination may be made at the determination level set for each determination time.

【0028】なお、上述の各実施形態では、電圧信号ま
たは電流信号のみを監視対象としたが、監視対象である
電力系統の特性に応じて、または監視目的に応じて、電
圧・電流の双方を監視対象として、電圧と電流のそれぞ
れについて判定レベルを設定して双方が判定レベルを超
えた時、またはいずれか一方が判定レベルを超えた時に
警報信号を出力するようにしてもよい。
In each of the above-described embodiments, only the voltage signal or the current signal is monitored, but both the voltage and the current are monitored depending on the characteristics of the power system to be monitored or the monitoring purpose. As an object to be monitored, determination levels may be set for each of voltage and current, and an alarm signal may be output when both exceed the determination level or when either one exceeds the determination level.

【0029】[0029]

【発明の効果】請求項1に記載の発明によれば、高調波
成分の含有値または含有率の累積度数が予め指定された
値となる含有値または含有率を求め、その値と判定レベ
ルとの比較によって警報を発するようにしたため、例え
ば累積確率度数が100%未満の比較的高い値となる高
調波成分の含有値または含有率を求めて、これを判定対
象として扱うことによって、モータやトランスなどの負
荷に対する電源供給開始時にごく短時間に発生する過渡
的な高調波成分の影響が除かれて、実質的に機器の誤制
御や誤動作に与える危険性を示す量を基に監視が行え
る。
According to the invention as set forth in claim 1, the content value or content rate at which the cumulative value of the content value or content rate of the harmonic component reaches a predetermined value is obtained, and the value and the determination level are determined. Since the alarm is issued by comparing the above, for example, the content value or content rate of the harmonic component having a relatively high cumulative probability frequency of less than 100% is obtained, and the content value or content rate is treated as a determination target. The influence of a transient harmonic component that occurs in a very short time at the time of starting the power supply to a load such as is removed, and the monitoring can be performed based on the amount indicating the risk of being substantially erroneously controlled or erroneously operated.

【0030】請求項2に記載の発明によれば、所定の判
定時間に一定時間間隔で繰り返し求められた高調波成分
の含有値または含有率の平均値が求められて、これが予
め定めた判定レベルを超えた時に警報信号が出力される
ため、高調波レベルの変動パターンに関わらず、実質的
に機器への高調波電流の流入による過熱や焼損のおそれ
がある時に確実に警報を発することができるようにな
る。
According to the second aspect of the present invention, the content value or the average value of the content rates of the harmonic components repeatedly obtained at a predetermined time interval at a predetermined determination time is obtained, and this is a predetermined determination level. Since the alarm signal is output when the temperature exceeds the limit, it is possible to reliably issue an alarm when there is a risk of overheating or burning due to the inflow of the harmonic current into the equipment, regardless of the variation pattern of the harmonic level. Like

【0031】請求項3に記載の発明によれば、比較的高
い高調波レベルまで、その度数分布が広がっていて、且
つ高調波レベルの平均値の高い場合にのみ警報を発する
ことができるようになる。
According to the third aspect of the invention, the alarm can be issued only when the frequency distribution is widened to a relatively high harmonic level and the average value of the harmonic levels is high. Become.

【0032】請求項4に記載の発明によれば、例えば比
較的短時間であればレベルの高い高調波を検出しても警
報を発しないようにし、且つ高調波レベルが比較的低く
ともそれが長時間継続する場合には警報を発する、とい
った設定も容易になり、監視対象である電力系統の特性
に応じて、または監視目的に応じて、警報の発生条件を
細かく設定できるようになる。
According to the fourth aspect of the present invention, for example, even if a high level harmonic is detected for a relatively short period of time, an alarm is not issued, and even if the harmonic level is relatively low, it does not occur. It becomes easy to set an alarm to be issued when the alarm continues for a long time, and the alarm generation condition can be finely set according to the characteristics of the power system to be monitored or the monitoring purpose.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施形態に係る高調波監視装置の構成を
示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a harmonic monitoring device according to a first embodiment.

【図2】第1の実施形態に係る高調波監視装置における
CPUの処理手順を示すフローチャートである。
FIG. 2 is a flowchart showing a processing procedure of a CPU in the harmonic monitoring device according to the first embodiment.

【図3】高調波含有率とその度数分布および累積確率度
数の例を示す図である。
FIG. 3 is a diagram showing an example of a harmonic content rate, its frequency distribution, and a cumulative probability frequency.

【図4】第2の実施形態に係る高調波監視装置における
CPUの処理手順を示すフローチャートである。
FIG. 4 is a flowchart showing a processing procedure of a CPU in the harmonic monitoring device according to the second embodiment.

【図5】第3の実施形態に係る高調波監視装置における
CPUの処理手順を示すフローチャートである。
FIG. 5 is a flowchart showing a processing procedure of a CPU in the harmonic monitoring device according to the third embodiment.

【図6】第4の実施形態に係る高調波監視装置における
CPUの処理手順を示すフローチャートである。
FIG. 6 is a flowchart showing a processing procedure of a CPU in the harmonic monitoring device according to the fourth embodiment.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電力系統の電圧信号または電流信号を被
測定信号として入力し、該被測定信号の所定次数の高調
波成分の含有値または含有率を求める高調波分析手段
と、 前記高調波分析手段により所定の判定時間に一定時間間
隔で含有値または含有率を繰り返し求めて、含有値また
は含有率の度数を累積するとともに、予め定めた累積度
数の含有値または含有率が予め定めた判定レベルを超え
るときに警報を発する手段とを設けて成る高調波監視装
置。
1. Harmonic analysis means for inputting a voltage signal or a current signal of a power system as a signal under measurement to obtain a content value or content rate of a harmonic component of a predetermined order of the signal under measurement, and the harmonic analysis. The content value or content rate is repeatedly obtained at a certain time interval at a predetermined determination time by means, and the frequency of the content value or content rate is accumulated, and the content value or content rate of a predetermined cumulative frequency is a predetermined determination level. And a means for issuing an alarm when the frequency exceeds the limit.
【請求項2】 電力系統の電圧信号または電流信号を被
測定信号として入力する被測定信号入力回路と、 前記被測定信号の所定次数の高調波成分の含有値または
含有率を求める高調波分析手段と、 前記高調波分析手段により所定の判定時間に一定時間間
隔で繰り返し求められた含有値または含有率の平均値を
求める手段と、 前記平均値が予め定めた判定レベルを超えるとき、警報
を発する手段とを設けて成る高調波監視装置。
2. A measured signal input circuit for inputting a voltage signal or a current signal of a power system as a measured signal, and a harmonic analysis means for obtaining a content value or a content rate of a harmonic component of a predetermined order of the measured signal. A means for obtaining an average value of the content value or content rate repeatedly obtained at a predetermined time interval at a predetermined determination time by the harmonic analysis means, and an alarm is issued when the average value exceeds a predetermined determination level. And a harmonics monitoring device.
【請求項3】 電力系統の電圧信号または電流信号を被
測定信号として入力する被測定信号入力回路と、 前記被測定信号の所定次数の高調波成分の含有値または
含有率を求める高調波分析手段と、 前記高調波分析手段により所定の判定時間に一定時間間
隔で含有値または含有率を繰り返し求めて、含有値また
は含有率の度数を累積するとともに、予め定めた累積度
数の含有値または含有率を測定結果として求める手段
と、 前記高調波分析手段により求められた前記判定時間にお
ける含有値または含有率の平均値を求める手段と、 前記測定結果および前記平均値が予め定めた判定レベル
を超えるとき、警報を発する手段とを設けて成る高調波
監視装置。
3. A measured signal input circuit for inputting a voltage signal or a current signal of an electric power system as a measured signal, and a harmonic analysis means for obtaining a content value or a content rate of a harmonic component of a predetermined order of the measured signal. And, by repeatedly obtaining the content value or the content rate at a predetermined time interval at a predetermined determination time by the harmonic analysis means, and accumulating the frequency of the content value or the content rate, and the content value or the content rate of a predetermined cumulative frequency. A means for obtaining as a measurement result, a means for obtaining an average value of the content value or the content rate at the determination time obtained by the harmonic analysis means, when the measurement result and the average value exceed a predetermined determination level , A harmonic monitoring device provided with means for issuing an alarm.
【請求項4】 前記判定時間と前記判定レベルを複数組
設定できるようにした請求項1〜3のうちいずれか1項
に記載の高調波監視装置。
4. The harmonic monitoring device according to claim 1, wherein a plurality of sets of the judgment time and the judgment level can be set.
JP12459896A 1996-05-20 1996-05-20 Harmonic monitoring equipment Pending JPH09304452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12459896A JPH09304452A (en) 1996-05-20 1996-05-20 Harmonic monitoring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12459896A JPH09304452A (en) 1996-05-20 1996-05-20 Harmonic monitoring equipment

Publications (1)

Publication Number Publication Date
JPH09304452A true JPH09304452A (en) 1997-11-28

Family

ID=14889418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12459896A Pending JPH09304452A (en) 1996-05-20 1996-05-20 Harmonic monitoring equipment

Country Status (1)

Country Link
JP (1) JPH09304452A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872798B1 (en) * 2007-08-24 2008-12-09 연세대학교 산학협력단 Appratus for measuring distortion power quality index and method of operating the appratus
KR101043096B1 (en) * 2009-06-12 2011-06-21 연세대학교 산학협력단 Method and system for measuring of power quality
WO2011091833A1 (en) 2010-01-30 2011-08-04 Volkswagen Aktiengesellschaft Partition plate element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872798B1 (en) * 2007-08-24 2008-12-09 연세대학교 산학협력단 Appratus for measuring distortion power quality index and method of operating the appratus
WO2009028763A1 (en) * 2007-08-24 2009-03-05 Industry-Academic Cooperation Foundation, Yonsei University Apparatus for measuring distortion power quality index and method of operating the apparatus
KR101043096B1 (en) * 2009-06-12 2011-06-21 연세대학교 산학협력단 Method and system for measuring of power quality
WO2011091833A1 (en) 2010-01-30 2011-08-04 Volkswagen Aktiengesellschaft Partition plate element

Similar Documents

Publication Publication Date Title
US7054769B2 (en) Statistical method and apparatus for monitoring parameters in an electric power distribution system
TW297876B (en)
US8988238B2 (en) Change detection system using frequency analysis and method
CN102445615B (en) Health monitoring for power converter capacitors
JPH09274095A (en) Reactor output monitor
CN116593811A (en) Integrated frequency converter running state monitoring system and monitoring method
US6502018B1 (en) Method for diagnosis of equipment
US20140058615A1 (en) Fleet anomaly detection system and method
EP2174149B1 (en) A method and an apparatus for monitoring an activity of partial electrical discharges in an electrical apparatus powered with direct voltage
JPH07280603A (en) Abnormality decision method for machine
CN117871945A (en) High-precision frequency measurement method, system, electronic equipment and storage medium
Artioli et al. Low-cost DSP-based equipment for the real-time detection of transients in power systems
JPH09304452A (en) Harmonic monitoring equipment
JPH08220278A (en) Plant monitor device and monitor method
JP6554024B2 (en) Monitoring device
JPH04152220A (en) Method and device for failure sensing
JP2002281658A (en) Cause discriminating device for power transmission line failure equipment
CN114689321A (en) Bearing fault diagnosis method and device for wind generating set and electronic equipment
JPH0236141Y2 (en)
JPH09264913A (en) Continuous diagnosing device of dc stabilizing supply
JP2005102351A (en) Insulation deterioration diagnostic equipment
JP2000209767A (en) Analog input section monitoring device for digital protective controller
CN112086933B (en) ADC abnormal data discrimination method and device applied to relay protection device
JP2741131B2 (en) Power monitoring recorder
JPH01131467A (en) Discrimination device for external noise in partial discharging measurement