JPH09302933A - Method and equipment for detecting concrete-placing top end - Google Patents

Method and equipment for detecting concrete-placing top end

Info

Publication number
JPH09302933A
JPH09302933A JP8123810A JP12381096A JPH09302933A JP H09302933 A JPH09302933 A JP H09302933A JP 8123810 A JP8123810 A JP 8123810A JP 12381096 A JP12381096 A JP 12381096A JP H09302933 A JPH09302933 A JP H09302933A
Authority
JP
Japan
Prior art keywords
concrete
temperature
optical fiber
scattered light
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8123810A
Other languages
Japanese (ja)
Other versions
JP3135112B2 (en
Inventor
Tetsuki Kikuchi
哲樹 菊地
Yukihiko Hisawa
幸彦 氷澤
Katsutoshi Miyoshi
勝利 三好
Nobuyuki Matsui
信行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP08123810A priority Critical patent/JP3135112B2/en
Publication of JPH09302933A publication Critical patent/JPH09302933A/en
Application granted granted Critical
Publication of JP3135112B2 publication Critical patent/JP3135112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detecting method and an equipment capable of continuously detecting the change of a placing top end. SOLUTION: An optical fiber 12 for a temperature sensor generating scattered light having intensity corresponding to a temperature to the incidence of pulse light is inserted in the depth direction in a space 1, into which concrete 7 is injected. Pulse light is projected from the upper end of the optical fiber 12, scattered light generated in the optical fiber 1 in response to incident pulse light is detected at the upper end, and a distance from the upper end to the place of the generation of scattered light is obtained on the basis of the time up to the detection of each scattered light after the incidence of pulse light and the temperature of the place of the generation of scattered light is acquired on the basis of the intensity of scattered light, thus measuring temperature distribution in the depth direction of the space 1. A depth place, where the rate of a temperature change in the depth direction of the space 1 is maximized, is computed from the temperature distribution measured by pulse-light incidence at the time of the pouring of concrete 7, and the position of a placing top end is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコンクリート打設天端検
知方法及び装置に関し、とくにコンクリート打設前とコ
ンクリート打設後との温度差に基づいて打設コンクリー
トの天端を検知する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting the top of concrete, and more particularly to a method and an apparatus for detecting the top of the cast concrete based on the temperature difference between before and after placing the concrete. Regarding

【0002】[0002]

【従来の技術】コンクリート地下連壁等の構築工事で
は、図4に示すように、予め穿った地下孔1aへコンクリ
ート7をコンクリート打設管5により連続的に打設す
る。図4は、コンクリート7の打設前に地中孔1aを安定
液4で満たし、地中孔1aの底から安定液4との置換によ
りコンクリート7を順次打設する工法を示す。従来、地
下孔1aへのコンクリート打設時における打設コンクリー
ト7の天端を検知する方法として、図4のように、人間
2が重錘10付き測深索8又は測深ロッドを手の感覚に基
づいて地下孔1a内の打設コンクリート7と安定液4との
境界まで吊下げ、その吊下げ時の測深索8等の目盛を目
視で読取る方法(以下、ロッド計測法という。)が実施
されている。また、地下孔1a内の打設コンクリート7と
安定液4との境界近傍に圧力センサを吊下げ、コンクリ
ート7と安定液4の密度の違いに基づく圧力差から該圧
力センサにより両者の境界を検出し、その検出時の圧力
センサの吊下げ位置から打設天端を検知する方法(以
下、圧力式検知法という。)も実施されている。さらに
本出願人は、地下孔1a内に所定の深さ方向間隔で複数の
熱電対を配置し、グラウト注入前とグラウト注入後との
間における各熱電対の温度差から打設グラウトの天端位
置を検出するアンカー・グラウト天端検知方法を開発
し、特開平6-347306号に開示した。
2. Description of the Related Art In a construction work for a concrete underground wall, concrete 7 is continuously poured by a concrete placing pipe 5 into a pre-drilled underground hole 1a, as shown in FIG. FIG. 4 shows a construction method in which the underground hole 1a is filled with the stabilizing liquid 4 before the concrete 7 is poured, and the concrete 7 is sequentially poured from the bottom of the underground hole 1a by substituting the stabilizing liquid 4. Conventionally, as a method of detecting the top end of the cast concrete 7 when pouring concrete into the underground hole 1a, as shown in FIG. 4, a human 2 uses a sounding rope 8 with a weight 10 or a sounding rod based on the feeling of a hand. A method (hereinafter referred to as a rod measurement method) for suspending the concrete 7 in the underground hole 1a to the boundary between the stabilizing liquid 4 and visually reading the scale of the sounding cable 8 etc. at the time of suspension is implemented. There is. Further, a pressure sensor is hung near the boundary between the cast concrete 7 and the stabilizing liquid 4 in the underground hole 1a, and the boundary between the concrete 7 and the stabilizing liquid 4 is detected by the pressure sensor based on the difference in density between the concrete 7 and the stabilizing liquid 4. However, a method (hereinafter, referred to as a pressure type detection method) of detecting the driving top end from the hanging position of the pressure sensor at the time of detection is also implemented. Further, the applicant has arranged a plurality of thermocouples in the underground hole 1a at predetermined intervals in the depth direction, and from the temperature difference between the thermocouples before and after the grout injection, the top end of the cast grout. An anchor grout crown detection method for detecting the position was developed and disclosed in Japanese Patent Laid-Open No. 6-347306.

【0003】[0003]

【発明が解決しようとする課題】しかし従来のロッド計
測法は、人間の感覚に依存した計測法であるから、計測
者により天端位置にバラツキが生じることがある。また
コンクリート打設施工の自動化に利用できる天端検知方
法の開発が期待されているが、測深索8等の目視の読取
りを必須とするロッド計測法では前記施工の自動化が難
しい。他方、従来の圧力式検知法には、正常な圧力検知
の障害となる安定液4又はコンクリート7のスライムが
圧力センサにこびり付きやすい問題点があり、また圧力
センサの吊下げ位置を打設コンクリート7の天端の上昇
に追従させて移動させなければならない問題点もある。
これらの問題点は、圧力式検知法による打設施工の自動
化を難しくする要因となっている。上記特開平6-347306
号の発明は、所定間隔で配置した熱電対により打設天端
位置を検出するものの、熱電対の配置は不連続とならざ
るを得ず、該天端位置の変化の連続的検出は困難であ
る。打設天端位置の変化の連続的検出は、打設施工の自
動化とくに打設コンクリートの流量調整に不可欠であ
る。
However, since the conventional rod measuring method is a measuring method that depends on human senses, the top end position may vary depending on the measurer. Further, it is expected that a method for detecting the top end that can be used for automating the concrete placing construction will be developed, but it is difficult to automate the construction by the rod measuring method that requires visual reading of the sounding cable 8 or the like. On the other hand, the conventional pressure type detection method has a problem that the slime of the stabilizing liquid 4 or the concrete 7 which is an obstacle to the normal pressure detection tends to stick to the pressure sensor, and the suspended position of the pressure sensor is placed in the concrete 7 There is also a problem in that it must be moved following the rise of the crown of.
These problems are factors that make it difficult to automate the driving construction using the pressure detection method. JP-A-6-347306
The invention of No. 1 detects the top position of the driving by the thermocouples arranged at a predetermined interval, but the arrangement of the thermocouple must be discontinuous, and continuous detection of changes in the top position is difficult. is there. Continuous detection of changes in pouring top position is indispensable for automating pouring work, especially for adjusting flow rate of pouring concrete.

【0004】そこで本発明の目的は、打設天端位置の変
化の連続的検出が可能なコンクリート打設天端検知方法
及び装置を提供するにある。
Therefore, an object of the present invention is to provide a method and apparatus for detecting a concrete pouring top capable of continuously detecting changes in the pouring top position.

【0005】[0005]

【課題を解決するための手段】図1の実施例及び図2の
流れ図を参照するに、本発明のコンクリート打設天端検
知方法は、パルス光の入射に対し温度に応じた強度の散
乱光を発生させる温度センサ用光ファイバー12をコンク
リート7が注入される空間1内の深さ方向に差込み、光
ファイバー12の上端からパルス光を入射し、該入射パル
ス光に応じ光ファイバー12内で発生した散乱光を前記上
端で検出し、前記パルス光の入射から各散乱光の検出ま
での時間に基づき前記上端から当該散乱光発生位置まで
の距離を求め且つ当該散乱光の強度に基づき当該散乱光
発生位置の温度を求めることにより空間1の深さ方向の
温度分布を計測し、コンクリート7の注入時に前記パル
ス光入射により計測した温度分布から空間1の深さ方向
の温度変化率が最大となる深さ位置を打設コンクリート
の天端位置として算出してなるものである。
With reference to the embodiment shown in FIG. 1 and the flow chart shown in FIG. 2, a concrete pouring top detecting method according to the present invention is a scattered light having an intensity corresponding to temperature with respect to incidence of pulsed light. The temperature sensor optical fiber 12 for generating the light is inserted in the depth direction of the space 1 into which the concrete 7 is poured, pulsed light is incident from the upper end of the optical fiber 12, and scattered light generated in the optical fiber 12 according to the incident pulsed light. Is detected at the upper end, the distance from the upper end to the scattered light generation position is obtained based on the time from the incidence of the pulsed light to the detection of each scattered light, and the scattered light generation position of the scattered light generation position based on the intensity of the scattered light. The temperature distribution in the depth direction of the space 1 is measured by obtaining the temperature, and the temperature change rate in the depth direction of the space 1 is maximum from the temperature distribution measured by the pulsed light injection when the concrete 7 is injected. The depth position at which it is made is calculated as a top end position of the pouring concrete.

【0006】また図1を参照するに、本発明のコンクリ
ート打設天端検知装置は、パルス光の入射に対し温度に
応じた強度の散乱光を発生させコンクリート7が注入さ
れる空間1内の深さ方向に差込まれる温度センサ用光フ
ァイバー12、光ファイバー12の一端に接続され該一端か
らパルス光を入射する入射手段と前記パルス光に応じ光
ファイバー12内で発生する散乱光を前記一端で検出する
検出手段と前記パルス光の入射から各散乱光の検出まで
の時間に基づき前記一端から当該散乱光発生位置までの
距離を求める距離計測手段と前記散乱光の強度に基づき
当該散乱光発生位置の温度を求める温度計測手段とを有
する温度計測器13、及び温度計測器13に接続され前記距
離と前記温度とから光ファイバー12の長さ方向の温度分
布を計測し且つ該光ファイバー12の長さ方向の温度変化
率が最大となる位置をコンクリート天端位置として算出
する演算手段16を備えてなるものである。
Further, referring to FIG. 1, the concrete pouring top detector of the present invention generates scattered light having an intensity corresponding to temperature in response to the incidence of pulsed light, and in the space 1 into which the concrete 7 is poured. The temperature sensor optical fiber 12 inserted in the depth direction, an incident means connected to one end of the optical fiber 12 for injecting pulsed light from the one end, and scattered light generated in the optical fiber 12 according to the pulsed light is detected at the one end. The temperature of the scattered light generation position based on the intensity of the scattered light and the distance measuring means for obtaining the distance from the one end to the scattered light generation position based on the time from the incidence of the pulsed light to the detection of each scattered light A temperature measuring device 13 having a temperature measuring means for obtaining the temperature distribution, and a temperature measuring device 13 connected to the temperature measuring device 13 to measure the temperature distribution in the longitudinal direction of the optical fiber 12 from the distance and the temperature. Longitudinal rate of temperature change of Iba 12 is made of an arithmetic unit 16 for calculating a position of maximum as concrete top end position.

【0007】[0007]

【発明の実施の形態】図1は地下連壁のコンクリート打
設に本発明の天端検知方法及び装置を適用した実施例を
示し、図2はその打設天端の検知方法の流れ図の一例を
示す。図1の符号3は、地下孔内に設けた鉄筋かごを示
す。但し本発明は地下孔への適用に限定されず、他のコ
ンクリート打設空間に適用することができる。図2の流
れ図を参照して本発明方法を説明するに、先ずステップ
201でコンクリート打設空間(以下、単に空間というこ
とがある。)1に温度センサ用光ファイバー12を深さ方
向に差込む。温度センサ用光ファイバー(以下、単に光
ファイバーということがある。)12とは、その一端から
入射されるパルス光に応じて温度に応じた強度の散乱光
を発生させるものである。従来、散乱光に含まれるラマ
ン散乱光の強度が温度に敏感に依存することが知られて
おり、パルス光に応じて光ファイバー12内で発生したラ
マン散乱光の強度を光ファイバー12の一端で検出するこ
とにより、当該散乱光の発生位置の温度が求められる。
またパルス光の入射から各散乱光の検出までの時間と光
ファイバー12内のパルス光及び散乱光の進行速度とに基
づき、光ファイバー12の一端から当該散乱光の発生位置
までの距離が求められる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment in which the method and apparatus for detecting the top of the present invention is applied to concrete placing on an underground wall, and FIG. 2 is an example of a flow chart of the method for detecting the top of the placing. Indicates. Reference numeral 3 in FIG. 1 indicates a reinforcing bar cage provided in the underground hole. However, the present invention is not limited to being applied to underground holes, but can be applied to other concrete pouring spaces. To explain the method of the present invention with reference to the flow chart of FIG.
At 201, an optical fiber 12 for temperature sensor is inserted into a concrete placing space (hereinafter, simply referred to as space) 1 in the depth direction. The temperature sensor optical fiber (hereinafter, may be simply referred to as an optical fiber) 12 generates scattered light having an intensity corresponding to the temperature according to the pulsed light incident from one end thereof. Conventionally, it is known that the intensity of Raman scattered light contained in scattered light depends on temperature sensitively, and the intensity of Raman scattered light generated in the optical fiber 12 in response to pulsed light is detected at one end of the optical fiber 12. As a result, the temperature at the position where the scattered light is generated can be obtained.
Further, the distance from one end of the optical fiber 12 to the generation position of the scattered light is obtained based on the time from the incidence of the pulsed light to the detection of each scattered light and the traveling speed of the pulsed light and the scattered light in the optical fiber 12.

【0008】図1の光ファイバー12の一端に接続された
温度計測装置13は、光ファイバー12へのパルス光の入射
手段と、光ファイバー12内で発生した散乱光の検出手段
と、パルス光の入射から各散乱光の検出までの時間に基
づき前記一端から当該散乱光発生位置までの距離を求め
る距離計測手段と、検出した散乱光の強度に基づき当該
散乱光発生位置の温度を求める温度計測手段とを有する
ものである。このような温度計測装置13及び光ファイバ
ー12は、例えば光ファイバ温度レーダ(FiberOptic Tem
perature Laser Radar)として商品化されており、従来
技術に属する。図1では温度計測装置13で計測した前記
距離及び前記温度を演算手段16に送り、演算手段16によ
り光ファイバー12の長さ方向の温度分布を求めている。
演算手段16の一例は温度分布演算プログラムを内蔵した
コンピュータである。光ファイバー12は空間1の深さ方
向に延在するので、光ファイバー12の長さ方向の温度分
布から空間1の深さ方向の連続的な温度分布が計測でき
る。図1の演算手段16には温度分布等を表示する表示手
段18が接続されている。
The temperature measuring device 13 connected to one end of the optical fiber 12 of FIG. 1 includes means for injecting pulsed light into the optical fiber 12, means for detecting scattered light generated in the optical fiber 12, and incidence of pulsed light. It has a distance measuring means for obtaining the distance from the one end to the scattered light generating position based on the time until the detection of scattered light, and a temperature measuring means for obtaining the temperature of the scattered light generating position based on the intensity of the detected scattered light. It is a thing. Such a temperature measuring device 13 and the optical fiber 12 are, for example, an optical fiber temperature radar (FiberOptic Tem).
perature Laser Radar) and belongs to the prior art. In FIG. 1, the distance and the temperature measured by the temperature measuring device 13 are sent to the calculating means 16, and the calculating means 16 determines the temperature distribution in the length direction of the optical fiber 12.
An example of the calculation means 16 is a computer having a temperature distribution calculation program built therein. Since the optical fiber 12 extends in the depth direction of the space 1, it is possible to measure a continuous temperature distribution in the depth direction of the space 1 from the temperature distribution in the length direction of the optical fiber 12. Display means 18 for displaying the temperature distribution and the like is connected to the computing means 16 of FIG.

【0009】空間1内に光ファイバー12を差込んだ後、
ステップ202でコンクリート7の打設を開始し、ステッ
プ203で光ファイバー12の一端からパルス光を入射し、
ステップ204において各散乱光を検出し且つ光ファイバ
ー12の一端から各散乱光の発生位置までの距離及び当該
散乱光発生位置の温度を求め、ステップ205において空
間1の深さ方向の温度分布を計測する。図3はステップ
205で求めた温度分布をグラフ表示した表示手段18の一
例を示す。図3のグラフは縦軸に空間1の深さを表し、
横軸に温度分布を表している。
After inserting the optical fiber 12 into the space 1,
In step 202, pouring of concrete 7 is started, and in step 203, pulse light is incident from one end of the optical fiber 12,
In step 204, each scattered light is detected, the distance from one end of the optical fiber 12 to the scattered light generation position and the temperature at the scattered light generation position are obtained, and in step 205, the temperature distribution in the depth direction of the space 1 is measured. . Figure 3 is a step
An example of the display means 18 that graphically displays the temperature distribution obtained in 205 is shown. In the graph of FIG. 3, the vertical axis represents the depth of the space 1,
The horizontal axis shows the temperature distribution.

【0010】図3のグラフに示すように、ステップ205
で計測される空間1の深さ方向の温度分布は、比較的低
温の上方部分と比較的高温の下方部分とを有する。即
ち、安定液4との置換によりコンクリート7を打設する
工法の実施例を示す図1では、安定液4の温度が約20゜C
程度の比較的低温であるのに対し、通常のコンクリート
7は組成材料の間の化学反応により発熱して60゜C程度の
比較的高温になるので、図3の温度分布が得られる。図
3は発熱量が低いコンクリート7の例を示すが、この場
合でもコンクリート7は安定水4に対し比較的高温であ
る30゜C程度まで温度上昇するので、図3に示す温度分布
が得られる。但し図3に示す温度分布を得るために安定
液4は必須のものではない。
As shown in the graph of FIG. 3, step 205
The temperature distribution in the depth direction of the space 1 measured at 1 has a relatively low temperature upper portion and a relatively high temperature lower portion. That is, in FIG. 1 showing an embodiment of a construction method in which concrete 7 is placed by replacing the stabilizing liquid 4 with the stabilizing liquid 4, the temperature of the stabilizing liquid 4 is about 20 ° C.
While the ordinary concrete 7 has a relatively low temperature, the ordinary concrete 7 generates heat due to the chemical reaction between the constituent materials to a relatively high temperature of about 60 ° C., so that the temperature distribution of FIG. 3 is obtained. Figure 3 shows an example of concrete 7 with a low calorific value. Even in this case, the temperature of concrete 7 rises to about 30 ° C, which is a relatively high temperature for stable water 4, so the temperature distribution shown in Figure 3 is obtained. . However, the stabilizing solution 4 is not essential for obtaining the temperature distribution shown in FIG.

【0011】図2のステップ206では、ステップ205で求
めた温度分布から演算装置16により温度変化率が最大と
なる位置を打設天端位置として算出する。図3の温度分
布のグラフから分るように、比較的高温のコンクリート
7と比較的低温の安定液4との境界位置、即ち最大温度
変化率の位置が打設天端位置に相当するからである。求
めた打設天端位置は、例えば図3の表示手段18に示すよ
うに、空間1の深さに対応する枠内で一定幅を持って上
下に移動するマーカーとして表示し及び/又はデジタル
数字として表示することができる(ステップ207)。本
発明は、空間1の深さ方向の連続的な温度分布から精確
な打設天端位置を求めることができ、またステップ203
〜206を所定時間間隔で繰返すことにより打設天端位置
の上昇速度を検出することができる。
In step 206 of FIG. 2, the position where the rate of temperature change is maximum is calculated as the pouring top position from the temperature distribution obtained in step 205 by the arithmetic unit 16. As can be seen from the temperature distribution graph of FIG. 3, the boundary position between the relatively high temperature concrete 7 and the relatively low temperature stabilizing liquid 4, that is, the position of the maximum temperature change rate corresponds to the pouring top position. is there. The found pouring top position is displayed as a marker that moves up and down with a certain width within a frame corresponding to the depth of the space 1 and / or a digital number, for example, as shown in the display means 18 in FIG. Can be displayed as (step 207). The present invention can obtain an accurate pouring top position from the continuous temperature distribution in the depth direction of the space 1, and step 203
By repeating steps 206 to 206 at predetermined time intervals, the rising speed of the pouring top position can be detected.

【0012】こうして本発明の目的である「打設天端位
置の変化の連続的検出が可能なコンクリート打設天端検
知方法及び装置」の提供を達成することができる。
In this way, it is possible to achieve the object of the present invention to provide a "concrete pouring top detecting method and device capable of continuously detecting changes in pouring top position".

【0013】[0013]

【実施例】図1は200mの光ファイバー12を用いた実施例
を示し、その光ファイバー12の一端に固定された巻取り
ドラム14、及びその巻取りドラム14に対する光ファイバ
ー12の巻取り又は繰り出しの長さを計測する長さ計測器
15を設けている。この場合は、長さ計測器15の計測長さ
を演算手段16に入力し、演算手段16により温度計測機13
による計測距離と長さ計測器15による計測長さとから散
乱光発生位置の空間1内における深さを求め、その空間
1内の深さと温度計測手段13による計測温度とから空間
1の深さ方向の温度分布を求め、その深さ方向の温度変
化率が最大になる位置をコンクリート天端位置として算
出することができる。なお図1の実施例では、光ファイ
バー12を空間1内の鉛直方向に吊下げるため、光ファイ
バー12の繰り出し端に重錘10を取付けている。
FIG. 1 shows an embodiment in which an optical fiber 12 of 200 m is used, and a winding drum 14 fixed to one end of the optical fiber 12 and a length of winding or unwinding the optical fiber 12 with respect to the winding drum 14. Length measuring instrument
15 are provided. In this case, the measurement length of the length measuring device 15 is input to the calculating means 16, and the calculating means 16 causes the temperature measuring machine 13
The depth in the space 1 of the scattered light generation position is obtained from the measurement distance by the length measuring device 15 and the length measured by the length measuring device 15, and the depth direction of the space 1 is calculated from the depth in the space 1 and the temperature measured by the temperature measuring means 13. It is possible to calculate the temperature distribution of the above and calculate the position where the temperature change rate in the depth direction is the maximum as the concrete top position. In the embodiment of FIG. 1, the weight 10 is attached to the payout end of the optical fiber 12 in order to suspend the optical fiber 12 in the vertical direction in the space 1.

【0014】また図1の実施例は、演算手段16に接続さ
れ空間1へのコンクリート打設流量を制御するコンクリ
ート流量制御手段20、所定時間間隔で温度計測器13の入
射手段にパルス光を入射させるサンプリング手段、並び
に前記所定時間間隔で演算手段16が算出するコンクリー
ト天端位置に基づき該天端位置の上昇速度を算出する速
度算出手段を設け、コンクリート天端位置及び/又は該
天端位置の上昇速度を流量制御手段20へ入力することに
より、コンクリート天端位置の上昇速度を制御してい
る。サンプリング手段及び速度算出手段の一例は、それ
ぞれサンプリングプログラム及び速度算出プログラムを
内蔵したコンピュータである。図1では演算手段16をコ
ンピュータとし、そのコンピュータにサンプリングプロ
グラム及び速度算出プログラムを内蔵することにより、
該コンピュータをサンプリング手段及び速度算出手段と
もしている。
In the embodiment shown in FIG. 1, the concrete flow rate control means 20 connected to the calculation means 16 for controlling the concrete pouring flow rate into the space 1, and the pulse light is incident on the incidence means of the temperature measuring instrument 13 at predetermined time intervals. Sampling means for making, and speed calculation means for calculating the rising speed of the top end position based on the concrete top end position calculated by the calculation means 16 at the predetermined time interval are provided, and the concrete top end position and / or the top end position By inputting the rising speed to the flow rate control means 20, the rising speed of the concrete top end position is controlled. An example of the sampling means and the speed calculation means is a computer that incorporates a sampling program and a speed calculation program, respectively. In FIG. 1, the computing means 16 is a computer, and a sampling program and a speed calculation program are built in the computer,
The computer also serves as sampling means and speed calculation means.

【0015】図2の流れ図を参照するに、サンプリング
手段が所定時間間隔、例えば一分間隔でパルス光の入射
(ステップ203)を起動することにより、ステップ203〜2
10の処理が所定時間間隔で繰返される。即ち、コンクリ
ート流量の制御をする場合はステップ208からステップ2
09へ進み、例えば前回天端位置と今回天端位置と前記所
定時間間隔とから速度算出手段により該天端位置の上昇
速度を算出する。ステップ210では該天端位置及び/又
は該天端位置の上昇速度を流量制御手段20へ入力し、流
量制御手段20によりコンクリート打設装置6のコンクリ
ート打設流量が最適となるように制御する。図3の表示
手段18はコンクリート打設流量をデジタル数字で表示す
る欄を設けている。
Referring to the flow chart of FIG. 2, the sampling means causes the pulsed light to be incident at predetermined time intervals, for example, one minute intervals.
By starting (step 203), steps 203 to 2
10 processes are repeated at a predetermined time interval. That is, when controlling the concrete flow rate, step 208 to step 2
In step 09, the ascending speed of the top end position is calculated by the speed calculating means from the previous top end position, the current top end position, and the predetermined time interval. In step 210, the top end position and / or the ascending speed of the top end position is input to the flow rate control means 20, and the flow rate control means 20 controls the concrete pouring flow rate of the concrete pouring device 6 to be optimum. The display means 18 of FIG. 3 is provided with a column for displaying the concrete pouring flow rate by digital numbers.

【0016】[0016]

【発明の効果】以上説明したように、本発明のコンクリ
ート打設天端検知方法及び装置は、コンクリート打設空
間の深さ方向に温度センサ用光ファイバーを差込み、そ
の深さ方向の温度分布を計測し、その深さ方向の温度変
化率が最大となる深さ位置を打設天端位置として算出す
るので、次の顕著な効果を奏する。
As described above, according to the method and apparatus for detecting a concrete pouring top of the present invention, an optical fiber for temperature sensor is inserted in the depth direction of the concrete pouring space to measure the temperature distribution in the depth direction. However, since the depth position where the temperature change rate in the depth direction is maximum is calculated as the pouring top position, the following remarkable effects are achieved.

【0017】(イ)コンクリート打設空間内の深さ方向の
連続的な温度分布から打設コンクリートの精確な天端位
置をリアルタイムで検出することができる。 (ロ)コンクリート打設天端位置の検出を所定時間間隔で
繰返すことにより、該天端位置の上昇速度を求めること
ができる。 (ハ)コンクリート打設天端位置及び/又は該天端位置の
上昇速度をコンクリート打設装置等にフィードバックす
ることにより、コンクリート打設流量の自動制御をする
ことができる。
(A) It is possible to detect the accurate top end position of the poured concrete in real time from the continuous temperature distribution in the depth direction of the concrete poured space. (B) By repeating the detection of the concrete pouring top position at predetermined time intervals, the rising speed of the top position can be obtained. (C) By feeding back the concrete pouring top position and / or the rising speed of the top position to the concrete pouring device or the like, the concrete pouring flow rate can be automatically controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の一実施例の図式的説明図である。FIG. 1 is a schematic explanatory diagram of one embodiment of the present invention.

【図2】は、本発明方法の一例を示す流れ図である。FIG. 2 is a flow chart showing an example of the method of the present invention.

【図3】は、表示手段の表示の一例を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing an example of a display of a display unit.

【図4】は、従来のコンクリート天端検知方法の一例の
説明図である。
FIG. 4 is an explanatory diagram of an example of a conventional concrete crown detection method.

【符号の説明】[Explanation of symbols]

1…打設空間 2…人間 3…鉄筋 4…安定液 5…コンクリート打設管 6…コンクリート打設装置 7…コンクリート 8…測深索 9…巻取りドラム 10…重錘 12…温度センサ用光ファイバー 13…温度計測器 14…巻取りドラム 15…長さ計測器 16…演算手段 18…表示手段 20…流量制御手段。 1 ... Placing space 2 ... Human being 3 ... Reinforcing bar 4 ... Stabilizing liquid 5 ... Concrete placing pipe 6 ... Concrete placing device 7 ... Concrete 8 ... Sounding rope 9 ... Winding drum 10 ... Weight 12 ... Temperature sensor optical fiber 13 ... Temperature measuring instrument 14 ... Winding drum 15 ... Length measuring instrument 16 ... Computing means 18 ... Displaying means 20 ... Flow rate controlling means.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01S 17/88 G01S 17/88 Z (72)発明者 松井 信行 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location G01S 17/88 G01S 17/88 Z (72) Inventor Nobuyuki Matsui 1-2-7 Moto-Akasaka, Minato-ku, Tokyo Kashima Construction Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】パルス光の入射に対し温度に応じた強度の
散乱光を発生させる温度センサ用光ファイバーをコンク
リートが注入される空間内の深さ方向に差込み、前記光
ファイバーの上端からパルス光を入射し、該入射パルス
光に応じ前記光ファイバー内で発生した散乱光を前記上
端で検出し、前記パルス光の入射から各散乱光の検出ま
での時間に基づき前記上端から当該散乱光発生位置まで
の距離を求め且つ当該散乱光の強度に基づき当該散乱光
発生位置の温度を求めることにより前記空間の深さ方向
の温度分布を計測し、コンクリート注入時に前記パルス
光入射により計測した前記温度分布から前記空間の深さ
方向の温度変化率が最大となる深さ位置を打設コンクリ
ートの天端位置として算出してなるコンクリート打設天
端検知方法。
1. An optical fiber for a temperature sensor, which generates scattered light having an intensity corresponding to temperature in response to the incidence of pulsed light, is inserted in a depth direction in a space into which concrete is injected, and pulsed light is incident from the upper end of the optical fiber. Then, the scattered light generated in the optical fiber according to the incident pulsed light is detected at the upper end, and the distance from the upper end to the scattered light generation position is based on the time from the incidence of the pulsed light to the detection of each scattered light. The temperature distribution in the depth direction of the space is measured by determining the temperature of the scattered light generation position based on the intensity of the scattered light and the space from the temperature distribution measured by the pulsed light injection at the time of concrete injection. The method for detecting the top of concrete pouring, which is calculated by calculating the depth position where the rate of temperature change in the depth direction is maximum as the top position of the pouring concrete.
【請求項2】パルス光の入射に対し温度に応じた強度の
散乱光を発生させコンクリートが注入される空間内の深
さ方向に差込まれる温度センサ用光ファイバー、前記光
ファイバーの一端に接続され該一端からパルス光を入射
する入射手段と前記パルス光に応じ前記光ファイバー内
で発生する散乱光を前記一端で検出する検出手段と前記
パルス光の入射から各散乱光の検出までの時間に基づき
前記一端から当該散乱光発生位置までの距離を求める距
離計測手段と前記散乱光の強度に基づき当該散乱光発生
位置の温度を求める温度計測手段とを有する温度計測
器、及び前記温度計測器に接続され前記距離と前記温度
とから前記光ファイバー長さ方向の温度分布を計測し且
つ該光ファイバー長さ方向の温度変化率が最大となる位
置をコンクリート天端位置として算出する演算手段を備
えてなるコンクリート打設天端検出装置。
2. An optical fiber for a temperature sensor which generates scattered light having an intensity depending on temperature upon incidence of pulsed light and is inserted in a depth direction in a space into which concrete is poured, the optical fiber being connected to one end of the optical fiber. An incident means for injecting pulsed light from one end, a detection means for detecting scattered light generated in the optical fiber according to the pulsed light at the one end, and the one end based on the time from the incidence of the pulsed light to the detection of each scattered light From a temperature measuring device having a distance measuring means for obtaining a distance to the scattered light generating position and a temperature measuring means for obtaining a temperature at the scattered light generating position based on the intensity of the scattered light, and the temperature measuring device connected to the temperature measuring device. The position where the temperature distribution in the length direction of the optical fiber is measured from the distance and the temperature and the temperature change rate in the length direction of the optical fiber is the maximum is the concrete ceiling. Concrete 設天 edge detecting device including a calculating means for calculating a position.
【請求項3】請求項2の検出装置において、前記演算手
段に接続され前記コンクリート天端位置を表示する表示
手段を設けてなるコンクリート打設天端検出装置。
3. The concrete pouring top detecting device according to claim 2, further comprising display means connected to the computing means for displaying the concrete top position.
【請求項4】請求項2又は3の検知装置において、前記
光ファイバーの一端に固定された巻取りドラム、及び前
記演算手段に接続され前記巻取りドラムに対する前記光
ファイバーの巻取り又は繰り出しの長さを計測する長さ
計測器を設け、前記演算手段により前記距離と前記温度
と前記長さとから前記空間の深さ方向の温度分布を計測
し且つ該深さ方向の温度変化率が最大になる位置をコン
クリート天端位置として算出してなるコンクリート打設
天端検知装置。
4. The detection device according to claim 2 or 3, wherein a winding drum fixed to one end of the optical fiber, and a length of winding or unwinding the optical fiber with respect to the winding drum, which is connected to the computing means, is set. A length measuring device for measuring is provided, the temperature distribution in the depth direction of the space is measured from the distance, the temperature, and the length by the calculating means, and the position where the rate of temperature change in the depth direction becomes maximum is determined. A concrete pouring top detector that is calculated as the concrete top position.
【請求項5】請求項2から4の何れかの検知装置に、前
記演算手段に接続され前記空間へのコンクリート打設流
量を制御するコンクリート流量制御手段、所定時間間隔
で前記入射手段に前記パルス光を入射させるサンプリン
グ手段、並びに前記所定時間間隔で前記演算手段が算出
するコンクリート天端位置に基づき該天端位置の上昇速
度を算出する速度算出手段を設け、コンクリート天端位
置及び/又は該天端位置の上昇速度を前記流量制御手段
へ入力してコンクリート天端位置の上昇速度を制御して
なるコンクリート打設制御システム。
5. The concrete flow control means for controlling the concrete pouring flow rate to the space, which is connected to the calculating means, to the detecting device according to claim 2, and the pulse to the incident means at a predetermined time interval. Sampling means for injecting light, and speed calculation means for calculating a rising speed of the top end position of the concrete based on the top end position of the concrete calculated by the calculation means at the predetermined time interval are provided, and the concrete top position and / or the top end of the concrete are provided. A concrete pouring control system in which the ascending speed of the concrete top end position is controlled by inputting the ascending speed of the end position to the flow rate control means.
JP08123810A 1996-05-17 1996-05-17 Concrete placement control method and device Expired - Fee Related JP3135112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08123810A JP3135112B2 (en) 1996-05-17 1996-05-17 Concrete placement control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08123810A JP3135112B2 (en) 1996-05-17 1996-05-17 Concrete placement control method and device

Publications (2)

Publication Number Publication Date
JPH09302933A true JPH09302933A (en) 1997-11-25
JP3135112B2 JP3135112B2 (en) 2001-02-13

Family

ID=14869903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08123810A Expired - Fee Related JP3135112B2 (en) 1996-05-17 1996-05-17 Concrete placement control method and device

Country Status (1)

Country Link
JP (1) JP3135112B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108332818A (en) * 2018-01-29 2018-07-27 华孚油气工程技术成都有限公司 A kind of crude oil stands drain sump emulsion layer fluid level measuring device and measurement method
JP2019007141A (en) * 2017-06-20 2019-01-17 清水建設株式会社 Concrete filling detection system and filling detection method
JP2019015084A (en) * 2017-07-06 2019-01-31 株式会社大林組 Concrete filling confirming method
CN110608769A (en) * 2019-09-19 2019-12-24 上海中兴思秸通讯有限公司 Concrete vibration real-time monitoring system and method
CN111721378A (en) * 2020-05-29 2020-09-29 戴彩霞 Industrial high-temperature boiler steam water volume check out test set
CN113609198A (en) * 2021-07-26 2021-11-05 三峡大学 Method for reconstructing concrete temperature field in pouring bin based on optical fiber measured temperature data
CN117450940A (en) * 2023-11-02 2024-01-26 河北中铸爱军建设集团股份有限公司 Concrete layer measuring device is pour for passive composite thermal insulation wall body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007141A (en) * 2017-06-20 2019-01-17 清水建設株式会社 Concrete filling detection system and filling detection method
JP2019015084A (en) * 2017-07-06 2019-01-31 株式会社大林組 Concrete filling confirming method
CN108332818A (en) * 2018-01-29 2018-07-27 华孚油气工程技术成都有限公司 A kind of crude oil stands drain sump emulsion layer fluid level measuring device and measurement method
CN110608769A (en) * 2019-09-19 2019-12-24 上海中兴思秸通讯有限公司 Concrete vibration real-time monitoring system and method
CN111721378A (en) * 2020-05-29 2020-09-29 戴彩霞 Industrial high-temperature boiler steam water volume check out test set
CN113609198A (en) * 2021-07-26 2021-11-05 三峡大学 Method for reconstructing concrete temperature field in pouring bin based on optical fiber measured temperature data
CN113609198B (en) * 2021-07-26 2023-08-25 三峡大学 Method for reconstructing concrete temperature field in pouring warehouse based on optical fiber measured temperature data
CN117450940A (en) * 2023-11-02 2024-01-26 河北中铸爱军建设集团股份有限公司 Concrete layer measuring device is pour for passive composite thermal insulation wall body
CN117450940B (en) * 2023-11-02 2024-05-14 河北中铸爱军建设集团股份有限公司 Concrete layer measuring device is pour for passive composite thermal insulation wall body

Also Published As

Publication number Publication date
JP3135112B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
NO176335B (en) A method for determining the wedging of a tool or probe in a borehole
CN107289903A (en) Straight line bridge cantilever method Arched Bridge Construction Linear continuously measures monitoring system and monitoring method
NO143641B (en) DEVICE FOR DETERMINING THE POSITION OF A DRILL EQUIPMENT BY BORN DRILLING.
JPH09302933A (en) Method and equipment for detecting concrete-placing top end
EP0297128A1 (en) Apparatus and method for determining the position of a tool in a borehole
CN110849321A (en) Concrete pouring height real-time monitoring method and system
KR880011818A (en) Method and apparatus for monitoring and analyzing reactor vessel perfection on-line
US6450974B1 (en) Method of isolating surface tension and yield stress in viscosity measurements
CN111272215A (en) Soil-water balance shield machine soil output and ground surface settlement early warning system
JP3437108B2 (en) Management method of ground improvement method and management device of ground improvement machine
JP2000171376A (en) Method and device for measuring liquid density
JP2680261B2 (en) Position measuring method and position measuring device for concrete crown
CN207570530U (en) A kind of electromagnetic type solum settlement measuring device
JP3622163B2 (en) Tunnel collapse prediction method
JP2869604B2 (en) Top measuring device for cast concrete
CN207050709U (en) Straight line bridge cantilever method Arched Bridge Construction Linear continuously measures monitoring system
JPH09106489A (en) Fire extinguishing system
JP2629514B2 (en) Construction management method for concrete structures
JP2591281B2 (en) Top management system for cast concrete
JPH09203702A (en) Measuring method for slurry physical properties in excavation hole
JPH0959982A (en) Placing method of underwater concrete and tremie pipe used for placing method thereof
JPH06128958A (en) Measuring equipment for top end of placed concrete
JPH0462226A (en) Method for measuring level of underwater concrete
RU2724814C2 (en) Method of quantitative estimation of profile and composition of inflow in low-flow water-flooded oil wells
JP3080754B2 (en) Level measurement method using a water pile

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees