JPH09203702A - Measuring method for slurry physical properties in excavation hole - Google Patents
Measuring method for slurry physical properties in excavation holeInfo
- Publication number
- JPH09203702A JPH09203702A JP1176696A JP1176696A JPH09203702A JP H09203702 A JPH09203702 A JP H09203702A JP 1176696 A JP1176696 A JP 1176696A JP 1176696 A JP1176696 A JP 1176696A JP H09203702 A JPH09203702 A JP H09203702A
- Authority
- JP
- Japan
- Prior art keywords
- physical properties
- liquid
- measuring
- stable liquid
- measuring object
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Earth Drilling (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、連続地中壁の造成
などのために、掘削孔内に安定液を満たして地盤の掘削
を行うにあたり、その安定液の物性を計測する方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring the physical properties of a stabilizing liquid when the excavation hole is filled with the stabilizing liquid to excavate the ground for the construction of a continuous underground wall.
【0002】[0002]
【従来の技術】土木技術に発展に伴って、大深度の地下
構造物の造成が行われるようになり、このために地盤の
掘削もたとえば百数十mに達して行われることが多い。2. Description of the Related Art With the development of civil engineering, deep underground structures have come to be constructed, and for this reason, excavation of the ground often reaches, for example, 100 to 10 m.
【0003】大深度大規模地下連続壁の造成について
は、バケット式やオーガー式では困難であることに鑑
み、次述する水平多軸回転軸を有する掘削装置が用いら
れている。すなわち、図1および図2に示すように、案
内体1の下部に、ドラム2周面に突出したカッター3,
3…を多数有するカッタードラム10、10を周面を接
近させて平行的に隣接配置し、カッタードラム10、1
0の周面の間に掘削土類を地上に排出する排出経路の吸
い込み口4を臨ませたものである。Since it is difficult to construct a large-scale, large-scale underground continuous wall with a bucket type or an auger type, an excavator having a horizontal multi-axis rotating shaft described below is used. That is, as shown in FIG. 1 and FIG. 2, the cutter 3, which protrudes to the peripheral surface of the drum 2, is provided below the guide body 1.
Cutter drums 10 and 10 having a large number of 3 ...
The suction port 4 of the discharge route for discharging the excavated soil to the ground is faced between the peripheral surfaces of 0.
【0004】この掘削装置は、図3に示すように、ベー
スマシン5のブーム6から案内体1と共に吊り下げて、
カッタードラム10、10を図3の矢印で示すように、
反対方向に回転させながら地盤を掘削しつつ、その掘削
土類を、図2に示すように、排出経路の吸い込み口4か
ら排泥ポンプ7により排泥管路8を通して地上に排出し
ながら、掘り下げて行くものである。As shown in FIG. 3, this excavator is suspended from a boom 6 of a base machine 5 together with a guide body 1,
As shown by the arrows in FIG. 3, the cutter drums 10 and 10 are
While excavating the ground while rotating in the opposite direction, as shown in FIG. 2, the excavated soil is excavated from the suction port 4 of the discharge path to the ground through the mud discharge pipe 8 by the mud pump 7 as shown in FIG. It is something that goes.
【0005】他方、この掘削過程において、掘削孔20
壁を安定させるために安定液が用いられる。この安定液
としては、通常はポリマー系のものであるが、ベントナ
イト系のものも用いることもある。On the other hand, in this excavation process, the excavation hole 20
Stabilizers are used to stabilize the walls. The stabilizer is usually a polymer-based stabilizer, but a bentonite-based stabilizer may also be used.
【0006】この安定液の物性を管理することは、掘削
孔壁の安定または掘削作業の安定となるために、重要な
事項である。このために、従来から、1日2〜3回、掘
削孔内にサンプラーを挿入し、深度ごとに安定液をサン
プリングし、これを試験室に持ち込んで、その比重、粘
度、および砂分の割合などを計測している。It is an important matter to control the physical properties of the stabilizing liquid in order to stabilize the wall of the drill hole or the stability of the drilling work. For this reason, conventionally, a sampler was inserted into the drill hole 2-3 times a day, a stable liquid was sampled at each depth, and this was brought into the test chamber to determine its specific gravity, viscosity, and sand content. Are being measured.
【0007】[0007]
【発明が解決しようとする課題】しかし、掘削深度(図
4の符号D)は前述のとおり、百数十mにも達するの
で、その都度試験検査員がサンプラーをその深度まで挿
入し引き上げる作業は多大な負担となる。しかも、深度
ごと行う必要があるので、サンプリング回数がきわめて
多い。However, since the excavation depth (reference numeral D in FIG. 4) reaches a hundred and several tens of meters as described above, the test inspector must insert the sampler to that depth and pull it up each time. It will be a huge burden. Moreover, the number of times of sampling is extremely large because it is necessary to perform it for each depth.
【0008】また、試験結果が出るまでに長時間要し、
掘削作業に対して迅速なフィードバックを行い難い。Also, it takes a long time to obtain the test results,
It is difficult to provide quick feedback on excavation work.
【0009】したがって、本発明の課題は、試験検査員
の負担を軽減するとともに、迅速に安定液の物性を計測
することによって、掘削作業の能率を高めることにあ
る。Therefore, it is an object of the present invention to reduce the burden on the test inspector and to improve the efficiency of excavation work by rapidly measuring the physical properties of the stable liquid.
【0010】[0010]
【課題を解決するための手段】上記課題を解決した本発
明のうち、請求項1に記載の発明は、地盤掘削孔内の安
定液の物性を計測するにあたり、前記掘削孔内に前記案
内液よりも比重の大きい計測用物体を降下および引き上
げを行うとともに、これらの過程において前記計測用物
体を吊持するワイヤー類に作用する張力を一定に保持
し、前記降下および引上過程において、安定液が存在す
る所定の深度における降下および引上速度を検出し、こ
れらの各速度と前記張力値とに基づいて安定液の物性要
素を判断することを特徴とする地盤掘削孔内の安定液物
性の計測方法である。In the present invention which has solved the above-mentioned problems, the invention according to claim 1 is characterized in that, when measuring the physical properties of a stabilizing liquid in a ground excavation hole, the guide liquid is introduced into the excavation hole. While lowering and pulling up the measuring object having a larger specific gravity than that, while maintaining a constant tension acting on the wires that suspend the measuring object in these processes, in the lowering and pulling up process, a stable liquid is used. Of the stable liquid physical properties in the ground excavation hole, characterized in that the physical properties of the stable liquid are judged based on these respective speeds and the tension values. It is a measuring method.
【0011】請求項2に記載の発明は、地盤掘削孔内の
安定液の物性を計測するにあたり、前記掘削孔内に前記
案内液よりも比重の大きい計測用物体を降下および引き
上げを行うとともに、これらの過程における速度を一定
に保持し、前記降下および引上過程において、前記ワイ
ヤー類に作用する張力を検出し、これらの張力と前記速
度とに基づいて安定液の物性要素を判断することを特徴
とする地盤掘削孔内の安定液物性の計測方法である。According to a second aspect of the present invention, in measuring the physical properties of the stable liquid in the ground excavation hole, a measuring object having a specific gravity larger than that of the guide liquid is lowered and raised in the excavation hole, and The speed in these processes is kept constant, the tension acting on the wires is detected in the descending and pulling processes, and the physical property factor of the stable liquid is determined based on these tensions and the speed. It is a characteristic method of measuring stable liquid physical properties in a ground drilling hole.
【0012】請求項3記載の発明は、前記計測用物体に
対してまたはこれと同伴させて昇降させる部材に、液圧
計および液温計のうち少なくとも一方と、タイマーと、
液圧および液温のうち少なくとも一方のデータ信号を前
記タイマーからのタイミング信号との関連で記憶するメ
モリー手段とを設け、引き上げ完了後に前記メモリー手
段を回収して、その深度ごとのデータ信号を読み出して
前記安定液の物性要素の判断の補正に用いる請求項1ま
たは2記載の地盤掘削孔内の安定液物性の計測方法であ
る。According to a third aspect of the present invention, at least one of a liquid pressure gauge and a liquid thermometer, a timer, and a member for moving up and down with respect to the measurement object or with the measurement object are provided.
A memory means for storing at least one data signal of liquid pressure and liquid temperature in association with the timing signal from the timer is provided, and the memory means is collected after completion of pulling up and the data signal for each depth is read. The method for measuring stable liquid physical properties in a ground excavation hole according to claim 1 or 2, wherein the method is used to correct the determination of the physical property element of the stable liquid.
【0013】本発明において、昇降とは鉛直に昇降させ
るほか、斜めに昇降させる場合もなども含むものであ
る。In the present invention, "elevation" includes not only vertical elevation but also diagonal elevation.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら具体的に説明する。本発明では、図4に
示すように、前記の掘削孔20内の安定液21の物性、
特に比重および粘度などの粘性抵抗を測定するにあた
り、掘削孔20に面して安定液21より比重が大きい計
測用物体Wの昇降装置30が配設される。Embodiments of the present invention will be specifically described below with reference to the drawings. In the present invention, as shown in FIG. 4, the physical properties of the stabilizing liquid 21 in the drill hole 20 are
In particular, when measuring viscous resistance such as specific gravity and viscosity, a lifting device 30 for the measuring object W having a specific gravity larger than that of the stabilizing liquid 21 is provided facing the excavation hole 20.
【0015】昇降装置30は、ウインチ巻取ドラム31
とその駆動モータ(図示せず)とそのウインチ制御手段
32とを備え、これにより吊持ワイヤー33を介して計
測用物体Wを昇降させるようにしたものであり、これら
の途中にワイヤー33をガイドするガイドロール34〜
37を設けてある。ガイドロール34,36,37は位
置固定であるのに対して、ガイドロール35は上下に可
動となっており、たとえばその支持軸と地上に対して固
定の張力計38との間を連結部材39により連結してあ
り、吊持ワイヤー33に作用する張力を張力計38によ
り検出するようにしてある。また、ガイドロール34に
はロータリーエンコーダなどからなる速度計40が連結
されている。The lifting device 30 includes a winch winding drum 31.
A driving motor (not shown) and a winch control means 32 for moving the measuring object W up and down via the hanging wire 33. The wire 33 is guided in the middle of these. Guide roll 34
37 are provided. The guide rolls 34, 36, 37 are fixed in position, whereas the guide roll 35 is movable up and down. For example, a connecting member 39 is provided between a support shaft of the guide roll 35 and a tensiometer 38 fixed to the ground. The tension acting on the suspension wire 33 is detected by the tensiometer 38. A speedometer 40 including a rotary encoder is connected to the guide roll 34.
【0016】他方、演算処理装置41および表示装置4
2が地上に設けられる。前記の張力計38および速度計
40からの信号は、ウインチ制御手段32および演算処
理装置41に与えられる。On the other hand, the arithmetic processing unit 41 and the display unit 4
2 is installed on the ground. The signals from the tensiometer 38 and the speedometer 40 are given to the winch control means 32 and the arithmetic processing unit 41.
【0017】かかる設備の下で、次記のように安定液の
物性が計測される。Under such equipment, the physical properties of the stabilizing solution are measured as described below.
【0018】(実施の態様1:請求項1に記載の発明)
張力一定の下で計測用物体Wの昇降を行うものである。
すなわち、ウインチ巻取ドラム31をその駆動モータに
より回転させながら吊持ワイヤー33を繰り出しながら
計測用物体Wを降下させる。その際に、張力計38から
の張力信号Tをウインチ制御手段32に取り込み、吊持
ワイヤー33に作用する張力が一定となるように、ウイ
ンチ巻取ドラム31の巻き出し速度を制御する。所定の
深度まで降下させたならば、逆方向にウインチ巻取ドラ
ム31を回転させて計測用物体Wの上昇を行い、最終的
に計測用物体Wを地上に回収する。(Embodiment 1: Invention according to claim 1)
The object W for measurement is moved up and down under a constant tension.
That is, the winch winding drum 31 is rotated by its drive motor, and the lifting wire 33 is fed out to lower the measuring object W. At that time, the tension signal T from the tensiometer 38 is taken into the winch control means 32, and the unwinding speed of the winch winding drum 31 is controlled so that the tension acting on the suspension wire 33 becomes constant. When the object W for measurement is lowered to a predetermined depth, the winch winding drum 31 is rotated in the opposite direction to raise the object W for measurement, and finally the object W for measurement is collected on the ground.
【0019】かかる降下および引上過程において、安定
液が存在する所定の深度における降下速度V1 および引
上速度V2 を速度計40により検出し、演算処理装置4
に取り込む。この場合、速度計40はガイドロール34
の周速度と関係するものであり、ガイドロール34の外
径は既知であるから、速度に時間tを乗算すれば計測用
物体Wが現在位置する深度hを判断できる。したがっ
て、時間tと深度hとの関係の下で、図5に示す速度変
化を得ることができる。In the descending and pulling up process, the descent rate V 1 and the pulling rate V 2 at a predetermined depth where the stabilizing solution is present are detected by the speedometer 40, and the processor 4 is operated.
Take in. In this case, the speedometer 40 uses the guide roll 34
Since the outer diameter of the guide roll 34 is known, the depth h at which the measurement object W is currently located can be determined by multiplying the velocity by the time t. Therefore, the velocity change shown in FIG. 5 can be obtained under the relationship between the time t and the depth h.
【0020】一方、計測用物体Wには常時浮力が作用す
るとともに、吊持ワイヤー33には降下および引上時に
安定液21からの粘性抵抗が作用する。吊持ワイヤー3
3に作用する張力は、基本的に、計測用物体Wの自重、
浮力、粘性抵抗が支配する。On the other hand, buoyancy is constantly applied to the measuring object W, and viscous resistance from the stabilizing liquid 21 is applied to the suspension wire 33 when it is lowered and pulled up. Hanging wire 3
The tension acting on 3 is basically the self-weight of the measuring object W,
Buoyancy and viscous resistance dominate.
【0021】ここに、計測用物体Wの自重は一定であ
り、ある深度hにおける浮力も降下時と引上時とに相違
はない。しかるに、ある深度hにおける降下速度V1 と
引上速度V2 とが相違することになるのは、粘性抵抗に
起因する。Here, the own weight of the measuring object W is constant, and the buoyancy at a certain depth h is not different between when it is lowered and when it is pulled up. However, the difference between the descending speed V 1 and the pulling speed V 2 at a certain depth h is due to the viscous resistance.
【0022】したがって、概念的に図6に示すように、
速度と張力とはほぼ次記の(1)式で示す1次式であら
わすことができる。Therefore, conceptually, as shown in FIG.
The speed and the tension can be expressed by a linear expression represented by the following expression (1).
【0023】[0023]
【数1】 [Equation 1]
【0024】したがって、この浮力から安定液の比重
を、粘性抵抗Rから粘度を検知できる。Therefore, the specific gravity of the stabilizing liquid can be detected from this buoyancy, and the viscosity can be detected from the viscous resistance R.
【0025】(実施の態様2:請求項2に記載の発明)
速度一定の下で計測用物体Wの昇降を行うものである。
すなわち、前記例と同様に計測用物体Wの降下および引
き上げを行う際に、速度計40からの速度信号Vをウイ
ンチ制御手段32に取り込み、吊持ワイヤー33の巻き
出し速度および巻取速度が一定となるように、ウインチ
巻取ドラム31を制御する。あるいは、ウインチ制御手
段32がたとえば速度選択用クラッチを有する場合に
は、クラッチを選択して所定の一定速度を得ることがで
きる。これらにより一定の速度を得た上で、吊持ワイヤ
ー33に作用する張力を張力計38により検出してその
張力信号を演算処理装置41に取り込む。(Embodiment 2: Invention according to claim 2)
The object W for measurement is moved up and down under a constant speed.
That is, similarly to the above example, when the measurement object W is lowered and pulled up, the speed signal V from the speedometer 40 is taken into the winch control means 32, and the unwinding speed and the winding speed of the suspension wire 33 are constant. The winch winding drum 31 is controlled so that Alternatively, when the winch control means 32 has, for example, a speed selecting clutch, the clutch can be selected to obtain a predetermined constant speed. After obtaining a constant speed by these, the tension acting on the suspension wire 33 is detected by the tensiometer 38 and the tension signal is taken into the arithmetic processing unit 41.
【0026】この場合においても、図6および(1)〜
(3)式によって、粘性抵抗Rを測定できることが判
る。Also in this case, FIG. 6 and (1) to
It is understood that the viscous resistance R can be measured by the equation (3).
【0027】(他の態様)ところで、前記の物性の計測
にあたり、特に粘性抵抗は温度に左右される。したがっ
て、安定液21の温度を補正要素として加味する必要が
ある。特に、安定液21の温度は深度によって異なるの
で、地上近傍での温度計測値に基づく場合には誤差要因
となる。そこで、図7に示すように、計測用物体Wの内
部に液圧計43および液温計44を設けるとともに、タ
イマー45、メモリー手段46およびインターフェイス
手段47を内蔵させる。(Other Embodiments) Incidentally, in the measurement of the above-mentioned physical properties, the viscous resistance particularly depends on the temperature. Therefore, it is necessary to add the temperature of the stabilizing solution 21 as a correction factor. In particular, since the temperature of the stabilizing solution 21 varies depending on the depth, it becomes an error factor when it is based on the temperature measurement value near the ground. Therefore, as shown in FIG. 7, a liquid pressure gauge 43 and a liquid temperature gauge 44 are provided inside the measuring object W, and a timer 45, a memory means 46, and an interface means 47 are incorporated.
【0028】これにより、液圧および液温のデータ信号
をタイマー45からのタイミング信号との関連でメモリ
ー手段46に記憶させる。計測用物体Wを引き上げ完了
後にメモリー手段46を回収して、そのデータ信号をイ
ンターフェイス手段47を介して演算処理装置41によ
り読み出して安定液の物性要素の判断の補正に用いる。
この場合、昇降装置30側から、時間ごとの張力、速
度または深度の値を演算処理装置41に取り込み、比重
および粘性抵抗の計測時に、前記のメモリー手段46か
らのデータ信号を照合させて補正することができる。As a result, the liquid pressure and liquid temperature data signals are stored in the memory means 46 in association with the timing signal from the timer 45. After pulling up the measuring object W, the memory means 46 is collected, and the data signal thereof is read by the arithmetic processing unit 41 via the interface means 47 and used for correction of the determination of the physical property element of the stabilizing liquid.
In this case, the values of tension, velocity or depth for each time are taken into the arithmetic processing unit 41 from the lifting device 30 side, and when the specific gravity and the viscous resistance are measured, the data signals from the memory means 46 are collated and corrected. be able to.
【0029】他方、液圧計43、液温計44、タイマー
45、メモリー手段46およびインターフェイス手段4
7などの補正データ取り込み手段は、計測用物体W内に
格納することなく、別途、吊持ワイヤー33に対して一
体化させた専用の格納容器内に設けることもできる。こ
の場合、その格納容器に作用する浮力をも考慮する。On the other hand, the liquid pressure gauge 43, the liquid temperature gauge 44, the timer 45, the memory means 46 and the interface means 4
The correction data capturing means such as 7 may not be stored in the measuring object W but may be separately provided in a dedicated storage container integrated with the suspension wire 33. In this case, the buoyancy acting on the storage container is also taken into consideration.
【0030】また、上記例においては、計測用物体Wを
鉛直方向に昇降させた例であるが、傾斜して昇降させる
ことでもよい。さらに、上記例は鉛直掘削孔を対象とし
たが、傾斜掘削孔を対象とすることもできる。この例を
図8に示した。In the above example, the measuring object W is moved up and down in the vertical direction, but it may be lifted up and down. Further, although the above example is directed to the vertical drill hole, it is also possible to target to the inclined drill hole. This example is shown in FIG.
【0031】すなわち、図8の例では、傾斜掘削孔21
において計測用物体Wを傾斜して昇降させるものであ
る。そのために、ガイド体50が配設されている。図9
は、たとえばシールドの発進基地近傍の態様を示したも
ので、泥水安定液の物性を計測するために、ガイドロー
ル51を介してガイド体50に沿って計測用物体Wを水
平移動させるようにしたものである。同図、左方への移
動については、図示を省略してあるが、左方のシールド
前方に別途同一構成の昇降装置30が配設され、その昇
降装置による巻き上げが行われ、両昇降装置30からの
データを統合させることにより物性が計測されるもので
ある。なお、これらの場合には、主に実施の態様1によ
る方法が用いることができる。その場合、ガイド体50
との摩擦抵抗が考慮されて物性判断される。That is, in the example of FIG.
In, the measuring object W is tilted and moved up and down. Therefore, the guide body 50 is provided. FIG.
Shows, for example, a mode in the vicinity of the starting base of the shield. In order to measure the physical properties of the muddy water stabilizing liquid, the measuring object W is horizontally moved along the guide body 50 via the guide roll 51. It is a thing. Although not shown in the figure for the movement to the left in the figure, an elevating device 30 of the same configuration is separately arranged in front of the shield on the left side, and hoisting is performed by the elevating device. The physical properties are measured by integrating the data from. In these cases, the method according to the first embodiment can be mainly used. In that case, the guide body 50
The physical properties are judged in consideration of the friction resistance with.
【0032】[0032]
【発明の効果】以上のとおり、本発明によれば、試験検
査員の負担を軽減するとともに、迅速く安定液の物性を
計測することによって、掘削作業の能率を高めることが
できるなどの利点がもたらされる。As described above, according to the present invention, it is possible to reduce the burden on the test inspector and to improve the efficiency of excavation work by quickly measuring the physical properties of the stable liquid. Be brought.
【図1】掘削機本体の正面図である。FIG. 1 is a front view of an excavator main body.
【図2】その側面図である。FIG. 2 is a side view thereof.
【図3】掘削設備全体の概要図である。FIG. 3 is a schematic view of the entire excavation equipment.
【図4】本発明の計測態様の概要図である。FIG. 4 is a schematic diagram of a measurement mode of the present invention.
【図5】深度−時間−速度の相関図である。FIG. 5 is a depth-time-velocity correlation diagram.
【図6】本発明の計測原理の説明図である。FIG. 6 is an explanatory diagram of a measurement principle of the present invention.
【図7】本発明の他の計測態様の概要図である。FIG. 7 is a schematic diagram of another measurement mode of the present invention.
【図8】さらに別の計測態様の概要図である。FIG. 8 is a schematic diagram of yet another measurement mode.
【図9】別異の計測態様の概要図である。FIG. 9 is a schematic diagram of another measurement mode.
10…カッタードラム、20…掘削孔、21…安定液、
30…昇降装置、31…ウインチ巻取ドラム、32…ウ
インチ制御手段、33…吊持ワイヤー、38…張力計、
40…速度計、41…演算処理装置、W…計測用物体
(計測用物体)。10 ... Cutter drum, 20 ... Drilling hole, 21 ... Stabilizing liquid,
30 ... Elevating device, 31 ... Winch winding drum, 32 ... Winch control means, 33 ... Suspension wire, 38 ... Tensiometer,
40 ... Speedometer, 41 ... Arithmetic processing device, W ... Measuring object (measuring object).
Claims (3)
あたり、 前記掘削孔内に前記案内液よりも比重の大きい計測用物
体を降下および引き上げを行うとともに、これらの過程
において前記計測用物体を吊持するワイヤー類に作用す
る張力を一定に保持し、 前記降下および引上過程において、安定液が存在する所
定の深度における降下および引上速度を検出し、 これらの各速度と前記張力値とに基づいて安定液の物性
要素を判断することを特徴とする地盤掘削孔内の安定液
物性の計測方法。1. When measuring the physical properties of a stable liquid in a ground drilling hole, a measuring object having a specific gravity larger than that of the guide liquid is lowered and raised in the drilling hole, and in the course of these processes, the measuring object is measured. The tension acting on the wires for suspending the object is kept constant, and in the descending and ascending processes, the descending and ascending speeds at a predetermined depth where the stable liquid exists are detected, and these respective speeds and the tensile forces are detected. A method for measuring the physical properties of a stable liquid in a ground excavation hole, which comprises determining a physical property element of the stable liquid based on the value.
あたり、 前記掘削孔内に前記案内液よりも比重の大きい計測用物
体を降下および引き上げを行うとともに、これらの過程
における速度を一定に保持し、 前記降下および引上過程において、前記ワイヤー類に作
用する張力を検出し、 これらの張力と前記速度とに基づいて安定液の物性要素
を判断することを特徴とする地盤掘削孔内の安定液物性
の計測方法。2. When measuring the physical properties of a stable liquid in a ground drilling hole, a measuring object having a specific gravity larger than that of the guide liquid is lowered and raised in the drilling hole, and the speed in these processes is kept constant. In the ground excavation hole, the tension acting on the wires is detected in the descending and pulling up process, and the physical property factor of the stable liquid is judged based on the tension and the speed. Of stable liquid physical properties of.
させて昇降させる部材に、液圧計および液温計のうち少
なくとも一方と、タイマーと、液圧および液温のうち少
なくとも一方のデータ信号を前記タイマーからのタイミ
ング信号との関連で記憶するメモリー手段とを設け、 引き上げ完了後に前記メモリー手段を回収して、その深
度ごとのデータ信号を読み出して前記安定液の物性要素
の判断の補正に用いる請求項1または2記載の地盤掘削
孔内の安定液物性の計測方法。3. A data signal of at least one of a hydraulic pressure gauge and a liquid thermometer, a timer, and at least one of a hydraulic pressure and a liquid temperature, which is provided on a member for moving up and down with respect to the measuring object or with the measuring object. And a memory means for storing in association with the timing signal from the timer, the memory means is collected after completion of pulling up, and a data signal for each depth is read to correct the judgment of the physical property element of the stabilizing solution. The method for measuring stable liquid physical properties in a ground excavation hole according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1176696A JPH09203702A (en) | 1996-01-26 | 1996-01-26 | Measuring method for slurry physical properties in excavation hole |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1176696A JPH09203702A (en) | 1996-01-26 | 1996-01-26 | Measuring method for slurry physical properties in excavation hole |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09203702A true JPH09203702A (en) | 1997-08-05 |
Family
ID=11787109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1176696A Pending JPH09203702A (en) | 1996-01-26 | 1996-01-26 | Measuring method for slurry physical properties in excavation hole |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09203702A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000292336A (en) * | 1999-04-05 | 2000-10-20 | Koden Electronics Co Ltd | Viscosity/specific gravity meter |
CN108532653A (en) * | 2018-04-25 | 2018-09-14 | 中国建筑第五工程局有限公司 | A kind of portable cast-in-situ bored pile hole depth and mud balance method |
CN109518739A (en) * | 2019-01-22 | 2019-03-26 | 东华理工大学 | A kind of sediment thickness detector |
JP2019085745A (en) * | 2017-11-06 | 2019-06-06 | 鹿島建設株式会社 | Evaluation device and evaluation method of hole bottom state |
CN111576505A (en) * | 2020-05-29 | 2020-08-25 | 山西省建筑科学研究院有限公司 | Device and method for testing pile top position of concrete cast-in-place pile |
CN112281938A (en) * | 2020-11-23 | 2021-01-29 | 戴连根 | Pouring amount measuring device for cast-in-place pile and using method thereof |
-
1996
- 1996-01-26 JP JP1176696A patent/JPH09203702A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000292336A (en) * | 1999-04-05 | 2000-10-20 | Koden Electronics Co Ltd | Viscosity/specific gravity meter |
JP2019085745A (en) * | 2017-11-06 | 2019-06-06 | 鹿島建設株式会社 | Evaluation device and evaluation method of hole bottom state |
CN108532653A (en) * | 2018-04-25 | 2018-09-14 | 中国建筑第五工程局有限公司 | A kind of portable cast-in-situ bored pile hole depth and mud balance method |
CN108532653B (en) * | 2018-04-25 | 2023-10-13 | 中国建筑第五工程局有限公司 | Portable bored pile hole depth and mud specific gravity method |
CN109518739A (en) * | 2019-01-22 | 2019-03-26 | 东华理工大学 | A kind of sediment thickness detector |
CN109518739B (en) * | 2019-01-22 | 2024-02-02 | 东华理工大学 | Sediment thickness detector |
CN111576505A (en) * | 2020-05-29 | 2020-08-25 | 山西省建筑科学研究院有限公司 | Device and method for testing pile top position of concrete cast-in-place pile |
CN112281938A (en) * | 2020-11-23 | 2021-01-29 | 戴连根 | Pouring amount measuring device for cast-in-place pile and using method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5819152B2 (en) | Support layer arrival estimation method and support layer arrival estimation support device used in pile embedding method | |
JP3931769B2 (en) | Underground continuous groove excavation method and underground continuous groove excavator | |
WO2013080296A1 (en) | Accumulation-thickness measurement device and accumulation-thickness measurement method | |
JPH09203702A (en) | Measuring method for slurry physical properties in excavation hole | |
CN110195448B (en) | Probe rod device for cast-in-place pile and pile top height and pile diameter real-time measurement method | |
JP5268070B2 (en) | Slime property management method and automatic slime processing equipment | |
JP2000171376A (en) | Method and device for measuring liquid density | |
CN210104747U (en) | Steel casing positioning device for pore-forming construction | |
CN212896513U (en) | Hole bottom sediment thickness measuring device after secondary hole cleaning during cast-in-place pile construction | |
CN115977170A (en) | Pore-forming quality detection device and detection method for cast-in-situ bored pile | |
CN115354994A (en) | Rock stratum depth detection device and detection method thereof | |
CN212482437U (en) | Hole bottom sediment thickness detection device after secondary hole cleaning during cast-in-place pile construction | |
CN211081834U (en) | Verticality detection tool for rotary drilling and pore forming | |
JP7305182B2 (en) | borehole gauge | |
CN209958412U (en) | Pile foundation sediment thickness detection instrument | |
CN109470621B (en) | Measuring device for rock stratum permeability | |
JP2018071320A (en) | Ground excavation method | |
JP6259313B2 (en) | Sediment weight measuring device for shield machine | |
CN113721003B (en) | Cone detection grouting quality detection equipment and detection method | |
JP2021060212A (en) | Hole wall measurement system | |
JP4695056B2 (en) | Construction management device | |
JP2656749B2 (en) | Bucket type excavator and its excavation method | |
JP6666278B2 (en) | Soil sample sampling system and sampling method using the same | |
JPH11166228A (en) | Inspection device of widening excavated trench and inspection method | |
CN215630220U (en) | Open caisson sinking multifunctional simulation device for converting complex geological conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Effective date: 20050128 Free format text: JAPANESE INTERMEDIATE CODE: A02 |