JPH09302285A - Production of composition for forming polymer film - Google Patents

Production of composition for forming polymer film

Info

Publication number
JPH09302285A
JPH09302285A JP8147999A JP14799996A JPH09302285A JP H09302285 A JPH09302285 A JP H09302285A JP 8147999 A JP8147999 A JP 8147999A JP 14799996 A JP14799996 A JP 14799996A JP H09302285 A JPH09302285 A JP H09302285A
Authority
JP
Japan
Prior art keywords
polymer
fine particles
metal
polymer film
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP8147999A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hamada
和宏 濱田
Yoshibumi Maeda
義文 前田
Koichi Sayo
浩一 佐用
Kazuo Goto
和生 後藤
Shigehiko Hayashi
茂彦 林
Yoshio Yamaguchi
良雄 山口
Masahiro Irie
正浩 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP8147999A priority Critical patent/JPH09302285A/en
Publication of JPH09302285A publication Critical patent/JPH09302285A/en
Abandoned legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a compsn. for forming a polymer film whereby a polymer film having nonlinear optical properties, a uniform thickness, and a smooth surface can be simply formed on a substrate and whereby fine particles can be dispersed in a high concn. in the film. SOLUTION: This process provides a compsn. which can give a polymer film contg. a high concn. of fine particles dispersed therein. The compsn. is prepd. by dissolving, in an org. solvent, a polymer composite contg. a finely pulverized metal or metal oxide or both of them dispersed therein, centrifuging the resultant soln. contg. dispersed fine particles to separate a precipitate, and mixing the precipitate with a binder resin and an org. solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高分子膜成形用組成
物の製造方法に係り、詳しくは基材上に塗布して高濃度
の微粒子を分散させた高分子膜を作製することが可能
で、非線形光学特性を有する高分子膜成形用組成物の製
造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a composition for molding a polymer film, and more specifically, it is possible to coat a base material to prepare a polymer film in which high concentration fine particles are dispersed. The present invention relates to a method for producing a polymer film molding composition having non-linear optical characteristics.

【0002】[0002]

【従来の技術】金などの金属微粒子やCuCl、Cu2
Oなどの半導体超微粒子をガラス質マトリックスに分散
させたものは、3次の非線形光学効果を有することが知
られている。非線形光学効果は、微粒子の粒径や濃度に
依存し、微粒子を高濃度で分散させると良いとされてい
る。
2. Description of the Related Art Fine particles of metal such as gold, CuCl, Cu 2
It is known that a semiconductor ultrafine particle such as O dispersed in a glassy matrix has a third-order nonlinear optical effect. The non-linear optical effect depends on the particle size and concentration of the fine particles, and it is said that it is preferable to disperse the fine particles at a high concentration.

【0003】上記の作製方法としては、1)金属化合物
とケイ素のアルコキシドを混合したものを加水分解し、
加熱縮合させることでガラス中に微粒子を分散させるゾ
ル−ゲル法、2)多孔質ガラスへ金属化合物を溶液で含
浸させ、加熱して微粒子をガラス中に分散させる含浸
法、3)金属とガラスを同時にスパッタすることで微粒
子をガラス中に分散させるスパッタ法、4)ガラス基板
に金属のイオンを注入し、熱処理して微粒子を成長させ
るイオン注入法、5)金属化合物とガラスを混合し、い
ったん溶融させたあと、熱処理して微粒子をガラス中に
析出させる溶融析出法、などがある。
As the above-mentioned production method, 1) a mixture of a metal compound and a silicon alkoxide is hydrolyzed,
Sol-gel method of dispersing fine particles in glass by heating and condensation, 2) Impregnation method of impregnating porous glass with a solution of a metal compound and heating to disperse fine particles in glass, 3) Metal and glass Sputtering method in which fine particles are dispersed in glass by sputtering at the same time, 4) Ion implantation method in which metal ions are injected into a glass substrate and heat treatment is performed to grow fine particles, 5) Metal compound and glass are mixed and once melted After that, there is a melt precipitation method in which heat treatment is performed to precipitate fine particles in glass.

【0004】[0004]

【発明が解決しようとする課題】しかし、ゾル−ゲル
法、含浸法、スパッタ法、イオン注入法、あるいは溶融
析出法に共通した問題点は、微粒子が非常に凝集しやす
いことにあり、このため複合物中の微粒子の濃度を増加
させることが困難となり、更には生産性を非常に悪くし
ている。また、微粒子の濃度が低いことは、複合物とし
ての物理特性に微粒子の寄与する割合が小さいことを示
しており、複合物の用途を非常に狭くしている。特に、
3次の非線形光学効果を利用した光集積回路、画像メモ
リなどには不向きであった。
However, a problem common to the sol-gel method, the impregnation method, the sputtering method, the ion implantation method, and the melt precipitation method is that the fine particles are very easily aggregated. It becomes difficult to increase the concentration of fine particles in the composite, and further, the productivity is extremely deteriorated. Further, the low concentration of the fine particles indicates that the ratio of the fine particles contributing to the physical properties of the composite is small, which makes the use of the composite extremely narrow. Especially,
It is not suitable for optical integrated circuits, image memories, etc. that utilize the third-order nonlinear optical effect.

【0005】一般に、3次の非線形感受率χ(3)の大
きい材料になると、光双安定応答を引き起こすのに必要
な入射光強度も小さくてすみ、高集積化を可能にするば
かりでなく、早い応答のスイッチが可能になると言われ
ている。このため、微粒子の含有濃度が高くて3次の非
線形感受率χ(3)の大きいものに注目が集まってい
る。本発明者らは、このような問題点に着目し、非線形
光学特性を有するとともに、基材上に均一な厚みの平滑
な面をもった高分子膜を簡単に作製することができ、し
かも高分子膜に高濃度の微粒子を分散させることができ
る高分子膜成形用組成物の製造方法を提供することを目
的とする。
In general, when a material having a large third-order nonlinear susceptibility χ (3) is used, the incident light intensity required to induce an optical bistable response can be small, and not only high integration can be achieved, but also It is said that a quick response switch will be possible. Therefore, attention is focused on particles having a high concentration of fine particles and a large third-order nonlinear susceptibility χ (3). The present inventors have paid attention to such a problem, and have a non-linear optical characteristic, and can easily produce a polymer film having a smooth surface with a uniform thickness on a substrate, and further An object of the present invention is to provide a method for producing a composition for molding a polymer film, which is capable of dispersing a high concentration of fine particles in a molecular film.

【0006】[0006]

【課題を解決するための手段】即ち、本発明の特徴は、
高濃度の微粒子を分散させた高分子膜を作製することが
できる高分子膜成形用組成物の製造方法において、微粒
子化した金属あるいは金属酸化物、もしくはこれらの両
方を高分子中に分散させた高分子複合物を有機溶剤に溶
解し、この微粒子分散溶液を遠心分離して沈澱物を作製
し、この沈澱物にバインダー樹脂と有機溶剤を添加して
混合した高分子膜成形用組成物の製造方法にある。ま
た、本発明は、熱力学的に不安定な準安定状態の高分子
層を作製し、この高分子層の表面に金属層を密着したの
ち、前記高分子を加熱して準安定状態の高分子層を安定
化させることで金属層の金属を微粒子化させて得られた
高分子複合物も含む。
That is, the features of the present invention are as follows.
In a method for producing a polymer film-forming composition capable of producing a polymer film having a high concentration of fine particles dispersed therein, finely divided metal or metal oxide, or both of them are dispersed in a polymer. Preparation of a polymer film-forming composition in which a polymer composite is dissolved in an organic solvent, the fine particle dispersion solution is centrifuged to prepare a precipitate, and a binder resin and an organic solvent are added to the precipitate and mixed. On the way. In the present invention, a thermodynamically unstable metastable polymer layer is prepared, a metal layer is adhered to the surface of the polymer layer, and then the polymer is heated to increase the metastable state. It also includes a polymer composite obtained by micronizing the metal of the metal layer by stabilizing the molecular layer.

【0007】[0007]

【発明の実施の形態】本発明で使用する微粒子分散溶液
においては、金属もしくは金属酸化物の微粒子、もしく
はこれらの両方の微粒子が高分子と強く相互作用してい
るため、溶液状態あるいは高分子の融点温度以下では非
常に安定して分散している。このために、微粒子分散溶
液を遠心分離することによって得られた沈澱物では、金
属もしくは金属酸化物の微粒子の凝集がなく、微粒子の
濃度を高めた高分子膜成形用組成物を得ることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the fine particle dispersion solution used in the present invention, since the fine particles of metal or metal oxide, or both fine particles interact strongly with the polymer, the solution state or the polymer Dispersion is very stable below the melting temperature. Therefore, the precipitate obtained by centrifuging the fine particle dispersion solution does not cause aggregation of the fine particles of the metal or the metal oxide, and a polymer film molding composition having an increased fine particle concentration can be obtained. .

【0008】まず、本発明で使用する高分子複合物は、
金属を微粒子化させて高分子中に分散させたものであ
る。その製造方法は、第1に高分子層を熱力学的に不安
定な状態に成形することである。具体的には、これは高
分子を真空中で加熱して融解し蒸発させて基板の上に高
分子層を固化する真空蒸着方法、あるいは高分子を融解
温度以上で融解し、この状態のまま直ちに液体窒素等に
投入して急冷し、基板の上に高分子層を付着させる融解
急冷固化方法などがある。
First, the polymer composite used in the present invention is
It is a fine particle of metal dispersed in a polymer. The manufacturing method is, firstly, to mold the polymer layer into a thermodynamically unstable state. Specifically, this is a vacuum evaporation method in which a polymer is heated in a vacuum to melt and evaporate to solidify a polymer layer on a substrate, or the polymer is melted at a melting temperature or higher and is left in this state. There is a melting and quenching solidification method in which the polymer layer is immediately attached to liquid nitrogen or the like to be rapidly cooled and a polymer layer is attached onto the substrate.

【0009】真空蒸着方法の場合には、通常の真空蒸着
装置を使用して10-4〜10-6Torrの真空度、蒸着
速度0.1〜100μm/分、好ましくは0.5〜5μ
m/分で、ガラス等の基板の上に高分子層を得ることが
できる。融解急冷固化方法では、高分子を融解し、該高
分子固有の臨界冷却速度以上の速度で冷却し、高分子層
を得る。得られた高分子層は熱力学的に不安定な準安定
状態におかれ、時間の経過につれて平衡状態へ移行す
る。
In the case of the vacuum vapor deposition method, a vacuum degree of 10 −4 to 10 −6 Torr is used, a vapor deposition rate is 0.1 to 100 μm / min, and preferably 0.5 to 5 μm, using an ordinary vacuum vapor deposition apparatus.
At m / min, a polymer layer can be obtained on a substrate such as glass. In the melting quenching and solidification method, a polymer is melted and cooled at a rate higher than the critical cooling rate inherent to the polymer to obtain a polymer layer. The obtained polymer layer is placed in a thermodynamically unstable metastable state, and shifts to an equilibrium state with the passage of time.

【0010】本発明で使用する高分子は、例えばナイロ
ン6、ナイロン66、ナイロン11、ナイロン12、ナ
イロン69、ポリエチレンテレフタレート(PET)、
ポリビニルアルコール、ポリフェニレンスルフィド(P
PS)、ポリスチレン(PS)、ポリカーボネート、ポ
リメチルメタクリレート等であり、分子凝集エネルギー
として2000cal/mol以上有するものが好まし
い。この高分子は、通常言われている結晶性高分子や非
晶性高分子も含む。尚、分子凝集エネルギーについて
は、日本化学会編 化学便覧応用編(1974年発行)
の第890頁に詳細に定義されている。
The polymer used in the present invention is, for example, nylon 6, nylon 66, nylon 11, nylon 12, nylon 69, polyethylene terephthalate (PET),
Polyvinyl alcohol, polyphenylene sulfide (P
PS), polystyrene (PS), polycarbonate, polymethylmethacrylate, etc., and those having a molecular cohesive energy of 2000 cal / mol or more are preferable. The polymer includes a crystalline polymer and an amorphous polymer which are generally referred to. As for the molecular cohesion energy, see Chemical Chemistry Handbook, edited by The Chemical Society of Japan (issued in 1974)
On page 890.

【0011】続いて、前記熱力学的に不安定にある準安
定状態の高分子層は、その表面に金属層を密着させる工
程へと移される。この工程では真空蒸着装置によって金
属を高分子層に蒸着させるか、もしくは金属箔、金属板
を直接高分子層に密着させる等の方法で金属層を高分子
層に積層させる。その金属としてはAu,Ag,Cu,
Ti,V,Cr,Mn,Fe,Ni,Zn,Cd,Y,
W,Sn,Ge,In,Gaがあり、特に限定されな
い。
Next, the thermodynamically unstable metastable polymer layer is transferred to the step of bringing the metal layer into close contact with the surface thereof. In this step, a metal layer is deposited on the polymer layer by a method such as depositing a metal on the polymer layer using a vacuum vapor deposition apparatus, or directly adhering a metal foil or a metal plate to the polymer layer. The metals include Au, Ag, Cu,
Ti, V, Cr, Mn, Fe, Ni, Zn, Cd, Y,
There are W, Sn, Ge, In and Ga, and there is no particular limitation.

【0012】上記金属層と高分子層とが密着した複合物
を、高分子のガラス転移点以上、融点以下の温度で加熱
して高分子層を安定状態へ移行させる。その結果、金属
層の金属は、100nm以下で、1〜10nmの領域に
粒子径分布の最大をもつ金属あるいはCu2 O、Fe3
4 、ZnO、Y2 3 等の金属酸化物の微粒子となっ
て高分子層内へ拡散浸透し、この状態は高分子層が完全
に緩和するまで続き、高分子層に付着している金属層は
その厚さも減少して最終的に無くなる。上記微粒子は凝
集することなく高分子層内に分布している。
The composite in which the metal layer and the polymer layer are in close contact with each other is heated at a temperature not lower than the glass transition point and not higher than the melting point of the polymer to bring the polymer layer into a stable state. As a result, the metal of the metal layer is 100 nm or less and has a maximum particle size distribution in the region of 1 to 10 nm, or Cu 2 O, Fe 3
Fine particles of metal oxides such as O 4 , ZnO and Y 2 O 3 are diffused and permeated into the polymer layer, and this state continues until the polymer layer is completely relaxed and adheres to the polymer layer. The metal layer also decreases in its thickness and eventually disappears. The fine particles are distributed in the polymer layer without being aggregated.

【0013】尚、本発明では、高分子複合物の製造方法
は上記の方法だけでなく、例えば溶融気化法に属する気
相法、沈殿法に属する液相法、固相法、分散法で金属超
微粒子を作製し、この超微粒子を溶液あるいは融液から
なる高分子と機械的に混合する方法、あるいは高分子と
金属とを同時に蒸発させ、気相中で混合する方法等があ
る。
In the present invention, the method for producing the polymer composite is not limited to the above-mentioned method, and for example, a gas phase method belonging to the melt vaporization method, a liquid phase method belonging to the precipitation method, a solid phase method or a dispersion method is used. There is a method of producing ultrafine particles and mechanically mixing the ultrafine particles with a polymer composed of a solution or a melt, or a method of simultaneously evaporating the polymer and metal and mixing them in a gas phase.

【0014】得られた高分子複合物は、メタクレゾー
ル、ジメチルホルムアミド、ジクロロエタン、クロロプ
ロパノール等の有機溶剤からなる溶媒に混合し溶解さ
せ、微粒子を分散させた微粒子分散溶液にする。微粒子
は粒径が小さく高分子との相互作用が存在するために溶
液中で高分子との分離、沈澱および微粒子同志の凝集が
生じない。この場合、微粒子の含有量は0.01〜60
重量%である。
The obtained polymer composite is mixed and dissolved in a solvent consisting of an organic solvent such as metacresol, dimethylformamide, dichloroethane, chloropropanol and the like to obtain a fine particle dispersion solution in which fine particles are dispersed. Since the particles have a small particle size and have an interaction with the polymer, separation, precipitation and aggregation of the particles do not occur in the solution. In this case, the content of fine particles is 0.01 to 60.
% By weight.

【0015】次に、上記微粒子分散溶液を遠心分離機に
よって沈澱物と上澄液とに分離し、上澄み液を除去して
沈澱物を取り出す。該沈澱物はペースト状であり、凝集
せず分散した金属あるいは金属酸化物の微粒子を含んで
いる。この沈澱物中には、少なくとも70重量%以上の
高濃度の微粒子が分散している。また、上澄み液にも3
0重量%以下の低濃度の微粒子が分散している。沈澱物
中の微粒子の濃度は、遠心分離機の回転速度、時間によ
って決まる。
Next, the fine particle dispersed solution is separated into a precipitate and a supernatant by a centrifuge, and the supernatant is removed to remove the precipitate. The precipitate is paste-like and contains fine particles of metal or metal oxide dispersed without agglomeration. In this precipitate, high-concentration fine particles of at least 70% by weight or more are dispersed. In addition, 3 in the supernatant
Fine particles with a low concentration of 0% by weight or less are dispersed. The concentration of fine particles in the precipitate depends on the rotation speed and time of the centrifuge.

【0016】上記沈澱物にバインダー樹脂と有機溶剤が
添加される。このバインダー樹脂は、平滑な面をもった
高分子膜を形成するために使用するもので、例えばニト
ロセルロース、エチルセルロース、酢酸セルロース、ブ
チルセルロース等のセルロース類、メチルアクリレート
等のアクリル類、ポリエチレンテレフタレート、ポリカ
プロラクトン等のポリエステル類、ポリオキシメチレン
等のポリエーテル類、ポリカーボネート類、ポリスチレ
ン、ポリブタジエン、ポリイソプレン等のポリビニル類
等である。尚、複合物を使用する場合には、高分子はこ
のバインダー樹脂と同じであってもよい。
A binder resin and an organic solvent are added to the precipitate. This binder resin is used to form a polymer film having a smooth surface, for example, nitrocellulose, ethyl cellulose, cellulose acetate, cellulose such as butyl cellulose, acrylics such as methyl acrylate, polyethylene terephthalate, Examples thereof include polyesters such as polycaprolactone, polyethers such as polyoxymethylene, polycarbonates, polyvinyls such as polystyrene, polybutadiene and polyisoprene. When a composite is used, the polymer may be the same as the binder resin.

【0017】また、有機溶剤は、例えばメタクレゾー
ル、カービトール、ジメチルホルムアミド、ジメチルイ
ミダゾリジノン、ターピノール、ジアセトンアルコー
ル、エチレングリコールモノエチルエーテル、エチレン
グリコールモノブチルエーテル等の高沸点溶剤であり、
一種もしくは二種以上使用することができる。
The organic solvent is a high boiling solvent such as meta-cresol, carbitol, dimethylformamide, dimethylimidazolidinone, terpinol, diacetone alcohol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, etc.,
One kind or two or more kinds can be used.

【0018】本発明の高分子膜成形用組成物の製造方法
では、微粒子分散溶液を遠心分離して得た沈澱物と予め
バインダー樹脂を有機溶剤を有機溶剤に溶かしたものと
を混合し、良く攪拌してペースト状の組成物を得ること
ができる。このように作製されたペースト状の高分子膜
成形用組成物は、例えば石英ガラス板等の基板上にアプ
リケーターを用いてコートすると、均一な厚みで平滑な
面をもった高分子膜が形成される。
In the method for producing a polymer film molding composition of the present invention, a precipitate obtained by centrifuging a fine particle dispersion solution and a binder resin prepared by dissolving an organic solvent in an organic solvent in advance are mixed, A paste-like composition can be obtained by stirring. When the paste-like polymer film-forming composition thus prepared is coated on a substrate such as a quartz glass plate using an applicator, a polymer film having a uniform thickness and a smooth surface is formed. It

【0019】[0019]

【実施例】次に、本発明を具体的な実施例により更に詳
細に説明する。 実施例1 真空蒸着装置を用いて、ナイロン11のポリマーペレッ
ト5gをタングステンボード中に入れ、10-6Torr
に減圧する。次いで、電圧を印加してタングステンボー
ドを真空中で加熱してポリマーを融解させ、蒸着源の上
部に設置した基板(ガラス板)上に、10-4〜10-6
orrの真空度で約1μm/分の速度で厚さ約5μmの
蒸着膜の高分子層を得た。この高分子層の分子量は前記
ポリマーペレットの1/2〜1/10程度になってい
る。
Next, the present invention will be described in more detail with reference to specific examples. Example 1 Using a vacuum evaporation apparatus, 5 g of nylon 11 polymer pellets were put into a tungsten board, and 10 -6 Torr
Reduce the pressure. Then, a voltage is applied to heat the tungsten board in vacuum to melt the polymer, and 10 -4 to 10 -6 T is formed on the substrate (glass plate) placed on the evaporation source.
A polymer layer of a vapor-deposited film having a thickness of about 5 μm was obtained at a rate of vacuum of orr at a rate of about 1 μm / min. The molecular weight of the polymer layer is about 1/2 to 1/10 of the polymer pellet.

【0020】更に、金チップをタングステンボード中に
入れて加熱融解して10-4〜10-6Torrの真空度で
蒸着を行って高分子層の上に金蒸着膜を付着させた。こ
れを真空蒸着装置から取り出し、120°Cに保持した
恒温槽中に10分間放置して複合物を得た。
Further, the gold chip was put in a tungsten board, heated and melted, and vapor deposition was performed at a vacuum degree of 10 -4 to 10 -6 Torr to deposit a gold vapor deposition film on the polymer layer. This was taken out of the vacuum evaporation apparatus and left in a thermostat kept at 120 ° C. for 10 minutes to obtain a composite.

【0021】得られた複合物をメタクレゾールに溶解さ
せて良く攪拌して微粒子分散溶液を作製し、これを遠心
分離機に設置し所定の分速で1時間遠心分離を行った。
遠心分離後、上澄み液を除去して種々の金濃度を有する
ペースト状の沈澱物を取り出し、この沈澱物にエチルセ
ルロースをカービトールに5重量%溶解した溶解液を混
合し、攪拌して高分子膜成形用組成物を得た。
The obtained composite was dissolved in meta-cresol and well stirred to prepare a fine particle dispersion solution, which was placed in a centrifuge and centrifuged at a predetermined minute speed for 1 hour.
After centrifugation, the supernatant was removed to remove paste-like precipitates having various gold concentrations, and the precipitates were mixed with a solution of ethyl cellulose dissolved in carbitol at 5% by weight and stirred to form a polymer film. A composition for use was obtained.

【0022】アプリケータを用いて上記組成物を石英ガ
ラス板上にコートした後、これを120°Cのオーブン
で10分間乾燥して有機溶剤を除去し、フィルムを得
た。このフィルムの光吸収スペクトルを日立製作所社製
UV−3300で測定した。また、フィルム中の金微粒
子の粒径をリガク社製RINTX線回折装置を用いて測
定したX線回折パターンの111AU回折線の半値幅より
シェラーの式を用いて計算した。これらの結果を表1に
示す。
A quartz glass plate was coated with the above composition using an applicator and then dried in an oven at 120 ° C. for 10 minutes to remove the organic solvent to obtain a film. The light absorption spectrum of this film was measured with Hitachi, Ltd. UV-3300. Further, the particle size of the fine gold particles in the film was calculated using the Scherrer's formula from the full width at half maximum of the 111 AU diffraction line of the X-ray diffraction pattern measured using a RINT X-ray diffraction device manufactured by Rigaku Corporation. Table 1 shows the results.

【0023】比較例1 実施例で得た上澄み液をエチルセルロースをカービトー
ルに5重量%溶解した溶解液を混合し、攪拌して高分子
膜成形用組成物を得た。アプリケータを用いて上記組成
物を石英ガラス板上にコートした後、これを120°C
のオーブンで10分間乾燥して有機溶剤を除去し、フィ
ルムを得た。該フィルムの特性を表1に併記する。
Comparative Example 1 The supernatant obtained in Example was mixed with a solution prepared by dissolving 5% by weight of ethyl cellulose in carbitol and stirred to obtain a polymer film-forming composition. After coating the above composition on a quartz glass plate using an applicator, apply this at 120 ° C.
Was dried in an oven for 10 minutes to remove the organic solvent and obtain a film. The characteristics of the film are also shown in Table 1.

【0024】比較例2 実施例と同様に、上澄み液を除去して得たペースト状の
沈澱物を取り出し、この沈澱物をアプリケータを用いて
石英ガラス板上にコートした後、これを120°Cのオ
ーブンで10分間乾燥して有機溶剤を除去した。しか
し、平滑な面をもったフィルムを得ることができなかっ
た。
Comparative Example 2 In the same manner as in Example 1, the paste-like precipitate obtained by removing the supernatant was taken out, and the precipitate was coated on a quartz glass plate by using an applicator, which was then 120 °. The organic solvent was removed by drying in an oven of C for 10 minutes. However, a film having a smooth surface could not be obtained.

【0025】[0025]

【表1】 [Table 1]

【0026】この結果、得られた組成物は、遠心分離に
よって高濃度の微粒子を含有しているが明らかとなり、
また作製したフィルムも平滑な面を有し、全て金のプラ
ズモン吸収を示し、粒径の測定からも金微粒子がマトリ
ックス中で凝集することなく分散していることが判る。
As a result, it was revealed by centrifugation that the composition obtained contained a high concentration of fine particles,
Further, the produced film also has a smooth surface and all exhibit gold plasmon absorption, and it can be seen from the measurement of the particle size that the gold fine particles are dispersed in the matrix without being aggregated.

【0027】更に、上記フィルムの3次の非線形光学効
果を測定した。フィルムの一方の側からスペクトラフィ
ジクス社製YAGレーザGCR−3の1064nmのレ
ーザ光を照射し、フィルムの反対側に置いた石英レンズ
を用いてフィルムを透過した光を集めた。集めた光をY
AGレーザの1064nmのレーザ光を遮断するための
フィルターに通した後、モノクロメーターにより3次光
となる354.7nmの前後の波長域の光を取り出し、
光電子増倍管により光の強度を検出した。このとき、比
較試料として比較例1と3次の非線形光学効果測定の標
準試料である合成石英板(参考例)の測定も行った。そ
の結果を表2に示す。
Further, the third-order nonlinear optical effect of the above film was measured. A 1064 nm laser beam of YAG laser GCR-3 manufactured by Spectra Physics was irradiated from one side of the film, and the light transmitted through the film was collected using a quartz lens placed on the opposite side of the film. The collected light is Y
After passing through a filter for blocking the 1064 nm laser light of the AG laser, the monochromator extracts the light in the wavelength range around 354.7 nm, which is the third light,
The intensity of light was detected by a photomultiplier tube. At this time, as a comparative sample, a synthetic quartz plate (reference example), which is a standard sample for Comparative Example 1 and the third-order nonlinear optical effect measurement, was also measured. The results are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】この結果、表2に示したように実施例1の
フィルムからは345.3nmの3次光の発生が観測さ
れ、石英ガラス板よりも大きな光強度を示した。これに
より、本発明のフィルムは非線形光学効果を有すること
が判る。
As a result, as shown in Table 2, generation of the third-order light of 345.3 nm was observed from the film of Example 1, and the light intensity was higher than that of the quartz glass plate. This shows that the film of the present invention has a nonlinear optical effect.

【0030】[0030]

【発明の効果】以上のように本発明の高分子膜成形用組
成物の製造方法では、微粒子分散溶液が金属もしくは金
属酸化物の微粒子が高分子と強く相互作用し、溶液状態
あるいは高分子の融点温度以下では非常に安定して分散
しているため、微粒子分散溶液を遠心分離することによ
って得られた沈澱物では、金属もしくは金属酸化物の微
粒子の凝集がなく、微粒子の濃度を高めた高分子膜成形
用組成物を得ることができ、またバインダー樹脂と有機
溶剤を添加して混合したことにより基材上に均一な厚み
の平滑な面をもった高分子膜を簡単に作製することがで
き、しかも非線形光学特性の効果を有している。
INDUSTRIAL APPLICABILITY As described above, in the method for producing a composition for polymer film molding of the present invention, the fine particle dispersion solution strongly interacts with the fine particles of the metal or metal oxide and the fine particles of the solution or the polymer. Since it is very stably dispersed below the melting point temperature, the precipitate obtained by centrifuging the fine particle dispersion solution does not aggregate metal or metal oxide fine particles and increases the concentration of fine particles. A composition for forming a molecular film can be obtained, and a polymer film having a smooth surface with a uniform thickness can be easily prepared on a substrate by adding and mixing a binder resin and an organic solvent. In addition, it has the effect of nonlinear optical characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 良雄 神戸市須磨区高倉台3丁目8番51−303 (72)発明者 入江 正浩 福岡県春日市春日公園1丁目29番4−404 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Yamaguchi 3-8-3 Takakuradai, Suma-ku, Kobe 51-303 (72) Inventor Masahiro Irie 1-29-4-404 Kasuga Park, Kasuga-shi, Fukuoka

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高濃度の微粒子を分散させた高分子膜を
作製することができる高分子膜成形用組成物の製造方法
において、微粒子化した金属あるいは金属酸化物、もし
くはこれらの両方を高分子中に分散させた高分子複合物
を有機溶剤に溶解し、この微粒子分散溶液を遠心分離し
て沈澱物を作製し、この沈澱物にバインダー樹脂と有機
溶剤を添加して混合したことを特徴とする高分子膜成形
用組成物の製造方法。
1. A method for producing a polymer film molding composition capable of producing a polymer film having a high concentration of fine particles dispersed therein, wherein a finely divided metal or metal oxide, or both of them are used as a polymer. The polymer composite dispersed therein is dissolved in an organic solvent, the fine particle dispersed solution is centrifuged to form a precipitate, and a binder resin and an organic solvent are added to the precipitate and mixed. A method for producing a polymer film molding composition comprising:
【請求項2】 高分子複合物は、熱力学的に不安定な準
安定状態の高分子層を作製し、この高分子層の表面に金
属層を密着したのち、前記高分子を加熱して準安定状態
の高分子層を安定化させることで金属層の金属を微粒子
化させて得られる請求項1記載の高分子膜成形用組成物
の製造方法。
2. The polymer composite is prepared by forming a thermodynamically unstable metastable polymer layer, and adhering a metal layer to the surface of the polymer layer, and then heating the polymer. The method for producing a polymer film-forming composition according to claim 1, which is obtained by stabilizing the metastable polymer layer to form fine particles of the metal in the metal layer.
JP8147999A 1996-05-17 1996-05-17 Production of composition for forming polymer film Abandoned JPH09302285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8147999A JPH09302285A (en) 1996-05-17 1996-05-17 Production of composition for forming polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8147999A JPH09302285A (en) 1996-05-17 1996-05-17 Production of composition for forming polymer film

Publications (1)

Publication Number Publication Date
JPH09302285A true JPH09302285A (en) 1997-11-25

Family

ID=15442855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8147999A Abandoned JPH09302285A (en) 1996-05-17 1996-05-17 Production of composition for forming polymer film

Country Status (1)

Country Link
JP (1) JPH09302285A (en)

Similar Documents

Publication Publication Date Title
EP0598472B1 (en) Ultra-fine-particles-dispersed glassy material and method for making the same
US20090047512A1 (en) Dispersed metal nanoparticles in polymer films
EP0973049B1 (en) Composite material containing fine particles of metal dispersed in polysilylenemethylene and process for the preparation thereof
JPH09302285A (en) Production of composition for forming polymer film
JP2678336B2 (en) Method for producing ultrafine particle-dispersed glassy material
US5731075A (en) Colorant for a transparent substrate and method of making the colorant
US6068939A (en) Colored and fired film and method for producing the same
JPH06157074A (en) Ultrafine particle-dispersed glass-like material and its production
JP2623421B2 (en) Method for producing polymer composite in which fine particles of metal sulfide are dispersed
JP2657748B2 (en) Production method of colored glass
JPH07242423A (en) Production of composition for producing amorphous titanium oxide film and amorphous titanium oxide film
EP0699637B1 (en) Colorant for a transparent substrate and method of making the colorant
JP2554599B2 (en) Method for producing polymer composite having high concentration of fine particles dispersed therein
JP2554594B2 (en) Coloring agent for coloring glass and method for producing the same
JP2798335B2 (en) Method for producing paste for optical filter
JPH0825766B2 (en) Method for producing gold fine particle dispersed glass
JP2563066B2 (en) Ultra fine particle dispersed glass and its manufacturing method
JPH08328058A (en) High molecular film having nonlinear optical property
JPH11240722A (en) Complex semiconductor composition and its production
KR100304035B1 (en) Coloring Agent For Glass Coloring
JP2521638B2 (en) Method for producing polymer composite in which fine particles are dispersed
JPH10231145A (en) Production of colored and baked film
JP2683568B2 (en) Coloring agent for frosted tinted glass
JP2919748B2 (en) Method for producing ultrafine particle-dispersed glassy material
JPH10194790A (en) Glass coloring agent composition and glass material obtained by using the agent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20061204