JP2919748B2 - Method for producing ultrafine particle-dispersed glassy material - Google Patents

Method for producing ultrafine particle-dispersed glassy material

Info

Publication number
JP2919748B2
JP2919748B2 JP6210528A JP21052894A JP2919748B2 JP 2919748 B2 JP2919748 B2 JP 2919748B2 JP 6210528 A JP6210528 A JP 6210528A JP 21052894 A JP21052894 A JP 21052894A JP 2919748 B2 JP2919748 B2 JP 2919748B2
Authority
JP
Japan
Prior art keywords
ultrafine
metal
glass
particles
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6210528A
Other languages
Japanese (ja)
Other versions
JPH0859296A (en
Inventor
茂彦 林
和生 後藤
良雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUBOSHI BERUTO KK
Original Assignee
MITSUBOSHI BERUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUBOSHI BERUTO KK filed Critical MITSUBOSHI BERUTO KK
Priority to JP6210528A priority Critical patent/JP2919748B2/en
Publication of JPH0859296A publication Critical patent/JPH0859296A/en
Application granted granted Critical
Publication of JP2919748B2 publication Critical patent/JP2919748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/08Metals

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超微粒子分散ガラス状物
の製造方法に係り、詳しくは非線形光学効果を利用した
赤外透過フィルターガラス、着色ガラス、ガラス用発色
光デバイス等の光学および電子材料に適用できる超
微粒子分散ガラス状物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultrafine particle-dispersed glass-like material, and more particularly to a method for producing an infrared-transmitting filter glass, a colored glass, a color forming agent for glass, a light-emitting device, etc. The present invention relates to a method for producing an ultrafine particle-dispersed glassy material applicable to electronic materials.

【0002】[0002]

【従来の技術】金属のサイズが数10nmより小さい超
微粒子になると、電子構造、格子比熱、スピン帯磁率等
にバルク金属とは全く異なる性格が出現することは良く
知られている。このような金属のうち金、銀やCdS
Se1−xの超微粒子からなる半導体をガラスに分散し
たものとして着色ガラスやフィルターガラス知られて
いる。また、この種の着色ガラスである色ガラスフィル
ターが非線形光学特性を示すことも知られており、光ス
イッチや光コンピュータの電子材料に適用できるものと
して注目を集めている。この着色ガラスが非線形光学特
性を有する原因として、量子閉じ込め効果によるエネル
ギーバンドの離散化が観測され、バンドの充満効果もし
くは励起子閉じ込め効果により3次の非線形特性が増大
すると解釈されている。
2. Description of the Related Art It is well known that, when ultrafine particles having a metal size smaller than several tens of nanometers, characteristics completely different from those of bulk metals appear in electronic structure, lattice specific heat, spin susceptibility and the like. Among such metals, gold, silver and CdS k
Colored glass and filter glass are known as semiconductors made of ultrafine Se1 -x particles dispersed in glass. It is also known that a colored glass filter, which is a colored glass of this kind, exhibits non-linear optical characteristics, and is attracting attention as being applicable to electronic materials of optical switches and optical computers. As a cause of the colored glass having nonlinear optical characteristics, discretization of an energy band due to a quantum confinement effect is observed, and it is interpreted that the third-order nonlinear characteristic increases due to a band filling effect or an exciton confinement effect.

【0003】このような微粒子分散ガラスの製造方法と
しては、金属アルコキシドを加水分解して得た液状シリ
カゾルに金属コロイド粒子を添加、分散させた後、容器
に流し込んでゲル化させ、乾燥した後、焼結するゾル−
ゲル法、またSiのような半導体微粒子をアルコキシド
ゾル中に分散して乾燥し、アルコキシドをゲル化した
後、焼結し、表面を酸化物ガラスで覆って得た半導体微
粒子と、SiCl4 ,GeCl4 ,PCl3 等のガラス
原料に水素および酸素を導入して燃焼させて生成したガ
ラス微粒子とを混合し、焼成するゾル−ゲル−燃焼法、
またCdSe等を含むガラス融液を流動温度以下、屈伏
温度以上の温度まで冷却保持してガラス中に微粒子を析
出させる析出法、またCd源、S源、Se源、Te源粉
末の少なくとも一種以上の粉末と、低融点ガラス粉末を
混合し焼結して複合ガラスを作製し、この複合ガラスを
ターゲットとし、スパッタリング法を用いて微粒子分散
ガラスを得るスパッタリング法、そしてガラス基板に高
速に加速した金属イオンを衝突させて注入した後、熱処
理によって粒径制御するイオン注入法が知られている。
[0003] As a method for producing such a fine particle-dispersed glass, a metal colloid particle is added to a liquid silica sol obtained by hydrolyzing a metal alkoxide, dispersed, poured into a container, gelled, and dried. Sol to be sintered
Gel method, semiconductor fine particles such as Si are dispersed in an alkoxide sol, dried, gelled alkoxide, sintered, and covered with oxide glass to obtain semiconductor fine particles, SiCl 4 , GeCl 4 , a sol-gel-burning method in which hydrogen and oxygen are introduced into glass raw materials such as PCl 3 and mixed with glass fine particles generated by burning, followed by firing.
Further, a precipitation method in which a glass melt containing CdSe or the like is cooled to a temperature equal to or lower than a flowing temperature and equal to or higher than a yield temperature to precipitate fine particles in glass, and at least one of Cd source, S source, Se source, and Te source powder Powder and low-melting glass powder are mixed and sintered to produce a composite glass, and the composite glass is used as a target to obtain a fine particle-dispersed glass using a sputtering method. There is known an ion implantation method in which ion implantation is performed by bombarding ions and then controlling the particle size by heat treatment.

【0004】[0004]

【発明が解決しようとする課題】しかし、一般にゾル−
ゲル法は、微粒子分散ガラスを得るにおいて非常に長時
間を要するだけでなく、金属コロイド粒子の凝集を防ぐ
ことが困難であり、更に大きな問題点としては金属微粒
子の含有濃度に限界があり、高濃度にすることが困難で
あった。また、ゾル−ゲル−燃焼法でも金属微粒子の含
有濃度を高めるのが困難であった。更に、析出法やスパ
ッタリング法でも、金属微粒子の粒径を制御することが
困難であるばかりか、金属微粒子の含有濃度を高めるの
が困難であった。そして、イオン注入法においては、装
置が大型で大量生産には不向きであり、しかも金属微粒
子の含有濃度を高めるのが困難であった。
However, in general, sol-
The gel method not only requires a very long time to obtain fine particle-dispersed glass, but also has difficulty in preventing the aggregation of metal colloid particles. It was difficult to make the concentration. Also, it has been difficult to increase the concentration of metal fine particles even by the sol-gel-burning method. Furthermore, it is difficult not only to control the particle size of the metal fine particles but also to increase the content concentration of the metal fine particles by the deposition method and the sputtering method. In the ion implantation method, the apparatus is large and unsuitable for mass production, and it is difficult to increase the concentration of fine metal particles.

【0005】また、最近では、このような種々の問題点
を解決した方法として、特開平6−115973号公報
に開示されているうように、金属の超微粒子を高分子中
に分散させた高分子複合物と有機金属化合物との混合物
を有機溶剤に溶解させ、これを基板上に塗布して乾燥し
た膜を作製した後、焼結する超微粒子分散ガラス状物の
製造方法が知られている。しかし、超微粒子分散ガラス
状物を作製する場合、高分子複合物と有機金属化合物あ
るいは骨格形成成分とを均一に混合するため、高分子複
合物中の高分子と有機金属化合物あるいは骨格形成成分
とに相溶性の良い溶媒が必要になる。しかし、高分子複
合物中の高分子が限定されているため、有機金属化合物
あるいは骨格形成成分も自ずと限定される問題があっ
た。 本発明は、このような問題点を改善するものであ
り、金属の超微粒子を独立して分散させるとともにこれ
らの超微粒子の含有濃度を高め、また有機金属化合物あ
るいは骨格形成成分の種に制限を受けない超微粒子分散
ガラス状物の製造方法を提供する。
Recently, there have been various problems as described above.
As a method for solving the problem, JP-A-6-115973
As disclosed in U.S. Pat.
Of polymer composites and organometallic compounds dispersed in water
In an organic solvent, apply it on a substrate and dry it.
After forming a film, the ultrafine particle dispersed glass
Manufacturing methods are known. However, ultra-fine particle dispersion glass
When preparing a solid, a polymer composite and an organometallic compound
Or a polymer compound to uniformly mix
Polymer and organometallic compound or skeleton forming component in compound
Therefore, a solvent having good compatibility is required. However, polymer
Because the polymer in the compound is limited, organometallic compounds
Alternatively, there is a problem that the skeleton-forming components are naturally limited.
Was. The present invention solves such a problem.
And disperse the metal ultrafine particles independently.
Increase the concentration of these ultrafine particles, and
Ultrafine particle dispersion that is not restricted by species of skeletal or skeletal components
Provided is a method for producing a glassy material.

【0006】[0006]

【課題を解決するための手段】即ち、本発明の特徴とす
るところは、溶剤中に金属の超微粒子を独立分散させた
超微粒子分散液と、有機金属化合物との混合物を有機溶
剤に溶解させ、これを基板上に塗布して乾燥した膜を作
製した後、焼結する超微粒子分散ガラス状物の製造方法
にある。また、本発明は有機金属化合物が金属アルコキ
シド、有機金属錯体、有機酸金属塩から選ばれる。
に、本発明は、溶剤中に金属の超微粒子を独立分散させ
た超微粒子分散液と有機金属化合物との混合物に、M’
(M’はSi,B,Pから選ばれた元素である)で表示
される元素を含む有機化合物であるガラス骨格を形成す
る第3成分を混入してもよい。
That is, a feature of the present invention is that a mixture of an ultrafine particle dispersion in which ultrafine metal particles are independently dispersed in a solvent and an organometallic compound is dissolved in an organic solvent. This is a method for producing an ultrafine-particle-dispersed glassy material which is applied on a substrate to form a dried film and then sintered. In the present invention, the organometallic compound is selected from metal alkoxides, organometallic complexes, and organic acid metal salts . Further, the present invention provides a mixture of an ultrafine particle dispersion in which metal ultrafine particles are independently dispersed in a solvent and an organometallic compound,
(M 'is an element selected from Si, B, and P). A third component forming a glass skeleton, which is an organic compound containing an element represented by (M'), may be mixed.

【0007】本発明で使用する溶剤中に金属の超微粒子
を独立分散させた超微粒子分散液は、α−テレピネオー
ル、トルエン等溶剤中に独立分散した粒径10nm以下
の少なくともAu,Pt,Pd,Rh,Agから選ばれ
貴金属の超微粒子、あるいはTi,V,Cr,Mn,
Fe,Ni,Cu,Zn,Cd,Y,W,Sn,Ge,
In,Gaから選ばれた金属の超微粒子を含んだもので
ある。
The ultrafine particle dispersion in which ultrafine metal particles are independently dispersed in a solvent used in the present invention is at least Au, Pt, Pd, and 10 nm or less independently dispersed in a solvent such as α-terpineol or toluene. Selected from Rh, Ag
Ultra-fine particles of noble metal or Ti, V, Cr, Mn, ,
Fe, Ni, Cu, Zn, Cd, Y, W, Sn, Ge,
It contains ultrafine particles of a metal selected from In and Ga.

【0008】この超微粒子は、例えば特開平3−342
11号公報に開示されているようなガス中蒸発法と呼ば
れる方法によって製造される。即ち、チャンバ内にヘリ
ウム不活性ガスを導入して上記金属を蒸発させ、不活性
ガスとの衝突により冷却され凝縮して得られるが、この
場合生成直後の粒子が孤立状態にある段階で有機溶剤の
蒸気を導入して粒子表面の被覆を行っている。上記金属
の超微粒子の添加量は、目的とする透過率により選択す
ることができ、特に制限されない。
The ultrafine particles are disclosed in, for example, JP-A-3-342.
It is manufactured by a method called a gas evaporation method as disclosed in Japanese Patent Publication No. That is, helium inert gas is introduced into the chamber to evaporate the metal, and the metal is cooled and condensed by collision with the inert gas. In this case, the organic solvent is obtained at a stage where the particles immediately after generation are in an isolated state. Is applied to coat the particle surface. The amount of the ultrafine metal particles to be added can be selected according to the desired transmittance, and is not particularly limited.

【0009】続いて、金属アルコキシド、有機金属錯
体、有機酸金属塩から選ばれてなる有機金属化合物を準
備し、これをメタクレゾール、ジメチルホルムアミド、
シクロヘキサン、ギ酸、α−テレピネオール、トルエ
ン、キシレン、カービトール等の有機金属化合物が可溶
な有機溶剤に溶解し、これを超微粒子分散液と混合す
る。好ましくは、超微粒子分散液と同じ溶剤を用いるの
がよい。むろん、本発明の場合、超微粒子分散液と有機
金属化合物との混合物を同時に有機溶剤に溶解すること
もできる。
Subsequently, an organometallic compound selected from a metal alkoxide, an organometallic complex, and an organic acid metal salt is prepared, and this is treated with meta-cresol, dimethylformamide,
An organic metal compound such as cyclohexane, formic acid, α-terpineol, toluene, xylene, carbitol or the like is dissolved in an organic solvent in which it is soluble, and this is mixed with the ultrafine particle dispersion. Preferably, the same solvent as the ultrafine particle dispersion is used. Of course, in the case of the present invention, the mixture of the ultrafine particle dispersion and the organometallic compound can be simultaneously dissolved in the organic solvent.

【0010】上記有機金属化合物の金属アルコキシド
は、一般式 M−(O−Cn 2n+1m で表示され、具
体的にはテトラエトキシチタン、トリエトキシアルミニ
ウム、トリエトキシアンチモン、テトラエトキシゲルマ
ニウム、テトラエトキシタンタル、ジエトキシ錫、テト
ラi−プロポキシチタン、トリi−プロポキシアルミニ
ウム、トリi−ブトキシアルミニウム、ペンタn−ブト
キシタンタル、テトラi−アミノキシ錫等がある。尚、
MはAl,Ge,Sn,Sb,Ga,Pbから選ばれて
なる両性元素あるいはTi,Fe,Co,Ni,Cu,
Nb,Ta,Cd,In,Cr,Mnから選ばれてなる
金属元素である。また、有機金属化合物の有機金属錯体
は、エチルアセトアセテートアルミニウムジイソプロピ
レート、アルミニウムトリス(アセチルアセテート)、
アルミニウムオキシン錯体等がある。また、有機金属化
合物の有機酸金属塩は、安息香酸アルミニウム、ナフテ
ン酸鉄、オクチル酸銅、ステアリン酸チタン等がある。
[0010] Metal alkoxide of the above organic metal compound is displayed in the general formula M- (O-C n H 2n + 1) m, tetraethoxy titanium Specifically, triethoxy aluminum, triethoxy antimony, tetraethoxygermanium , Tetraethoxy tantalum, diethoxy tin, tetra i-propoxy titanium, tri i-propoxy aluminum, tri i-butoxy aluminum, penta n-butoxy tantalum, tetra i-aminoxy tin, and the like. still,
M is an amphoteric element selected from Al, Ge, Sn, Sb, Ga, and Pb, or Ti, Fe, Co, Ni, Cu,
It is a metal element selected from Nb, Ta, Cd, In, Cr, and Mn. In addition, organometallic complexes of organometallic compounds include ethyl acetoacetate aluminum diisopropylate, aluminum tris (acetyl acetate),
Aluminum oxine complex and the like. Examples of the organic acid metal salt of an organic metal compound include aluminum benzoate, iron naphthenate, copper octylate, and titanium stearate.

【0011】また、本発明では、上記金属の超微粒子を
独立分散させた超微粒子分散液と有機金属化合物ととも
に、第3成分として一般式M’(M’はSi,B,Pか
選ばれた元素である)で表示されるガラス骨格を形成
する元素を含む有機化合物も使用可能であり、これによ
って作製した膜の強度を向上させることができる。具体
的には、テトラi−プロポキシシラン、ほう酸トリエチ
ル、ほう酸トリステアリル、ほう酸トリフェニル、リン
酸トリクレジル、リン酸トリフェニル、リン酸イプロニ
アジド、リン酸ジフェニル、ホスホノ酢酸、ホスホラミ
ドン、リン酸ジn−ブチル、リン酸トリエチル、リン酸
トリn−アミル等がある。上記第3成分は膜の強度を高
めるだけでなく、化学的な耐久性を向上させる。この添
加量は0.1〜90モル%である。
In the present invention, together with an organometallic compound and an ultrafine particle dispersion in which ultrafine particles of the above metal are independently dispersed, the general formula M ′ (M ′ is selected from Si, B, and P) as the third component . An organic compound containing an element that forms a glass skeleton represented by the formula (I) can also be used, and the strength of the film thus formed can be improved. Specifically, tetra i-propoxysilane, triethyl borate, tristearyl borate, triphenyl borate, tricresyl phosphate, triphenyl phosphate, iproniazide phosphate, diphenyl phosphate, phosphonoacetic acid, phosphoramidone, di-n-butyl phosphate , Triethyl phosphate, tri-n-amyl phosphate and the like. The third component not only increases the strength of the film, but also improves the chemical durability. This addition amount is 0.1 to 90 mol%.

【0012】このように作製された金属の超微粒子を独
立分散させた超微粒子分散液と有機金属化合物とを有機
溶剤に溶かした混合物あるいは上記分散液、有機金属化
合物そしてガラス骨格を形成する有機化合物とを有機溶
剤に溶かした混合物を良く攪拌した後、ガラス板等の基
板に塗布し、60〜120°Cで大気中で10分間有機
溶剤を除去して乾燥、あるいは密閉容器中で脱気しなが
ら乾燥して平坦な膜を作製する。焼成条件は、300〜
800°C、好ましくは300〜600°Cである。こ
の焼成条件は比較的緩やかであるため、基板をいため
ず、例えば安価なソーダガラスでも使用可能である。ま
た、焼成は固定した超微粒子の周りにガラス状酸化物を
生成させるため、大気中で行う。
A mixture prepared by dissolving an organic metal compound and an ultrafine particle dispersion obtained by independently dispersing the metal ultrafine particles prepared as described above or an organic metal compound or an organic compound forming a glass skeleton. After thoroughly stirring a mixture obtained by dissolving and in an organic solvent, the mixture is applied to a substrate such as a glass plate, and the organic solvent is removed in the air at 60 to 120 ° C. for 10 minutes and dried, or deaerated in a closed container. While drying, a flat film is produced. The firing conditions are 300 ~
The temperature is 800 ° C, preferably 300 to 600 ° C. The firing conditions are relatively mild, so that the substrate is not hindered. For example, inexpensive soda glass can be used. The firing is performed in the air to generate a glassy oxide around the fixed ultrafine particles.

【0013】得られた超微粒子分散ガラス状物では、超
微粒子はAl−O−あるいはTi−O−などの金属酸化
物との相互作用のために超微粒子同志が凝集せず、大き
く粒成長せずに膜中に固定される。周りのAl−O−あ
るいはTi−O−は超微粒子との相互作用のために自由
に結晶化できず、非晶質のガラスを生成し、膜の主成分
となり、光を良く透過することが可能となる。
In the obtained ultrafine particle-dispersed glassy material, the ultrafine particles do not agglomerate due to the interaction with a metal oxide such as Al-O- or Ti-O-, and the ultrafine particles grow large. Without being fixed in the membrane. The surrounding Al-O- or Ti-O- cannot freely crystallize due to the interaction with the ultrafine particles, generates amorphous glass, becomes a main component of the film, and transmits light well. It becomes possible.

【0014】上記超微粒子分散ガラス状物の組成は、金
属の超微粒子とMOX(MはAl,Ge,Sn,Sb,
Ga,Pbから選ばれてなる両性元素あるいはTi,F
e,Co,Ni,Cu,Nb,Ta,Cd,In,C
r,Mnから選ばれてなる金属元素、xは0.1〜3)
からなる非結晶の無機物の2成分からなり、上記超微粒
子の含有量が最大90モル%である。また、3成分のガ
ラス状物の組成は、金属の超微粒子、MOX、そしてガ
ラス骨格を形成する第3成分であるM’Oyからなり、
上記超微粒子の含有量が最大90モル%である。
The composition of the ultrafine particle-dispersed glass material is as follows: metal ultrafine particles and MOX (M is Al, Ge, Sn, Sb,
Amphoteric element selected from Ga, Pb or Ti, F
e, Co, Ni, Cu, Nb, Ta, Cd, In, C
a metal element selected from r and Mn, x is 0.1 to 3)
And the content of the ultrafine particles is at most 90 mol%. The composition of the three-component glassy material is composed of ultrafine metal particles, MOX, and M'Oy, which is a third component forming a glass skeleton.
The content of the ultrafine particles is at most 90 mol%.

【0015】[0015]

【作用】本発明においては、金属の超微粒子を独立分散
させた超微粒子分散液の溶剤が自由に選択できるため、
有機金属化合物もしくはガラス骨格を形成する第3成分
の種に制限を受けることがなく、各成分を溶かしたペー
スト状物に仕上げる必要もない。また、超微粒子がM−
O−(Mは両性元素あるいは金属元素)との相互作用の
ために超微粒子同志が凝集して大きく粒成長せずに、そ
の中に固定され、そして周りのM−O−は超微粒子との
相互作用のために自由に結晶化できず、非晶質のガラス
を生成する。このため、生成物では超微粒子の濃度を高
めることができ、優れた非線形光学特性を有する材料を
得ることができる。また、本発明においては、焼成温度
を比較的低くすることができるため、基板をいためるこ
とはない。
In the present invention, the solvent of the ultrafine particle dispersion in which metal ultrafine particles are independently dispersed can be freely selected.
There is no restriction on the species of the third component forming the organometallic compound or the glass skeleton, and there is no need to finish the paste into which each component is dissolved. In addition, the ultrafine particles are M-
Due to the interaction with O- (M is an amphoteric element or a metal element), the ultrafine particles are fixed in the ultrafine particles without agglomeration and large grain growth, and the surrounding MO- The crystals cannot freely crystallize due to the interaction and produce an amorphous glass. Therefore, the concentration of the ultrafine particles in the product can be increased, and a material having excellent nonlinear optical characteristics can be obtained. Further, in the present invention, the firing temperature can be made relatively low, so that the substrate is not damaged.

【0016】[0016]

【実施例】次に、本発明を具体的な実施例により更に詳
細に説明する。尚、本実施例で用いたガラス状物の評価
方法は以下の通りである。 1.ガラス状物中の超微粒子の化学状態 ガラス状物中の金属超微粒子の化学状態の測定は、金属
が結晶体であるのでX線回折法を用いる。このX線回折
装置は薄膜アタッチメントを装着したリガク社製、RI
NT1200で、入射固定角1°で2θ法によってX線
回折パターンを求めて化合物を判定する。
Next, the present invention will be described in more detail with reference to specific examples. In addition, the evaluation method of the glassy substance used in the present example is as follows. 1. Chemical state of ultrafine particles in glassy substance The chemical state of ultrafine metal particles in a glassy substance is measured by an X-ray diffraction method because the metal is a crystalline substance. This X-ray diffractometer is manufactured by Rigaku Corporation with a thin film attachment, RI
In NT1200, the compound is determined by obtaining an X-ray diffraction pattern by the 2θ method at a fixed incident angle of 1 °.

【0017】2.超微粒子、生成物の含有率 これは、原料の混合物からモル%に換算して求めた。焼
結の過程で有機成分は全て分解除去され、無機成分は全
て気化、消失の無いものとした。
2. Content of ultrafine particles and product This was determined by converting the mixture of raw materials into mol%. During the sintering process, all organic components were decomposed and removed, and all inorganic components did not vaporize or disappear.

【0018】3.粒子の粒径 これは、1で得られたX線回折パターンに見られる貴金
属のメインピークの半値幅を求め、シェラーの式から結
晶体のサイズを計算した値である。
3. This is a value obtained by determining the half-width of the main peak of the noble metal in the X-ray diffraction pattern obtained in 1 and calculating the size of the crystal from Scherrer's formula.

【0019】4.ガラス質成分の構造 1で得られたX線回折パターンによって、超微粒子以外
の回折ピークが有るか、無いかを判定した。回折ピーク
が無い場合もしくはブロードなハローが観察される時
は、非晶構造であるとした。
4. From the X-ray diffraction pattern obtained in the structure 1 of the vitreous component, it was determined whether or not there was a diffraction peak other than the ultrafine particles. When there was no diffraction peak or when a broad halo was observed, it was regarded as having an amorphous structure.

【0020】5.光学特性 ソーダガラス基板上に成膜した試料の光吸収スペクトル
をUVIDEC−650型分光光度計(日本分光工業社
製)を用いて評価した。この結果を図2に示す。
[5] Optical characteristics The light absorption spectrum of a sample formed on a soda glass substrate was evaluated using a UVIDEC-650 spectrophotometer (manufactured by JASCO Corporation). The result is shown in FIG.

【0021】実施例1 50重量%の金の超微粒子をα−テレピネオール中に分
散させた超微粒子分散液を用意した。上記分散液と有機
金属化合物としてテトラi−プロポキシチタン/Ti
(i−OC3 7 3 を所定の重量比でα−テレピネオ
ールに溶解させて良く攪拌し、これをソーダガラスの基
板上に塗布した後、密閉容器に入れ、これを120°C
にて10分間ロータリーポンプで脱気しながら溶剤を除
去するとともに乾燥した。この試料を炉中で500°
C、10分間焼成して有機物を除去するとともに、焼結
して膜状のガラス状物を得た。ガラス状物の特性を表1
に示す。
Example 1 An ultrafine particle dispersion in which 50% by weight of ultrafine gold particles were dispersed in α-terpineol was prepared. The above dispersion and tetra-i-propoxytitanium / Ti as an organometallic compound
(I-OC 3 H 7 ) 3 was dissolved in α-terpineol at a predetermined weight ratio, stirred well, applied to a soda glass substrate, placed in a closed container, and placed at 120 ° C.
The solvent was removed while drying with a rotary pump for 10 minutes while drying. 500 ° in a furnace
C: Baking for 10 minutes to remove organic substances and sintering to obtain a film-like glassy substance. Table 1 shows the properties of glassy materials.
Shown in

【0022】[0022]

【表1】 [Table 1]

【0023】この結果、ガラス状物の金超微粒子は、熱
処理後の高分子複合物の金超微粒子とほぼ同じ粒径を維
持し、Ti−O−ガラス質中に超微粒子のままで固定さ
れていることが分かる。また、膜の色調が金コロイドの
赤色と異なるコロイド色を示すことから、金とTi−O
−が相互作用したと推定される。この相互作用が超微粒
子同志の凝集、粒成長を妨げ、超微粒子をガラス質中に
固定する。
As a result, the ultrafine gold particles in the form of glass maintain almost the same particle diameter as the ultrafine gold particles in the polymer composite after the heat treatment, and are fixed as they are in the Ti-O-vitreous material. You can see that it is. Further, since the color of the film shows a colloid color different from the red color of gold colloid, gold and Ti-O
-Are presumed to have interacted. This interaction prevents aggregation and grain growth of the ultrafine particles, and fixes the ultrafine particles in the glass.

【0024】また、実施例1−3に係るガラス状物のX
線回折パターンによると、金の回折ピークがブロードな
ため、結晶子サイズが小さく、微粒子のまま固定されて
いることが明らになった。また、金以外に回折ピークが
見られないことから、TiOx は非晶構造を有している
ことが判る。また、実施例1−3に係るガラス状物の光
吸収スペクトルによると、原料である分散液の超微粒子
に見られるおよそ530nmの吸収ピークは、表面プラ
ズモンの共鳴吸収によるものと言われるもので、金赤色
を呈する。実施例1−3では、620nm付近の長波長
側に吸収ピークが移動した。この現象は、Au超微粒子
を取り囲むTi−OがAuの表面プラズモンと相互作用
したため、Auのプラズモンバンドが変化したことを示
唆している。
Further, X of the glassy material according to Example 1-3 was
The line diffraction pattern revealed that the diffraction peak of gold was broad, so that the crystallite size was small and the particles were fixed as they were. Further, since no diffraction peak is observed other than gold, it can be seen that TiO x has an amorphous structure. Also, according to the light absorption spectrum of the glassy material according to Example 1-3, the absorption peak at about 530 nm observed in the ultrafine particles of the dispersion as the raw material is said to be due to the resonance absorption of surface plasmons, It has a golden red color. In Example 1-3, the absorption peak moved to the longer wavelength side near 620 nm. This phenomenon suggests that the plasmon band of Au changed because Ti—O surrounding the Au ultrafine particles interacted with the surface plasmon of Au.

【0025】実施例2 実施例1で用いた超微粒子分散液と有機金属化合物とし
てアルミニウムオキシン錯体/Al(C9 6 NO)3
を所定の重量比でメタクレゾールに溶解させて良く攪拌
し、これをソーダガラスの基板上に塗布した後、密閉容
器に入れ、これを120°Cにて10分間、ロータリー
ポンプで脱気しながら溶剤を除去するとともに乾燥し
た。この試料を炉中で500°C、10分間焼成して有
機物を除去するとともに、焼結して膜状のガラス状物を
得た。得られたガラス状物の特性を表2に示す。
Example 2 Ultrafine particle dispersion used in Example 1 and aluminum oxine complex / Al (C 9 H 6 NO) 3 as an organometallic compound
Was dissolved in meta-cresol at a predetermined weight ratio, and the mixture was stirred well. This was applied on a soda glass substrate, and then placed in a closed container. This was deaerated with a rotary pump at 120 ° C. for 10 minutes while being deaerated. The solvent was removed and dried. This sample was baked in a furnace at 500 ° C. for 10 minutes to remove organic substances and sintered to obtain a film-like glassy substance. Table 2 shows the properties of the obtained glassy material.

【0026】[0026]

【表2】 [Table 2]

【0027】また、実施例2−3に係るガラス状物のX
線回折パターンによると、金の回折ピークがブロードな
ため、結晶子サイズが小さく、微粒子のまま固定されて
いることを示している。また、金以外に回折ピークが見
られないことから、AlOxは非晶構造を有しているこ
とが判る。また、実施例2−3に係るガラス状物の光吸
収スペクトルによりと、この実施例では吸収ピークが5
30nmから長波長側に幅広く伸びており、この現象
は、Au超微粒子を取り囲むAl−OがAuの表面プラ
ズモンと相互作用したため、Auのプラズモンバンドが
変化したことを示唆している。
Further, X of the glassy material according to Example 2-3 was
According to the line diffraction pattern, since the diffraction peak of gold is broad, the crystallite size is small, indicating that the particles are fixed as fine particles. Further, since no diffraction peak is observed except for gold, it can be seen that AlO x has an amorphous structure. Also, according to the light absorption spectrum of the glassy material according to Example 2-3, the absorption peak was 5 in this example.
The plasmon broadly extends from 30 nm to the longer wavelength side, and this phenomenon suggests that the plasmon band of Au has changed because Al—O surrounding the Au ultrafine particles interacted with the surface plasmon of Au.

【0028】実施例3 実施例1で得られた超微粒子分散液と有機金属化合物
に、第3成分としてテトラi−プロポキシシラン/Si
(i−OC3 7 4 をα−テレピネオールに溶解させ
て良く攪拌し、これをソーダガラスの基板上に塗布した
後、密閉容器に入れ、これを120°Cにて10分間、
ロータリーポンプで脱気しながら溶剤を除去するととも
に乾燥した。この試料を炉中で500°C、10分間乾
燥して有機物を除去するとともに、焼結して膜状のガラ
ス状物を得た。得られたガラス状物の特性を表3に示
す。
Example 3 The dispersion of the ultrafine particles obtained in Example 1 and the organometallic compound were mixed with tetra-i-propoxysilane / Si as a third component.
(I-OC 3 H 7 ) 4 was dissolved in α-terpineol and stirred well. This was applied on a soda glass substrate, then placed in a closed container, and placed at 120 ° C. for 10 minutes.
The solvent was removed while degassing with a rotary pump and drying was performed. This sample was dried in a furnace at 500 ° C. for 10 minutes to remove organic substances, and sintered to obtain a film-like glassy substance. Table 3 shows the properties of the obtained glassy material.

【0029】[0029]

【表3】 [Table 3]

【0030】Ti−Oが6mol%(実施例3−3)、
Al−Oが12mol%(実施例3−4)と少ない時で
も、固定された金超微粒子を高濃度に含有したAu/T
i−O/Si−OあるいはAu/Al−O/Si−Oか
らなる3成分のガラスが作製でき、しかも得られた膜の
強度を高めたり、化学的な耐久性を向上させることがで
きる。
6 mol% of Ti—O (Example 3-3),
Au / T containing high concentration of immobilized ultrafine gold particles even when Al-O content is as small as 12 mol% (Example 3-4).
A three-component glass consisting of i-O / Si-O or Au / Al-O / Si-O can be manufactured, and the strength of the obtained film can be increased and the chemical durability can be improved.

【0031】また、上記のような実施例にかかる超微粒
子分散ガラス状物の測定結果では、(1)超微粒子特有
の表面プラズモンによる共鳴吸収が現れること、(2)
特定のMOX のみが超微粒子の粒成長を阻止すること、
(3)光を透過し、プラズモンバンドが変化すること、
(4)Mがその最大酸化状態に近い化学構造を取り、M
X が非晶質であること、(5)超微粒子の含有量が最
大90モル%であること等の結果が得られている。この
ため、超微粒子分散ガラス状物は超微粒子とMOX が、
超微粒子の界面部分でM−Oと超微粒子のプラズモンが
静電気的相互作用し、最大90モル%の超微粒子を含有
したガラス状物であることが判る。
The measurement results of the ultrafine particle-dispersed glassy material according to the above-described examples show that (1) resonance absorption due to surface plasmon peculiar to the ultrafine particles appears, and (2)
That only certain MO X prevents the grain growth of ultrafine particles,
(3) transmitting the light and changing the plasmon band;
(4) M has a chemical structure close to its maximum oxidation state,
It O X is amorphous, it has been obtained results such that (5) the content of the ultrafine particles is up to 90 mol%. Thus, ultrafine particles dispersed glassy material ultrafine particles and MO X is,
It can be seen that the plasmon of the MO and the ultrafine particles interacts electrostatically at the interface between the ultrafine particles, and that the glass is a glass containing up to 90 mol% of the ultrafine particles.

【0032】比較例1 実施例1で用いた超微粒子分散液単独をソーダガラスの
基板上に塗布した後、密閉容器に入れ、これを120°
Cにて10分間、ロータリーポンプで脱気しながら溶剤
を除去するとともに乾燥した。この試料を炉中で500
°C、10分間乾燥して有機物を除去するとともに、焼
結して膜状のガラス状物を得た。また、比較例1に係る
ガラス状物のX線回折パターンによると、この試料では
ピークが鋭くて結晶子サイズが大きく、粒成長している
ことを示唆している。
COMPARATIVE EXAMPLE 1 The ultrafine particle dispersion used alone in Example 1 was applied on a soda glass substrate and then placed in a closed container, which was then placed at 120 °.
The solvent was removed while degassing with a rotary pump at C for 10 minutes and dried. This sample was placed in a furnace for 500
The resultant was dried at 10 ° C. for 10 minutes to remove organic substances, and sintered to obtain a film-like glassy substance. Further, according to the X-ray diffraction pattern of the glassy material according to Comparative Example 1, this sample has a sharp peak, a large crystallite size, and suggests that grains are growing.

【0033】比較例2 実施例1で用いた超微粒子分散液と有機金属化合物(M
−R)を所定の重量比でα−テレピネオールに溶解させ
て良く攪拌し、これをソーダガラスの基板上に塗布した
後、密閉容器に入れ、これを120°Cにて10分間、
ロータリーポンプで脱気しながら溶剤を除去するととも
に乾燥した。この試料を炉中で500°C、10分間乾
燥して有機物を除去するとともに、焼結して膜状のガラ
ス状物を得た。M−RのMとして非金属元素であるSi
を用いた。得られたガラス状物の特性を表4に示す。
Comparative Example 2 The ultrafine particle dispersion used in Example 1 and an organometallic compound (M
-R) is dissolved in α-terpineol in a predetermined weight ratio and stirred well, and the mixture is applied on a soda glass substrate, and then placed in a closed container.
The solvent was removed while degassing with a rotary pump and drying was performed. This sample was dried in a furnace at 500 ° C. for 10 minutes to remove organic substances, and sintered to obtain a film-like glassy substance. Si as a nonmetallic element as M in MR
Was used. Table 4 shows the properties of the obtained glassy material.

【0034】[0034]

【表4】 [Table 4]

【0035】この結果、比較例1で得られた膜では熱処
理時に金超微粒子は凝集、粒成長して金色の膜になっ
た。また、比較例2では、超微粒子と相互作用しない有
機金属化合物(M=Si)を使用すると、超微粒子の凝
集を阻止することができなかった。
As a result, in the film obtained in Comparative Example 1, the ultrafine gold particles aggregated and grew during the heat treatment to form a golden film. In Comparative Example 2, when an organometallic compound (M = Si) that did not interact with the ultrafine particles was used, aggregation of the ultrafine particles could not be prevented.

【0036】[0036]

【発明の効果】以上のように本発明では、金属の超微粒
子を独立分散させた超微粒子分散液の溶剤が自由に選択
でき、有機金属化合物もしくはガラス骨格を形成する第
3成分の種に制限を受けることがなく、各成分を溶かし
たペースト状物に仕上げる必要もない。また、超微粒子
同志が凝集せず粒成長が阻止され、周りのM−O−は超
微粒子との相互作用のために自由に結晶化できず、ガラ
ス状物を生成する。生成物では超微粒子の濃度を高める
ことができ、優れた非線形光学特性を有する材料を得る
ことができる。また、上記分散液と有機金属化合物との
混合物の他に、第3成分としてSi,B,Pから選ばれ
元素であるM’を含む有機化合物であるガラス骨格を
形成する成分を混入すれば、得られた膜の強度ととも
に、化学的な耐久性も向上する。
As described above, in the present invention, the solvent of the ultrafine particle dispersion liquid in which metal ultrafine particles are independently dispersed can be freely selected, and is limited to the kind of the organometallic compound or the third component forming the glass skeleton. It does not need to be finished, and it is not necessary to finish each component into a paste. In addition, the ultrafine particles do not agglomerate and the grain growth is prevented, and the surrounding MO- cannot be freely crystallized due to the interaction with the ultrafine particles, thereby producing a glassy substance. In the product, the concentration of the ultrafine particles can be increased, and a material having excellent nonlinear optical characteristics can be obtained. In addition to the mixture of the dispersion and the organometallic compound, the third component is selected from Si, B, and P.
If a component that forms a glass skeleton, which is an organic compound containing the element M ′, is mixed, the chemical durability as well as the strength of the obtained film is improved.

フロントページの続き (56)参考文献 特開 平5−270842(JP,A) 特開 平7−53239(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03B 8/02 C03C 14/00 Continuation of the front page (56) References JP-A-5-270842 (JP, A) JP-A-7-53239 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C03B 8 / 02 C03C 14/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶剤中に金属の超微粒子を独立分散させ
た超微粒子分散液と、有機金属化合物との混合物を有機
溶剤に溶解させ、これを基板上に塗布して乾燥した膜を
作製した後、焼結することを特徴とする超微粒子分散ガ
ラス状物の製造方法。
A mixture of an ultrafine particle dispersion in which metal ultrafine particles are independently dispersed in a solvent and an organic metal compound is dissolved in an organic solvent, and the mixture is applied on a substrate to produce a dried film. Thereafter, sintering is performed.
【請求項2】 有機金属化合物が金属アルコキシド、有
機金属錯体、有機酸金属塩から選ばれてなる請求項2記
載の超微粒子分散ガラス状物の製造方法。
2. The method according to claim 2, wherein the organometallic compound is selected from a metal alkoxide, an organometallic complex, and an organic acid metal salt.
【請求項3】 溶剤中に金属の超微粒子を独立分散させ
た超微粒子分散液と有機金属化合物との混合物に、M’
(M’はSi,B,Pから選ばれた元素である)で表示
される元素を含む有機化合物であるガラス骨格を形成す
る第3成分を混入してなる請求項1記載の超微粒子分散
ガラス状物の製造方法。
3. A mixture of an ultrafine particle dispersion in which metal ultrafine particles are independently dispersed in a solvent and an organometallic compound,
The ultrafine particle dispersed glass according to claim 1, further comprising a third component forming a glass skeleton, which is an organic compound containing an element represented by (M 'is an element selected from Si, B, and P). Manufacturing method of the product.
JP6210528A 1994-08-10 1994-08-10 Method for producing ultrafine particle-dispersed glassy material Expired - Fee Related JP2919748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6210528A JP2919748B2 (en) 1994-08-10 1994-08-10 Method for producing ultrafine particle-dispersed glassy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6210528A JP2919748B2 (en) 1994-08-10 1994-08-10 Method for producing ultrafine particle-dispersed glassy material

Publications (2)

Publication Number Publication Date
JPH0859296A JPH0859296A (en) 1996-03-05
JP2919748B2 true JP2919748B2 (en) 1999-07-19

Family

ID=16590862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6210528A Expired - Fee Related JP2919748B2 (en) 1994-08-10 1994-08-10 Method for producing ultrafine particle-dispersed glassy material

Country Status (1)

Country Link
JP (1) JP2919748B2 (en)

Also Published As

Publication number Publication date
JPH0859296A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
JP4761788B2 (en) Coated inorganic pigment, its production method and its use
Epifani et al. Sol–gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films
KR100886084B1 (en) Core-shell type nanoparticles and method for preparing the same
EP0598472B1 (en) Ultra-fine-particles-dispersed glassy material and method for making the same
WO2017159790A1 (en) Near-infrared shielding material microparticles, production method thereof, and near-infrared shielding material microparticle dispersion
US5707552A (en) Zinc antimonate anhydride and method for producing same
WO2017159791A1 (en) Near-infrared shielding material microparticle dispersion, near-infrared shielding body, combination structure for near-infrared shielding, and production method of these
US5906679A (en) Coating compositions employing zinc antimonate anhydride particles
WO2013039055A1 (en) Spherical magnesium hydroxide particles and magnesium oxide particles having a large specific surface area, as well as method for producing same
WO2021132450A1 (en) Near-infrared absorbing material particles, near-infrared absorbing material particle dispersing solution, and near-infrared absorbing material particle dispersion
JP2919748B2 (en) Method for producing ultrafine particle-dispersed glassy material
Chen Synthesis and characterization of ATO/SiO2 nanocomposite coating obtained by sol–gel method
WO2019216152A1 (en) Surface-treated infrared-absorbing fine particle dispersion and infrared-absorbing transparent substrate
JP2678336B2 (en) Method for producing ultrafine particle-dispersed glassy material
JP2563066B2 (en) Ultra fine particle dispersed glass and its manufacturing method
JP2535303B2 (en) Ultra fine particle dispersed glass and its manufacturing method
JP2916085B2 (en) Coloring agent for glass coloring
KR101979321B1 (en) A inorganic colar coating layer containg metal nanoparticles and method for manufauring the same
JP2012048949A (en) Gold support particle and method for producing the same, and conductive film prepared using the gold support particle and method for producing the conductive film
KR20040100981A (en) Glass particle, glass particle aggregate, and the manufacturing method of the glass particle
TWI832929B (en) Surface-treated infrared absorbing fine particle dispersion liquid and method for producing the same
JP2554594B2 (en) Coloring agent for coloring glass and method for producing the same
TW202031810A (en) Surface-treated infrared absorbing fine particle dispersion liquid and method for producing the same
JP2016074597A (en) Spherical magnesium hydroxide particle having high specific surface area and manufacturing method therefor
Suyal Synthesis of nanocomposite glass-like films containing semiconductor nanocrystals and noble bimetallic colloids by sol-gel route and their characterisation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees