JPH09301851A - Crystalline medicine particle excellent in compression molding property and production of the same compound - Google Patents

Crystalline medicine particle excellent in compression molding property and production of the same compound

Info

Publication number
JPH09301851A
JPH09301851A JP14799396A JP14799396A JPH09301851A JP H09301851 A JPH09301851 A JP H09301851A JP 14799396 A JP14799396 A JP 14799396A JP 14799396 A JP14799396 A JP 14799396A JP H09301851 A JPH09301851 A JP H09301851A
Authority
JP
Japan
Prior art keywords
particles
drug
spray
drying
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14799396A
Other languages
Japanese (ja)
Inventor
Tetsuo Shirai
徹夫 白井
Hirofumi Takeuchi
洋文 竹内
Yoshiaki Kawashima
嘉明 川島
Tatsuo Murakami
達夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Chemical Industries Co Ltd
Original Assignee
Fuji Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Chemical Industries Co Ltd filed Critical Fuji Chemical Industries Co Ltd
Priority to JP14799396A priority Critical patent/JPH09301851A/en
Publication of JPH09301851A publication Critical patent/JPH09301851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Glanulating (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain medicine crystal particles having secondary physical properties, e.g. crystal structure of medicine, excellent fluidity and extremely ready feeding in tableting and improved in compression molding properties and provide a method for producing the compound. SOLUTION: The crystalline medicine particles are obtained by suspending or dissolving a medicine such as acetoaminophenone in a medium and spraying and drying the suspension or solution. The particles has secondary physical properties, e.g. crystal structure of medicine, excellent fluidity and extremely ready feeding in tableting and is improved in compression molding properties. This method for producing the compound is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた圧縮成形性を有
する結晶性薬物粒子及び該化合物の製造方法に関する。
より詳細には、噴霧乾燥法を利用した、優れた圧縮成形
性を有する結晶性薬物の粒子及び該化合物の製造方法に
関する。
TECHNICAL FIELD The present invention relates to a crystalline drug particle having excellent compression moldability and a method for producing the compound.
More specifically, the present invention relates to particles of a crystalline drug having excellent compression moldability and a method for producing the compound, which utilizes a spray drying method.

【0002】[0002]

【従来の技術】圧縮成形性の悪い粉体を打錠(錠剤化)
する場合、一般的には成形助剤又は結合剤を配合して粒
子間の結合力を高める手法(造粒)がよく用いられる。
医薬品製剤(以下製剤)の場合、製剤の小型化を考慮す
るとこのような添加剤量はできるだけ少ない方が好まし
く、あるいは添加剤なしで粉体そのものの圧縮成形性が
高まるような粒子設計法の開発が期待されている。粉体
そのものの圧縮成形性を向上させる手段としては、粉
砕により微細化して成形体内の粒子の接触点数を増加さ
せる、あるいは粉体を非晶質化させて可塑性を高め、
圧縮過程で粒子間の密着面積を大きくし、結合力を高め
る方法などが報告されている。しかしながら、上記の
場合は、微細化によって粉体の流動性が著しく損なわ
れ、打錠時の供給が困難となるとか、粉砕によりコスト
が高くなるなどの欠点があった。また上記の非晶質化
された粉体では経時安定性に劣るなどの欠点がある。
2. Description of the Related Art Tableting of powder having poor compression moldability (tabletting)
In this case, generally, a method (granulation) in which a molding aid or a binder is blended to enhance the bonding force between particles is often used.
In the case of pharmaceutical preparations (formulations below), it is preferable that the amount of such additives is as small as possible in consideration of the miniaturization of the preparations, or the development of a particle design method that enhances the compression moldability of the powder itself without additives. Is expected. As means for improving the compression moldability of the powder itself, it is possible to increase the number of contact points of the particles in the molded body by pulverizing the powder, or to amorphize the powder to increase the plasticity,
It has been reported that the contact area between particles is increased in the compression process to increase the binding force. However, in the above case, the flowability of the powder is remarkably impaired due to the refinement, and it is difficult to supply the powder during tableting, and the cost is increased due to the crushing. Further, the above-mentioned amorphized powder has a defect such as poor stability over time.

【0003】[0003]

【発明が解決しようとする課題】本発明は、圧縮成形性
に優れた薬物結晶粒子及び該化合物の製造方法を提供す
ることを目的とする。さらに詳細には、微結晶で圧縮時
に粒子間の接触点数が増加し、粒子間の結合力が強く、
且つ優れた流動性を有し、打錠時の供給が極めて容易で
あるなどの二次物性特徴を有する圧縮成形性の改善され
た薬物結晶粒子及び該化合物の製造方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide drug crystal particles having excellent compression moldability and a method for producing the compound. More specifically, the number of contact points between particles increases when compressed with fine crystals, and the bonding force between particles is strong,
Further, it has an excellent flowability, and an object thereof is to provide a drug crystal particle having improved compression moldability, which has secondary physical characteristics such as extremely easy supply during tableting, and a method for producing the compound. To do.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために、鋭意検討した結果、圧縮成形性の悪
い薬物粉体が、噴霧乾燥法を利用することにより、結晶
形であり、且つ圧縮成形性が画期的に改善されることを
見い出した。本発明は係る知見に基づいてなされたもの
である。本発明者らが利用した噴霧乾燥法の特性とし
て、噴霧乾燥法を用いて薬物溶液を乾燥するとその乾
燥速度が速いため、薬物は微細結晶として得られること
が期待される。薬物の分子構造あるいは噴霧乾燥条件
によっては、粒子内で薬物が非晶質体、結晶多形として
得られる。噴霧乾燥粒子は球状となりやすく、流動性
に優れるなどがあげられる。本発明者らは、このような
噴霧乾燥法の特性を活かすことにより、添加剤を用いる
ことなく圧縮成形性が改善された結晶性薬物粒子を得る
ことに成功した。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a drug powder having poor compression moldability is converted into a crystalline form by using a spray drying method. It was found that the compression moldability was remarkably improved. The present invention has been made based on such findings. As a characteristic of the spray-drying method utilized by the present inventors, when a drug solution is dried by using the spray-drying method, the drying speed is high, and thus the drug is expected to be obtained as fine crystals. Depending on the molecular structure of the drug or the spray-drying conditions, the drug can be obtained as an amorphous substance or crystalline polymorph in the particles. The spray-dried particles tend to be spherical and have excellent fluidity. The present inventors have succeeded in obtaining crystalline drug particles having improved compression moldability without using an additive, by utilizing such characteristics of the spray drying method.

【0005】すなわち、本発明の第1は、媒体に薬物を
溶解させ、次いで噴霧乾燥することにより得られる安定
で且つ圧縮成形性が改善された球状結晶性薬物粒子であ
る。本発明の第2は、媒体に薬物を懸濁させ、次いで噴
霧乾燥することにより得られる安定で且つ圧縮成形性が
改善された結晶性薬物粒子である。本発明の噴霧乾燥粒
子は、微細結晶からなる結晶質であり、且つ優れた流動
性を有し、打錠時の供給が極めて容易であるなどの特徴
を有する。本発明の第1の薬物の溶液を噴霧乾燥するこ
とにより得られる結晶性薬物粒子の圧縮成形性が改善さ
れた理由としては、噴霧乾燥がその速やかな乾燥速度に
より、薬物が非常に微細な結晶として再結晶しており、
圧縮時に薬物結晶間の接触点数の増加により、その結合
力が強くなったためと考えられる。また、本発明の第2
の薬物の懸濁液を噴霧乾燥することにより得られた結晶
性薬物粒子の成形性が改善された理由としては、懸濁液
調製時に出発原料中の微粉砕粒子が選択的に溶解し、溶
解しなかった粗粉砕物表面に微結晶として沈着し、圧縮
時に薬物結晶間の接触点数の増加により、その結合力が
強くなったためと考えられる。
That is, the first aspect of the present invention is stable and crystalline crystalline drug particles having improved compression moldability, which are obtained by dissolving a drug in a medium and then spray-drying the drug. The second aspect of the present invention is stable crystalline drug particles obtained by suspending a drug in a medium and then spray-drying it, and improving compression moldability. The spray-dried particles of the present invention are characterized by being crystalline consisting of fine crystals, having excellent fluidity, and being extremely easy to supply during tableting. The reason why the compression moldability of the crystalline drug particles obtained by spray-drying the solution of the first drug of the present invention is improved is that spray-drying is due to its rapid drying rate, and thus the drug has very fine crystals. Has been recrystallized as
It is considered that the binding force became stronger due to the increase in the number of contact points between drug crystals during compression. Further, the second aspect of the present invention
The reason why the moldability of the crystalline drug particles obtained by spray-drying the drug suspension is improved is that the finely ground particles in the starting material are selectively dissolved during the suspension preparation. It is considered that fine crystals were deposited on the surface of the coarsely pulverized product, which was not processed, and the bonding force became stronger due to the increase in the number of contact points between drug crystals during compression.

【0006】上記薬物の好適なものとしては、アセトア
ミノフェン、アスピリン、エテンザミド及びフェナセチ
ンなど、より好適にはアセトアミノフェンを挙げること
ができる。媒体としては、水、又はメタノール、エタノ
ール、イソプロパノールなどのアルコール類、ジメチル
ホルムアミド、塩化メチレン、アセトン、酢酸エチルな
どの有機溶媒の群から選ばれる1種、又は水と上記有機
溶媒との混合物を挙げることができる。本発明のより好
ましい媒体としては、水、アルコール類を挙げることが
できる。さらに好ましくは、噴霧乾燥時に除去されやす
く且つ結晶形がより微細となり得るメタノールやエタノ
ールが好適である。
Preferred examples of the above drug include acetaminophen, aspirin, etenzamid and phenacetin, and more preferably acetaminophen. Examples of the medium include water, alcohols such as methanol, ethanol and isopropanol, one selected from the group of organic solvents such as dimethylformamide, methylene chloride, acetone and ethyl acetate, or a mixture of water and the above organic solvent. be able to. Examples of more preferable medium of the present invention include water and alcohols. More preferably, methanol or ethanol that is easily removed during spray drying and has a finer crystal form is suitable.

【0007】噴霧乾燥に使用する供給液は溶液、懸濁液
いずれでもよいが、本発明の中で比較すると溶液を噴霧
乾燥する方が、懸濁液を使用する場合よりも微細な結晶
粒子が凝集した球状粒子として得ることができるので好
ましい。供給液の濃度は、媒体の種類、懸濁液又は溶解
液の相違、又は処理温度などにより異なり、特に限定さ
れるものではないが、例えば、40℃で、媒体として水
を用いた場合、溶液では1〜3%、懸濁液では5〜15
%付近が好適である。
The feed liquid used for spray drying may be either a solution or a suspension, but by comparison in the present invention, spray drying the solution produces finer crystal particles than the case where a suspension is used. It is preferable because it can be obtained as aggregated spherical particles. The concentration of the supply liquid varies depending on the type of medium, the difference in suspension or solution, or the processing temperature, and is not particularly limited. For example, at 40 ° C., when water is used as the medium, the solution is 1-3% for suspension, 5-15 for suspension
% Is preferable.

【0008】噴霧乾燥は、常法に従って、例えば入口温
度、出口温度などの温度範囲、アトマイザーの回転数な
どの噴霧乾燥条件を適宜設定することにより行われる。
入口温度などの温度範囲は特に限定されないが、入口温
度は高い方がより微細な結晶が得られる。アトマイザー
の回転数も通常の噴霧乾燥で用いられる範囲である。
The spray drying is carried out according to a conventional method, for example, by appropriately setting the spray drying conditions such as a temperature range such as an inlet temperature and an outlet temperature and the number of revolutions of the atomizer.
Although the temperature range such as the inlet temperature is not particularly limited, finer crystals can be obtained when the inlet temperature is higher. The rotation speed of the atomizer is also within the range used in ordinary spray drying.

【0009】本発明の第3は、媒体に薬物を溶解させ、
次いで噴霧乾燥することを特徴とする安定で且つ圧縮成
形性が改善された球状結晶性薬物粒子の製造方法であ
る。本発明の第4は、媒体に薬物を懸濁させ、次いで噴
霧乾燥することを特徴とする安定で且つ圧縮成形性が改
善された結晶性薬物粒子の製造方法である。
The third aspect of the present invention is to dissolve a drug in a medium,
Then, the method is a method for producing spherical crystalline drug particles having stable and improved compression moldability, which is characterized by spray drying. A fourth aspect of the present invention is a method for producing crystalline drug particles which is stable and has improved compression moldability, which comprises suspending the drug in a medium and then spray-drying.

【0010】本発明の結晶性薬物粒子の有用性、すなわ
ち圧縮成形性が改善されたことを以下に詳細に述べる。
アセトアミノフェンは、単斜晶形からなる層状構造をも
つため、圧縮成形性が悪くほとんど成形しないことが知
られており、成形助剤や結合剤を多く配合するなどの製
剤的な工夫が必要とされる代表的な薬物の一つである。
The improvement of the usefulness of the crystalline drug particles of the present invention, that is, the compression moldability, will be described in detail below.
Since acetaminophen has a layered structure consisting of a monoclinic crystal, it is known that it has poor compression moldability and hardly molds. Therefore, it is necessary to devise a formulation method such as adding a large amount of molding aids and binders. It is one of the representative drugs.

【0011】本発明の製造方法で得られた各粒子の平均
粒子径は、噴霧乾燥に用いる薬物の種類、大きさ、又は
供給液の調製方法、或いは噴霧乾燥機の機種、アトマイ
ザーの回転数、乾燥温度などの条件により異なるが、特
に限定されるものではない。
The average particle diameter of each particle obtained by the production method of the present invention is the kind and size of the drug used for spray drying, the method for preparing the feed solution, the spray dryer model, the atomizer rotation speed, Although it depends on conditions such as a drying temperature, it is not particularly limited.

【0012】本発明の結晶性薬物粒子は、圧縮成形性が
改善され、且つ直接打錠することができる。また必要な
らば、常法に従って、各種の製薬担体を用いて各種製薬
形態で使用することができる。
The crystalline drug particles of the present invention have improved compression moldability and can be directly tableted. In addition, if necessary, it can be used in various pharmaceutical forms using various pharmaceutical carriers according to a conventional method.

【0013】本発明を以下の実施例でより詳細に述べ
る。なお、以下の実施例及び比較例において、アセトア
ミノフェンは、マリンクロットケミカル(株)製のファ
インパウダ−(原末)を用い、エタノ−ルは和光純薬
(株)製のものを用いた。
The invention is described in more detail in the examples below. In the following examples and comparative examples, acetaminophen used was Fine Powder (manufactured powder) manufactured by Marin Clot Chemical Co., Ltd., and ethanol was manufactured by Wako Pure Chemical Industries, Ltd. .

【0014】[0014]

【実施例】【Example】

実施例1 95%エタノ−ル3.6kg中にアセトアミノフェン
(原末)0.4kgを溶解させ供給液を調製した。次い
で、噴霧乾燥は噴霧乾燥機MM型(ニロ製)を用い、入
口温度約220℃、出口温度を約90℃、アトマイザ−
回転数25000rpmに設定して行った。得られた粉
体の平均粒子径は、41.5μmであった。
Example 1 A feed solution was prepared by dissolving 0.4 kg of acetaminophen (bulk powder) in 3.6 kg of 95% ethanol. Next, for spray drying, a spray dryer MM type (manufactured by Niro) is used, the inlet temperature is about 220 ° C, the outlet temperature is about 90 ° C, and the atomizer is used.
The rotation speed was set to 25,000 rpm. The average particle size of the obtained powder was 41.5 μm.

【0015】実施例2 40゜に保持した精製水19.6kg中にアセトアミノ
フェン(原末)0.4kgを溶解させ供給液を調製し
た。以下、実施例1と同様にして噴霧乾燥した。得られ
た粉体の平均粒子径は、31.6μmであった。
Example 2 Acetaminophen (bulk powder) 0.4 kg was dissolved in purified water 19.6 kg kept at 40 ° to prepare a feed solution. Thereafter, spray drying was performed in the same manner as in Example 1. The average particle size of the obtained powder was 31.6 μm.

【0016】実施例3 40゜に保持した精製水3.6kg中にアセトアミノフ
ェン(原末)0.4kgを懸濁させた後、コロイドミル
で均一分散させ、供給液を調製した。以下、実施例1と
同様にして噴霧乾燥した。得られた粉体の平均粒子径
は、27.1μmであった。
Example 3 Acetaminophen (powder powder) (0.4 kg) was suspended in purified water (3.6 kg) kept at 40 ° and uniformly dispersed by a colloid mill to prepare a feed solution. Thereafter, spray drying was performed in the same manner as in Example 1. The average particle size of the obtained powder was 27.1 μm.

【0017】比較例1 水再結晶品の調製 通常の再結晶法により、アセトアミノフェン(原末)を
溶解させた水溶液を冷却することにより、水再結晶品を
調製した。
Comparative Example 1 Preparation of Water Recrystallized Product A water recrystallized product was prepared by cooling an aqueous solution in which acetaminophen (original powder) was dissolved by a conventional recrystallization method.

【0018】本発明の実施例1〜3及び比較例1で得ら
れた各粉体の結晶形及び粉体特性の評価は下記に示す
1)〜6)の各種機器分析方法を用いて行った。
The crystal forms and powder characteristics of the powders obtained in Examples 1 to 3 and Comparative Example 1 of the present invention were evaluated using various instrumental analysis methods 1) to 6) shown below. .

【0019】1)粉末X線回折測定 粉末X線回折装置〔X’Pert−MPD、日本フィリ
ップス(株)製〕を用い、Monochroフィルタ
−、CuKα線、シンチレ−ションカウンタ−を用いて
電圧40KV、電流55mA、スキャンスピ−ド2゜/
分の条件下で行った。
1) Powder X-ray Diffraction Measurement A powder X-ray diffractometer [X'Pert-MPD, manufactured by Nippon Phillips KK] was used, and a voltage of 40 KV was obtained using a Monochro filter, a CuKα ray, and a scintillation counter. Current 55mA, scan speed 2 ° /
It was carried out under the condition of minutes.

【0020】2)示差査熱分析 示差走査熱量計〔DSC8230C、理学電気(株)
製〕を用い、初期温度20℃、昇温速度5℃/分の条件
で行った。
2) Differential calorimetry Differential scanning calorimeter [DSC8230C, Rigaku Denki Co., Ltd.
Manufactured by the above method) at an initial temperature of 20 ° C. and a temperature rising rate of 5 ° C./min.

【0021】3)電子顕微鏡観察 試料をイオンスパッタリング装置(JFL−1100、
JEOL(株)製)を用い、真空度10-3Torr、電
圧1.2KV、電流5mAの条件で10分間、金コ−テ
ィング処理後、走査電子顕微鏡(JSM−T200、J
EOL(株)製)により、10〜15KVの条件で写真
撮影した。
3) Electron Microscope Observation A sample is subjected to ion sputtering (JFL-1100,
JEOL Co., Ltd., using a vacuum coating of 10 −3 Torr, a voltage of 1.2 KV, and a current of 5 mA for 10 minutes, after gold coating, a scanning electron microscope (JSM-T200, JSM).
Photographs were taken under the condition of 10 to 15 KV by EOL Co., Ltd.

【0022】4) 粒子径の測定 粒子径は、レーザー散乱乾式粒度分布測定器(LDS
A、東日コンピューター)を用いて測定した。測定は、
4回行い平均粒子径を求めた。
4) Measurement of particle size The particle size is measured by a laser scattering dry particle size distribution analyzer (LDS).
(A, Tohnichi Computer). The measurement is
The average particle size was determined 4 times.

【0023】5)安息角の測定 安息角測定装置(パウダ−テスタ、ホソカワミクロン
(株)製)を用い、所定量の試料を静かに振盪させなが
ら測定用テ−ブルに落とし、テ−ブルの周囲から試料が
こぼれはじめたら振盪を停止し、分度器で安息角を測定
した。
5) Measurement of the angle of repose Using a device for measuring the angle of repose (Powder tester, manufactured by Hosokawa Micron Co., Ltd.), a predetermined amount of the sample was dropped on the measuring table while gently shaking, and the periphery of the table was measured. When the sample started to spill from, the shaking was stopped and the angle of repose was measured with a protractor.

【0024】6)ゆるみ見掛け密度と固め見掛け密度の
測定 100mlのメスシリンダ−に所定量の試料を入れ、振
盪比容積測定装置(KRS−406、蔵持科学(株)
製)を用い、タッピング前のゆるみ見掛け密度と240
回タッピング充填後の固め見掛け密度を測定した。
6) Measurement of Loose Apparent Density and Consolidation Apparent Density A predetermined amount of sample was put into a 100 ml graduated cylinder, and a shaking specific volume measuring device (KRS-406, Kuramochi Kagaku Co., Ltd.) was used.
Manufactured), and the loose apparent density before tapping and 240
The compacted apparent density after repeated tapping filling was measured.

【0025】製剤例1 下記方法により錠剤を調製し
た。本発明の上記実施例1〜3で得られた各噴霧乾燥粒
子に1%のステアリン酸マグネシウムを添加し、打錠性
・圧縮性測定装置〔タブレッティング テスタ、三協パ
イオテク(株)製〕を用いて、1錠400mg、杵臼径
11.5mm、打錠速度2.5mm/分の条件で打錠し
た。放出方法としては、通常放出及び加圧放出する2種
類の方法で行った。得られた錠剤10錠についてこの装
置で錠剤の硬度及び錠剤の厚みを測定した。
Formulation Example 1 Tablets were prepared by the following method. 1% magnesium stearate was added to each of the spray-dried particles obtained in Examples 1 to 3 of the present invention, and a tableting / compressibility measuring device [tabletting tester, manufactured by Sankyo Piotech Co., Ltd.] was used. Tablets were tabletted under the conditions of one tablet of 400 mg, punch diameter of 11.5 mm, and tableting speed of 2.5 mm / min. As the release method, two types of methods of normal release and pressure release were used. The hardness of the tablets and the thickness of the tablets of the 10 tablets thus obtained were measured with this apparatus.

【0026】本発明の錠剤と比較するために、アセトア
ミノフェン(原末)及び比較例1の水再結晶品を用い
て、製剤例1と同様にして比較試料を作成した。
For comparison with the tablet of the present invention, a comparative sample was prepared in the same manner as in Formulation Example 1 using acetaminophen (bulk powder) and the water recrystallized product of Comparative Example 1.

【0027】噴霧乾燥粒子の成形性における経時安定
性:20℃で、3ヶ月間保存後のアセトアミノフェンの
原末及び噴霧乾燥粒子を加圧放出型圧縮成形にて、圧縮
圧2000kg/cm2の条件で打錠し、得られた錠剤
10錠についてその硬度を測定し、調製直後に同様にし
て製した錠剤の硬度とt−検定で比較した。
Stability of spray-dried particles over time in moldability: The acetaminophen bulk powder and the spray-dried particles after storage at 20 ° C. for 3 months were subjected to pressure-release compression molding to obtain a compression pressure of 2000 kg / cm 2. The tablet was compressed under the conditions of 10 and the hardness of 10 tablets thus obtained was measured, and the hardness was compared with the hardness of a tablet produced in the same manner immediately after the preparation by t-test.

【0028】本発明の実施例1の製法で得られた粒子は
表面が非常になめらかな球状粒子であった。一方、実施
例2の製法で得られた粒子も同様な球状粒子であった
が、粒子表面に薬物結晶と考えられる直径が約1〜2μ
mの板状物が観察された。これらはいずれも原末や実施
例3の粒子の形状とは明らかに異なっていた。上記実施
例1及び実施例2の各噴霧乾燥粒子の電子顕微鏡写真は
後述する図1及び図2に示すとおりであった。
The particles obtained by the production method of Example 1 of the present invention were spherical particles having a very smooth surface. On the other hand, the particles obtained by the production method of Example 2 were also similar spherical particles, but the diameter thought to be drug crystals was about 1 to 2 μm on the particle surface.
Plates of m were observed. These were all clearly different from the shapes of the bulk powder and the particles of Example 3. Electron micrographs of the spray-dried particles of Examples 1 and 2 were as shown in FIGS. 1 and 2 described later.

【0029】本発明の実施例3で得られた粒子の形状は
原末に認められる微粉砕物がなくなり、比較的粒子径の
そろった板状粒子であった。これは、懸濁液調製時に微
粉が選択的に溶解し、噴霧乾燥時に粗粉砕物表面に取り
込まれた(沈着)したためと推定することができる。上
記実施例3で得られた粒子の電子顕微鏡写真は図3に示
すとおりであった。これに対して、対照品として用いた
原末の形状は直径が約5〜10μmからなる板状の微粉
砕物と直径が約50〜100μmからなる粗粉砕物がラ
ンダムに凝集した状態で混在しているのものであった。
上記原末の電子顕微鏡写真は図4に示すとおりであっ
た。
The shape of the particles obtained in Example 3 of the present invention was a plate-like particle having a relatively uniform particle size without finely pulverized material found in the bulk powder. This can be presumed to be because the fine powder was selectively dissolved at the time of preparing the suspension and was taken in (deposited) on the surface of the coarsely pulverized product at the time of spray drying. The electron micrograph of the particles obtained in Example 3 was as shown in FIG. On the other hand, the shape of the bulk powder used as a control product is a mixture of a plate-like finely pulverized product having a diameter of about 5 to 10 μm and a coarsely pulverized product having a diameter of about 50 to 100 μm mixed in a randomly aggregated state. It was something that was.
The electron micrograph of the above-mentioned bulk powder was as shown in FIG.

【0030】粉体二次物性 アセトアミノフェン(原末)と本発明の実施例1〜3又
は比較例1の製法で得られた各噴霧乾燥粒子の粉体特性
を表1に示す。
Powder Secondary Physical Properties Table 1 shows the powder characteristics of acetaminophen (bulk powder) and each spray-dried particle obtained by the production method of Examples 1 to 3 or Comparative Example 1 of the present invention.

【0031】[0031]

【表1】 [Table 1]

【0032】表1の結果から、安息角は、アセトアミノ
フェンの原末>実施例3の粒子>実施例1の粒子≧実施
例2の粒子の順に小さくなり、実施例1の粒子及び実施
例2の粒子はいずれも上記原末よりも流動性の優れた粒
子であることが明らかとなった。
From the results shown in Table 1, the angle of repose decreases in the order of acetaminophen bulk powder> particles of Example 3> particles of Example 1 ≧ particles of Example 2, and particles of Example 1 and Examples It was clarified that all of the particles of No. 2 had better fluidity than the above-mentioned bulk powder.

【0033】アセトアミノフェンの噴霧乾燥粒子の結晶
性:本発明の目的である圧縮成形性に影響を及ぼすと考
えられる粒子中の薬物の結晶性を検討した。 (1)粉末X線回折 原末、水再結晶品及び各噴霧乾燥粒子の粉末X線回折パ
タ−ンを後述する図5に示す。この図から判るように噴
霧乾燥粒子はいずれもX線的に結晶質であることが確認
された。
Crystallinity of spray-dried particles of acetaminophen: The crystallinity of the drug in the particles considered to affect the compression moldability, which is the object of the present invention, was investigated. (1) Powder X-ray Diffraction Powder X-ray diffraction patterns of powder, water recrystallized product and each spray-dried particle are shown in FIG. 5 described later. As can be seen from this figure, it was confirmed that all the spray-dried particles were X-ray crystalline.

【0034】先に示した電顕写真の観察結果を併せて考
えると、実施例1及び実施例2の製法で得られる各粒子
は溶液の乾燥過程で、その速やかな乾燥速度により非常
に微細な薬物結晶が析出し、これが凝集して球状粒子を
形成しているものと考えられる。また、これらの粒子間
の表面形状の違いは、エタノール(実施例1の粒子)の
乾燥速度が水(実施例2の粒子)より速いことに起因し
ていると考えられ、実施例1の粒子が実施例2の粒子よ
りも微細な結晶粒子で形成されているためと推定でき
る。
Considering together the observation results of the electron microscope photograph shown above, each particle obtained by the manufacturing method of Example 1 and Example 2 was very fine due to its rapid drying rate during the drying process of the solution. It is considered that drug crystals were deposited and aggregated to form spherical particles. Further, the difference in the surface shape between these particles is considered to be due to the fact that the drying rate of ethanol (particles of Example 1) is faster than that of water (particles of Example 2). Can be presumed to have been formed by finer crystal particles than the particles of Example 2.

【0035】実施例3の粒子の回折パタ−ンは実施例1
及び実施例2の粒子と同一であったが、回折強度がこれ
らよりもブロ−ドであった。既に述べたように、実施例
3の粒子は水懸濁液の調製時に微粉砕物が溶解し、それ
が噴霧乾燥過程で粗粉砕粒子表面に沈着していると考え
れる。この粗粉砕粒子表面に析出した結晶粒子が未成長
で非常に小さいためX線回折パタ−ンのピ−クがブロ−
ド化していると考えられた。
The diffraction pattern of the particles of Example 3 is the same as in Example 1.
And the particles of Example 2 were the same, but the diffraction intensity was broader than these. As described above, it is considered that the finely pulverized product of the particles of Example 3 was dissolved during the preparation of the aqueous suspension, and the finely pulverized product was deposited on the surface of the coarsely pulverized particles during the spray drying process. Since the crystal particles deposited on the surface of the coarsely pulverized particles are ungrown and very small, the peak of the X-ray diffraction pattern is blown.
It was thought to have become

【0036】(2)示差熱分析(DSC測定) アセトアミノフェン(原末)、比較例1の水再結晶品及
び実施例1〜3の各噴霧乾燥粒子のDSC測定結果は表
2に示す通りであり、融点は170.2℃〜171.2
℃の間にありほぼ同一であった。また、融点までに他の
ピ−クが認められず、いずれも同じ結晶構造であること
が確認された。融解熱量もほぼ同一であった。
(2) Differential thermal analysis (DSC measurement) The DSC measurement results of acetaminophen (bulk powder), the water recrystallized product of Comparative Example 1 and the spray-dried particles of Examples 1 to 3 are as shown in Table 2. And the melting point is 170.2 ° C to 171.2
It was between 0 ° C and almost the same. No other peak was observed up to the melting point, and it was confirmed that all had the same crystal structure. The heat of fusion was almost the same.

【0037】[0037]

【表2】 [Table 2]

【0038】アセトアミノフェンの噴霧乾燥粒子の圧縮
成形性 成形体の引っ張り強度:各噴霧乾燥粒子、水再結晶品及
び原末の圧縮成形性を錠剤の硬度で評価した。結果は以
下の表3に示す通りであった。
Compression Moldability of Spray-Dried Particles of Acetaminophen Tensile Strength of Molded Body: The compression-moldability of each spray-dried particle, water recrystallized product and bulk powder was evaluated by tablet hardness. The results were as shown in Table 3 below.

【0039】[0039]

【表3】 [Table 3]

【0040】表3の結果から明らかなように、本発明の
実施例1〜3の粒子は圧縮圧1500kg/cm2で良
好な成形体を得ることが出来た。一方、対照として用い
た原末と水再結晶品の粒子はいずれも成形性に乏しく、
圧縮圧1500kg/cm2では成形体を得ることが出
来なかった。錠剤の硬度は、実施例1〜3の粒子を用い
たものは各々4.4kg、4.0kg及び1.5kgで
あった。本発明の中で比較した場合、より好ましいの
は、通常の成形方法により、圧縮圧500kg/cm2
から良好な成形性を示す実施例1及び実施例2の粒子で
ある。上記結果から本発明の噴霧乾燥粒子が原末に比べ
て圧縮成形性が向上していることは明らかとなった。
As is clear from the results shown in Table 3, the particles of Examples 1 to 3 of the present invention were able to obtain a good compact at a compression pressure of 1500 kg / cm 2 . On the other hand, both the bulk powder and the water recrystallized particles used as controls had poor moldability,
A compact could not be obtained at a compression pressure of 1500 kg / cm 2 . The hardness of the tablets using the particles of Examples 1 to 3 was 4.4 kg, 4.0 kg and 1.5 kg, respectively. When compared in the present invention, more preferable compression pressure is 500 kg / cm 2 according to a usual molding method.
The particles of Examples 1 and 2 exhibit excellent moldability. From the above results, it was revealed that the spray-dried particles of the present invention have improved compression moldability as compared with the bulk powder.

【0041】このようにアセトアミノフェン結晶が、溶
液から噴霧乾燥法により粒子化することにより圧縮成形
性に優れる粒子へと変換された理由は、粒子特性の項で
述べたように、その速やかな乾燥速度により、乾燥過程
で微細な結晶として再結晶化しており、圧縮時に粒子間
の接触点数が増え、その結合力が大きくなったためであ
ると考えられる。また、懸濁液から製した粒子Cが原末
より圧縮成形性が優れた理由は、水懸濁液中に溶解して
いる20%相当量のアセトアミノフェンが噴霧乾燥によ
り、粗粉砕粒子上に微細な結晶粒子として沈着している
ためと考えられた。
The reason why the acetaminophen crystals were converted into particles having excellent compression moldability by forming the particles from the solution by the spray drying method as described above in terms of the particle characteristics. It is considered that fine crystals were recrystallized during the drying process depending on the drying speed, the number of contact points between particles increased during compression, and the bonding force increased. Further, the reason why the particles C produced from the suspension were superior in compression moldability to the bulk powder was that 20% of acetaminophen dissolved in the aqueous suspension was spray-dried and It was thought that this was due to the deposition as fine crystal particles.

【0042】噴霧乾燥粒子の成形性の経時安定性:本発
明の噴霧乾燥により得られる結晶性薬物粒子は極めて安
定であり、長期間保存しても成形性などの物性はほとん
ど変化せず、実用上何ら問題がないものであった。長期
保存試験は、上記粒子を20℃で3ヶ月間保存後、原末
と噴霧乾燥粒子を圧縮圧2000kg/cm2の条件下
で加圧放出型圧縮成形し、得られた錠剤の硬度を噴霧乾
燥直後の物性と比較する方法で行った。その結果、本発
明の噴霧乾燥品は、平均値で比較するといずれの粒子に
おいても長期保存試験開始時と、3ヶ月後の試料の物性
間に大きな差異は認められなかった。
Stability of spray-dried particles with respect to moldability with time: The crystalline drug particles obtained by spray-drying of the present invention are extremely stable, and physical properties such as moldability hardly change even after storage for a long period of time. There was no problem at all. In the long-term storage test, the above particles were stored at 20 ° C. for 3 months, and then the bulk powder and the spray-dried particles were subjected to pressure release type compression molding under a compression pressure of 2000 kg / cm 2 , and the hardness of the obtained tablets was sprayed. It was carried out by a method of comparing with the physical properties immediately after drying. As a result, in the spray-dried product of the present invention, no significant difference was observed between the physical properties of the sample at the start of the long-term storage test and the physical properties of the sample after 3 months when comparing the average values.

【0043】[0043]

【発明の効果】本発明により、薬物が結晶質で、優れた
流動性を有し、且つ、打錠時の臼への供給が極めて容易
であるなどの二次物性特徴を有する圧縮成形性の改善さ
れた薬物結晶粒子及び該化合物の製造方法を提供するこ
とができた。本発明の噴霧乾燥粒子は、薬物がほぼ完全
に結晶化していて、圧縮成形性が改善されている。その
理由としては、噴霧乾燥により、速やかに乾燥できるこ
と、薬物が非常に微細な結晶粒子となり粒子を構成した
ため、圧縮時に薬物結晶間の接触点数の増加により、そ
の結合力が強くなったものと考えられる。本発明の薬物
結晶粒子は、圧縮成形性が改善され、且つ直接打錠する
ことができるので医薬産業上極めて有用である。
INDUSTRIAL APPLICABILITY According to the present invention, a drug is crystalline, has excellent fluidity, and has a secondary physical property such that it is extremely easy to supply to a die during tableting. It was possible to provide an improved drug crystal particle and a method for producing the compound. In the spray-dried particles of the present invention, the drug is almost completely crystallized and the compression moldability is improved. The reason for this is considered to be that it can be dried quickly by spray drying, and that the drug became very fine crystal particles to form particles, so that the bonding force became stronger due to the increase in the number of contact points between drug crystals during compression. To be The drug crystal particles of the present invention have extremely improved compression moldability and can be directly tableted, and thus are extremely useful in the pharmaceutical industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた粒子の電子顕微鏡写真であ
る。写真の下方に示す白抜きの1目盛は10μmを示
す。
FIG. 1 is an electron micrograph of particles obtained in Example 1. The white one scale shown in the lower part of the photograph shows 10 μm.

【図2】実施例2で得られた粒子の電子顕微鏡写真であ
る。写真の下方に示す白抜きの1目盛は10μmを示
す。
FIG. 2 is an electron micrograph of particles obtained in Example 2. The white one scale shown in the lower part of the photograph shows 10 μm.

【図3】実施例3で得られた粒子の電子顕微鏡写真であ
る。写真の下方に示す白抜きの1目盛は100μmを示
す。
FIG. 3 is an electron micrograph of particles obtained in Example 3. The white one scale shown in the lower part of the photograph shows 100 μm.

【図4】アセトアミノフェンの原末の電子顕微鏡写真で
ある。写真の下方に示す白抜きの1目盛は100μmを
示す。
FIG. 4 is an electron micrograph of a bulk powder of acetaminophen. The white one scale shown in the lower part of the photograph shows 100 μm.

【図5】本発明の実施例1〜3及び比較例1で得られた
粉末のX線回折パターンを示す。縦軸(ピーク強度)は
実施例1〜3及び比較例1を比較するため、各実施例の
ものにつき任意スケールとしている。
FIG. 5 shows X-ray diffraction patterns of the powders obtained in Examples 1 to 3 of the present invention and Comparative Example 1. In order to compare Examples 1 to 3 and Comparative Example 1, the vertical axis (peak intensity) has an arbitrary scale for each Example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 2/04 7419−4H C07B 63/00 E C07B 63/00 A61K 9/14 C (72)発明者 村上 達夫 富山県中新川郡上市町横法音寺55番地 富 士化学工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location B01J 2/04 7419-4H C07B 63/00 E C07B 63/00 A61K 9/14 C (72) Invention Tatsuo Murakami 55 Hoyoji Temple, Kami-shi, Nakashingawa-gun, Toyama Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 媒体に薬物を溶解させ、次いで噴霧乾燥
することにより得られる安定で且つ圧縮成形性が改善さ
れた球状結晶性薬物粒子。
1. Stable and crystalline crystalline drug particles having improved compression moldability obtained by dissolving a drug in a medium and then spray-drying the drug.
【請求項2】 媒体に薬物を溶解させ、次いで噴霧乾燥
することを特徴とする安定で且つ圧縮成形性が改善され
た球状結晶性薬物粒子の製造方法。
2. A method for producing spherical crystalline drug particles which is stable and has improved compression moldability, which comprises dissolving the drug in a medium and then spray-drying.
【請求項3】 媒体に薬物を懸濁させ、次いで噴霧乾燥
することにより得られる安定で且つ圧縮成形性が改善さ
れた結晶性薬物粒子。
3. Stable and improved compression moldability of crystalline drug particles obtained by suspending a drug in a medium and then spray drying.
【請求項4】 媒体に薬物を懸濁させ、次いで噴霧乾燥
することを特徴とする安定で且つ圧縮成形性が改善され
た結晶性薬物粒子の製造方法。
4. A method for producing crystalline drug particles which is stable and has improved compression moldability, which comprises suspending a drug in a medium and then spray-drying.
【請求項5】 薬物がアセトアミノフェンである請求項
1又は請求項3の結晶性薬物粒子。
5. The crystalline drug particle according to claim 1 or 3, wherein the drug is acetaminophen.
【請求項6】 薬物がアセトアミノフェンである請求項
2又は請求項4の結晶性薬物粒子の製造方法。
6. The method for producing crystalline drug particles according to claim 2, wherein the drug is acetaminophen.
JP14799396A 1996-05-17 1996-05-17 Crystalline medicine particle excellent in compression molding property and production of the same compound Pending JPH09301851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14799396A JPH09301851A (en) 1996-05-17 1996-05-17 Crystalline medicine particle excellent in compression molding property and production of the same compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14799396A JPH09301851A (en) 1996-05-17 1996-05-17 Crystalline medicine particle excellent in compression molding property and production of the same compound

Publications (1)

Publication Number Publication Date
JPH09301851A true JPH09301851A (en) 1997-11-25

Family

ID=15442733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14799396A Pending JPH09301851A (en) 1996-05-17 1996-05-17 Crystalline medicine particle excellent in compression molding property and production of the same compound

Country Status (1)

Country Link
JP (1) JPH09301851A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086537A (en) * 1998-09-11 2000-03-28 Fuji Chem Ind Co Ltd Inorganic compound saccharide composition, vehicle, rapidly disintegrating compression molded product, and their production
JP2005138051A (en) * 2003-11-07 2005-06-02 Kurita Water Ind Ltd Removal material production method and removal material
JP2007246522A (en) * 2006-02-27 2007-09-27 Teva Pharmaceutical Industries Ltd Fluvastatin sodium novel forms and preparation method thereof
JP2010526860A (en) * 2007-05-16 2010-08-05 ホビオネ インテル リミテッド Method for obtaining a steroid phosphate compound
JP2015052007A (en) * 2009-05-27 2015-03-19 サムヤン バイオファーマシューティカルズ コーポレイション Poorly soluble drug containing microsphere with improved bioavailability and method of preparing the same
JP2015120699A (en) * 2008-02-08 2015-07-02 ピュラック バイオケム ビー. ブイ. Metal lactate powder and production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086537A (en) * 1998-09-11 2000-03-28 Fuji Chem Ind Co Ltd Inorganic compound saccharide composition, vehicle, rapidly disintegrating compression molded product, and their production
JP2005138051A (en) * 2003-11-07 2005-06-02 Kurita Water Ind Ltd Removal material production method and removal material
JP2007246522A (en) * 2006-02-27 2007-09-27 Teva Pharmaceutical Industries Ltd Fluvastatin sodium novel forms and preparation method thereof
JP2010526860A (en) * 2007-05-16 2010-08-05 ホビオネ インテル リミテッド Method for obtaining a steroid phosphate compound
JP2015120699A (en) * 2008-02-08 2015-07-02 ピュラック バイオケム ビー. ブイ. Metal lactate powder and production method
JP2015052007A (en) * 2009-05-27 2015-03-19 サムヤン バイオファーマシューティカルズ コーポレイション Poorly soluble drug containing microsphere with improved bioavailability and method of preparing the same
US9511026B2 (en) 2009-05-27 2016-12-06 Samyang Biopharmaceuticals Corporation Poorly soluble drug containing microspheres with improved bioavailability and method of preparing the same

Similar Documents

Publication Publication Date Title
Kaerger et al. Influence of particle size and shape on flowability and compactibility of binary mixtures of paracetamol and microcrystalline cellulose
JP4875001B2 (en) Wet granulation pharmaceutical composition of aripiprazole
JP6603306B2 (en) A new hydrate of dolutegravir sodium
JP2733259B2 (en) Porous microcellulose particles
Otsuka et al. Effect of polymorphic transformation during the extrusion-granulation process on the pharmaceutical properties of carbamazepine granules
JPH04266872A (en) Heterocyclic compound
JP2840132B2 (en) Method for producing S (+)-ibuprofen particles
Ogienko et al. A new method of producing monoclinic paracetamol suitable for direct compression
WO2021129467A1 (en) Bms-986165 crystal form, preparation method therefor and use thereof
JPS6191118A (en) Granule of thiamine salt, its production, and tablet
US3836618A (en) Process for the uniform distribution of a drug on a granulated base
Patel et al. Comparison of different granulation techniques for lactose monohydrate
Yadav et al. SOLVENT DIFFUSION (ESD) TECHNIQUE.
Feng et al. Improvement of dissolution and tabletability of carbamazepine solid dispersions with high drug loading prepared by hot-melt extrusion
Albertini et al. Evaluation of β-lactose, PVP K12 and PVP K90 as excipients to prepare piroxicam granules using two wet granulation techniques
JPH09301851A (en) Crystalline medicine particle excellent in compression molding property and production of the same compound
JP5910949B2 (en) Disintegrating core particles for pharmaceutical products
Todaro et al. Development and characterization of ibuprofen co-crystals granules prepared via fluidized bed granulation in a one-step process–a design of experiment approach
Maghsoodi et al. Design of agglomerated crystals of ibuprofen during crystallization: influence of surfactant
NOKHOUDCHI et al. An improvement of physicomechanical properties of carbamazepine crystals
Garala et al. Influence of excipients and processing conditions on the development of agglomerates of racecadotril by crystallo-co-agglomeration
JP2017071558A (en) Shock resistance-improving excipient for tablet
Elkomy et al. The influence of solid/solvent interfacial interactions on physicochemical and mechanical properties of ofloxacin
Gupta Crystallo-co-agglomeration of valsartan for improved solubility and powder flowability
Madan et al. Formulation and solid state characterization of carboxylic acid-based co-crystals of tinidazole: An approach to enhance solubility.