JP2017071558A - Shock resistance-improving excipient for tablet - Google Patents

Shock resistance-improving excipient for tablet Download PDF

Info

Publication number
JP2017071558A
JP2017071558A JP2015197732A JP2015197732A JP2017071558A JP 2017071558 A JP2017071558 A JP 2017071558A JP 2015197732 A JP2015197732 A JP 2015197732A JP 2015197732 A JP2015197732 A JP 2015197732A JP 2017071558 A JP2017071558 A JP 2017071558A
Authority
JP
Japan
Prior art keywords
crystal particles
excipient
tablet
tableting
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015197732A
Other languages
Japanese (ja)
Other versions
JP6660139B2 (en
Inventor
悠貴 保田
Yuki Yasuda
悠貴 保田
知香子 早房
Chikako Hayafusa
知香子 早房
理恵 青木
Rie Aoki
理恵 青木
めぐみ 里見
Megumi Satomi
めぐみ 里見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shoji Foodtech Co Ltd
Original Assignee
Mitsubishi Shoji Foodtech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shoji Foodtech Co Ltd filed Critical Mitsubishi Shoji Foodtech Co Ltd
Priority to JP2015197732A priority Critical patent/JP6660139B2/en
Publication of JP2017071558A publication Critical patent/JP2017071558A/en
Application granted granted Critical
Publication of JP6660139B2 publication Critical patent/JP6660139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide excipients which are tablets molded with low pressure, having high hardness, and resistant to cracking, chipping or the like, as well as which have no cost problem of requiring large quantities of particles with special physical properties.SOLUTION: An excipient for tablets comprising mannitol is characterized by that the mannitol is obtained by mixing, at a ratio of 1:99 to 50:50, spherical crystalline particles obtained by spray drying and having a repose angle of 30 to 50 degrees with precipitated crystal particles obtained by crystallizing.SELECTED DRAWING: None

Description

本発明は、粒子の形状、特性の異なるマンニトールを混合した賦形剤に関する。また当該賦形剤を使用することで、錠剤の割れやカケなど、包装時や輸送段階で錠剤に発生する損傷を低減させることができる方法及びその方法を用いた錠剤に関する。   The present invention relates to an excipient mixed with mannitol having different particle shapes and characteristics. In addition, the present invention relates to a method that can reduce damage to the tablet during packaging or in the transportation stage, such as cracking or chipping of the tablet, and a tablet using the method.

マンニトールは、その安定性、カロリーの低さ、医薬成分との反応性の低さから錠剤の賦形剤として広く使用されている。しかしながら飽和水溶液から晶出したマンニトールは、粒子同士の結合性が低く、マンニトールを賦形剤として使用した錠剤は、硬度が低いと言われており、実用的な硬度を得るためには高成形圧での打錠や、他の結合剤の配合が必要であった。しかしながら高成形圧での打錠では打錠機の杵臼の消耗につながるし、結合剤を多く配合すると、特に錠剤の中でも口腔内崩壊錠では、崩壊性に影響を及ぼし、好ましくなかった。   Mannitol is widely used as an excipient for tablets because of its stability, low calories, and low reactivity with pharmaceutical ingredients. However, mannitol crystallized from a saturated aqueous solution has a low bonding property between particles, and tablets using mannitol as an excipient are said to have low hardness. To obtain practical hardness, high molding pressure is required. Tableting and other binders were required. However, tableting at a high molding pressure leads to the consumption of the die of the tableting machine. When a large amount of binder is added, the disintegration effect is particularly adversely affected in the orally disintegrating tablet among tablets.

そこで従来、高い硬度を得ることができる直接打錠用のマンニトールが開発されてきたが、硬度が高い錠剤であっても、錠剤分包機などの使用に伴い、割れやカケなどの問題は多くなっていた。   Thus, mannitol for direct tableting that can obtain high hardness has been developed, but problems such as cracking and chipping increase with the use of tablet packaging machines, even for tablets with high hardness. It was.

さらに本出願人は、このような状況を鑑み、国際公開第2008/146590号(特許文献1)や国際公開第2010/021300号(特許文献2)に開示されるような、高い錠剤硬度の得られる特殊な物性のマンニトールの球形結晶粒子を開発していた。   Furthermore, in view of such circumstances, the present applicant has obtained high tablet hardness as disclosed in International Publication No. 2008/146590 (Patent Document 1) and International Publication No. 2010/021300 (Patent Document 2). We have been developing spherical crystal particles of mannitol with special properties.

国際公開第2008/146590号International Publication No. 2008/146590 国際公開第2010/021300号International Publication No. 2010/021300

しかしながら、依然として、低成形圧で高硬度かつ割れやカケなどが発生しづらいという課題の解決法が望まれており、一般的に求められる錠剤硬度を得るために、特許文献1や特許文献2のような特殊な物性の粒子が大量に必要となることは、コストの面からも問題となっていた。   However, there is still a demand for a solution to the problem that high hardness and low cracking and chipping are difficult to occur at a low molding pressure, and in order to obtain generally required tablet hardness, Patent Document 1 and Patent Document 2 The necessity of a large amount of particles having such special physical properties has been a problem from the viewpoint of cost.

そこで、本発明者らは、直接打錠用に開発されたマンニトールではない、一般的な晶出法で得られる、従来のマンニトールの析出結晶粒子を主成分として用いつつ、硬度が高く、かつ、錠剤の割れやカケなどを防止できる賦形剤を得るよう、各種物性のマンニトール粒子を配合し、特定の製法で得られるマンニトールを、従来のマンニトールの析出結晶粒子に特定の割合で混合した賦形剤により、課題を解決できることを見出し、本発明を完成させた。   Therefore, the present inventors are not mannitol developed for direct tableting, and are obtained by a general crystallization method, using conventional precipitated crystallization particles of mannitol as a main component, and have high hardness, and In order to obtain excipients that can prevent tablet breakage and chipping, mannitol particles with various physical properties are blended, and mannitol obtained by a specific manufacturing method is mixed with the precipitated crystal particles of conventional mannitol at a specific ratio The present inventors have found that the problem can be solved by the agent, and have completed the present invention.

すなわち、本発明の解決手段は下記の通りである。
第一に、マンニトールからなる打錠用賦形剤であって、該マンニトールが、噴霧乾燥によって得られた安息角が30〜50度であることを特徴とする球形結晶粒子と、析出結晶粒子とを、1:99から50:50の割合で混合したものであることを特徴とする打錠用賦形剤である。
第二に、前記球形結晶粒子が、アスペクト比が1.0〜1.2、試験法Aによる吸油率1が25〜40%、吸油率2が15〜30%、ゆるみかさ密度が0.4〜0.6g/ml、平均粒径が30〜50μmであることを特徴とする、上記第一に記載の打錠用賦形剤である。
第三に、前記析出結晶粒子が、平均粒径が70〜200μmであることを特徴とする、上記第一または第二に記載の打錠用賦形剤である。
第四に、上記第一から第三のいずれか一つに記載の打錠用賦形剤を使用した錠剤落下破損率低下方法である。
第五に、上記第一から第三のいずれか一つに記載の打錠用賦形剤を用いた落下破損率が低下した口腔内崩壊錠剤である。
That is, the solution of the present invention is as follows.
First, a tableting excipient comprising mannitol, wherein the mannitol has an angle of repose obtained by spray drying of 30 to 50 degrees, and precipitated crystal particles, Is an excipient for tableting characterized by being mixed at a ratio of 1:99 to 50:50.
Second, the spherical crystal particles have an aspect ratio of 1.0 to 1.2, an oil absorption rate 1 according to Test Method A of 25 to 40%, an oil absorption rate 2 of 15 to 30%, and a loose bulk density of 0.4. The excipient for tableting according to the first aspect, characterized in that it has a particle size of ˜0.6 g / ml and an average particle size of 30-50 μm.
Third, the precipitated crystal particle is an excipient for tableting according to the first or second aspect, wherein the average particle size is 70 to 200 μm.
Fourthly, there is a method for decreasing the tablet drop breakage rate using the tableting excipient according to any one of the first to third.
Fifth, it is an orally disintegrating tablet having a reduced drop breakage rate using the tableting excipient according to any one of the first to third.

以下に本発明の詳細を説明する。   Details of the present invention will be described below.

本発明において、マンニトールの球形結晶粒子は噴霧乾燥によって得られたものであり、噴霧乾燥とは乾燥塔内の熱風気流中にマンニトールの溶液や懸濁液を微細噴霧し、溶媒を蒸発させて粒子を得る方法である。この方法で得られた粒子は、溶媒の蒸発によって、粒子内に空洞を有することを特徴とし、また乾燥塔内に噴霧された液滴が空中で乾燥し粒子化するため、球形の粒子構造を有するために、流動性の良い粒子を得ることが出来る。   In the present invention, the spherical crystal particles of mannitol are obtained by spray drying, and spray drying is a particle obtained by finely spraying a solution or suspension of mannitol in a hot air stream in a drying tower and evaporating the solvent. Is the way to get. The particles obtained by this method are characterized by having voids in the particles due to evaporation of the solvent, and the droplets sprayed in the drying tower are dried and granulated in the air, so that a spherical particle structure is formed. Therefore, particles having good fluidity can be obtained.

ここで、本発明においては、球形結晶粒子とは、噴霧乾燥によって得られた球状の構造を内包する粒子のことを意味する。粒子そのものの形状が球状であってもいいし、球状の構造がいくつか寄り集まったような粒子の形状であってもよい。   Here, in the present invention, the spherical crystal particle means a particle containing a spherical structure obtained by spray drying. The shape of the particle itself may be spherical, or may be a particle shape in which several spherical structures are gathered.

また、流動性は安息角で表すことが出来る。安息角は、粉体を円盤上に自然落下させた状態で形成される山の角度であり、以下のように設定したパウダーテスタPT−X(ホソカワミクロン株式会社製)により測定する。試料用ホッパーは振動幅1mmの設定でホッパーを振動させ、目開き710μmの網、排出ロート、ノズル(内径7.8mm)を通し、安息角試料台の円盤上に落下させ山を作る。この条件により形成された粉体の山の角度が、パウダーテスタPT−Xによる画像解析の結果、測定値としてあらわされる。   In addition, fluidity can be expressed in terms of angle of repose. The angle of repose is an angle of a mountain formed when the powder is naturally dropped on the disk, and is measured by a powder tester PT-X (manufactured by Hosokawa Micron Corporation) set as follows. The sample hopper is oscillated with a setting of a vibration width of 1 mm, passed through a mesh having a mesh opening of 710 μm, a discharge funnel, and a nozzle (inner diameter 7.8 mm), and dropped onto a disk of an angle of repose sample table to form a mountain. The angle of the peak of the powder formed under these conditions is expressed as a measured value as a result of image analysis by the powder tester PT-X.

本発明においては、マンニトールの球形結晶粒子と析出結晶粒子を混合することから、2種の粒子を混合した際に析出結晶粒子中に球形結晶粒子が均一にいきわたるために、球形結晶粒子の流動性は重要である。このような理由から本発明に係る球形結晶粒子において、安息角は30〜50度が好ましく、より好ましくは35〜45度である。   In the present invention, since the spherical crystal particles of mannitol and the precipitated crystal particles are mixed, the spherical crystal particles are uniformly distributed in the precipitated crystal particles when the two kinds of particles are mixed. Is important. For these reasons, the angle of repose is preferably 30 to 50 degrees, more preferably 35 to 45 degrees in the spherical crystal particle according to the present invention.

また、球形結晶粒子がより真球度が高く、空隙を多く有する中空構造でありながら、微細な粒子であるほうが、本発明の効果を顕著に得ることが出来る。これは、中空構造であるほうが塑性変形しやすいことから、打錠時に、粒子表面における隣接粒子間のみならず、中空構造の内部においても粒子間の接着面が付与されるため、打錠性が良くなることに起因すると考えられる。また、微細粒子であるほど、比表面積が広くなるため、この特性も粒子間の接着面の増加に寄与し、錠剤硬度が上がりやすい。   In addition, the spherical crystal particles have a higher sphericity and a hollow structure having many voids, but the finer particles can achieve the effect of the present invention more remarkably. This is because the hollow structure is more likely to be plastically deformed, so that at the time of tableting, not only between adjacent particles on the particle surface, but also an inside surface of the hollow structure gives an adhesive surface between the particles, so that tabletability is improved. This is thought to be due to improvement. Further, the finer the particles, the larger the specific surface area. This characteristic also contributes to an increase in the adhesion surface between the particles, and the tablet hardness tends to increase.

したがって、球形結晶粒子の真球度を表すアスペクト比が1.0〜1.2であることが好ましく、粒子の空隙を表す吸油率について、以下に表す方法で測定した吸油率1が25〜40%、吸油率2が15〜30%であることが好ましい。   Therefore, the aspect ratio representing the sphericity of the spherical crystal particles is preferably 1.0 to 1.2, and the oil absorption 1 representing the voids of the particles is 25 to 40 as measured by the method described below. %, And the oil absorption 2 is preferably 15 to 30%.

本発明におけるアスペクト比とは、粒子の長軸と短軸との比であり、真球度を示す目安となるものである。長軸、短軸の比は、試料粒子を電子顕微鏡(TM−3000、株式会社日立ハイテクノロジーズ製)を用いて拡大倍率200倍程度で写真撮影し、30個の球形結晶粒子について長軸の長さ(長径)と長軸の中点から垂直に引いた短軸の長さ(短径)を各々測定し、各々について短径に対する長径の比を求め、30個の平均値で示したものである。   The aspect ratio in the present invention is a ratio between the major axis and the minor axis of a particle and serves as a standard indicating sphericity. The ratio of the major axis to the minor axis is determined by taking a photograph of the sample particles with an electron microscope (TM-3000, manufactured by Hitachi High-Technologies Corporation) at an enlargement ratio of about 200 times. Measure the length (major axis) and the length (minor axis) of the minor axis perpendicularly drawn from the midpoint of the major axis, find the ratio of the major axis to the minor axis for each, and show the average value of 30 is there.

アスペクト比が1.0〜1.2であれば、球形結晶粒子の流動性はさらに好ましいものとなり、析出結晶粒子との混合が均一になるし、真球度の高い粒子を析出結晶粒子と混合した賦形剤は、他成分との均一混合が可能となり、含量均一性に優れる。   If the aspect ratio is 1.0 to 1.2, the flowability of the spherical crystal particles becomes more preferable, the mixing with the precipitated crystal particles becomes uniform, and the particles with high sphericity are mixed with the precipitated crystal particles. The obtained excipient can be uniformly mixed with other components and is excellent in content uniformity.

なお、本発明における試験法Aによる吸油率とは以下の通りである。中鎖脂肪酸トリグリセライド(花王株式会社製、ココナードMT)30gと試料マンニトール15gを100mLのガラス製ビーカーに入れ、粉体を破砕しないように穏やかにスパチュラで油と粉末試料とをかき混ぜたのち、真空定温乾燥機(VOS−300D、EYELA社製)に入れ、室温で0.67Paまで減圧して3時間油を含浸させる。   In addition, the oil absorption rate by the test method A in this invention is as follows. Place 30g of medium chain fatty acid triglyceride (Coconard MT, manufactured by Kao Corporation) and 15g of mannitol sample into a 100mL glass beaker, gently mix the oil and powder sample with a spatula so as not to crush the powder, It puts into drying machine (VOS-300D, the product made by EYELA), and decompresses to 0.67 Pa at room temperature, and impregnates oil for 3 hours.

次に、目開き45μm(325メッシュ)のろ布を敷いた遠沈管(底に孔のあるもの)に移し、遠心分離機(株式会社コクサン製、H−500R)を1300Gに設定して10分間遠心分離する。遠心分離後の試料入り遠沈管重量と遠沈管風袋重量の測定値から遠心分離後に遠沈管内に残った粉末試料の重量(重量a)を求め、下記式1により計算された値を吸油率1とする。   Next, the sample is transferred to a centrifuge tube (having a hole at the bottom) covered with a filter cloth having an opening of 45 μm (325 mesh), and the centrifuge (Hokusan Co., Ltd., H-500R) is set to 1300 G for 10 minutes. Centrifuge. The weight (weight a) of the powder sample remaining in the centrifuge tube after centrifugation is obtained from the measured value of the centrifuge tube containing the sample after centrifugation and the weight of the centrifuge tube tare, and the value calculated by the following equation 1 is the oil absorption rate 1 And

吸油率1(%)=[(重量a−15)/15]×100 (式1)   Oil absorption 1 (%) = [(weight a-15) / 15] × 100 (formula 1)

更に、100mLのガラス製ビーカーに遠心分離後の試料入り遠沈管を入れ、n−ヘキサン20gを粉末試料の上から加え、遠心分離機を1300Gに設定して10分間遠心分離する。次に、遠心分離後の試料入り遠沈管重量と遠沈管風袋重量の測定値から遠心分離後に遠沈管内に残った粉末試料の重量(重量b)を求め、下記式2により計算された値を吸油率2とする。   Further, the centrifuge tube containing the sample after centrifugation is put into a 100 mL glass beaker, 20 g of n-hexane is added from above the powder sample, and the centrifuge is set to 1300 G and centrifuged for 10 minutes. Next, the weight (weight b) of the powder sample remaining in the centrifuge tube after centrifugation is obtained from the measured value of the centrifuge tube containing the sample after centrifugation and the centrifuge tube tare weight, and the value calculated by the following equation 2 is obtained. Oil absorption rate is 2.

吸油率2(%)=[(重量b−15)/15]×100 (式2)   Oil absorption 2 (%) = [(weight b−15) / 15] × 100 (Formula 2)

また、球形結晶粒子の平均粒径は30〜50μmであることが好ましい。平均粒径が30μmより小さくなると、混合物を得る際に偏析が起こりやすくなるし、また混合物をそのまま打錠した際に、微細な粒子が打錠機内で杵臼間のクリアランスに入りこみ、打錠障害がおこりやすい。一方、平均粒径が50μmより大きくなると、得られる錠剤の硬度はわずかに下がる。これは粒子同士の接点が多いほど、結着点が増えることに起因すると考えられる。   Moreover, it is preferable that the average particle diameter of a spherical crystal particle is 30-50 micrometers. When the average particle size is smaller than 30 μm, segregation is likely to occur when the mixture is obtained, and when the mixture is tableted as it is, fine particles enter the clearance between the millstones in the tableting machine, and the tableting trouble is disturbed. Easy to happen. On the other hand, when the average particle size is larger than 50 μm, the hardness of the resulting tablet slightly decreases. This is considered to be caused by the fact that the number of contact points between the particles increases the number of binding points.

ここで、上記の平均粒径は粉体のメジアン径を表し、レーザー回折式の粒度分布計で知ることが出来る。レーザー回折式の粒度分布計としてはマイクロトラック・ベル株式会社のMicrotrac MT3000を好適な例として使用することが出来、水溶性のマンニトールを測定する方法として、イソプロパノールを溶媒として、溶媒中で分散した湿式状態で測定を行うことがよい。   Here, the above average particle diameter represents the median diameter of the powder, and can be known with a laser diffraction particle size distribution meter. As a laser diffraction particle size distribution analyzer, Microtrac MT3000 manufactured by Microtrac Bell Co., Ltd. can be used as a suitable example. As a method for measuring water-soluble mannitol, wet method in which isopropanol is used as a solvent and dispersed in the solvent. It is better to measure in the state.

また、本発明の球形結晶粒子は、ゆるみかさ密度が0.4〜0.6g/mlとなるものが好ましい。本発明の球形結晶粒子は、空隙を多く有する構造であるが、ゆるみかさ密度が0.4より低いものは得難いし、0.6より高いものは、空隙が少なく本発明の効果を奏さない。   The spherical crystal particles of the present invention preferably have a loose bulk density of 0.4 to 0.6 g / ml. The spherical crystal particles of the present invention have a structure having many voids, but it is difficult to obtain particles having a loose bulk density lower than 0.4, and particles having a loose bulk density of less than 0.6 do not have the effects of the present invention because there are few voids.

本発明におけるゆるみかさ密度とは、粉体を所定の容器内に自然落下させた状態の充填密度であり、パウダーテスタPT−X(ホソカワミクロン株式会社製)を用いて以下の方法で測定する。   The loose bulk density in the present invention is a packing density in a state where powder is naturally dropped in a predetermined container, and is measured by the following method using a powder tester PT-X (manufactured by Hosokawa Micron Corporation).

測定円台に試料容器(容積100mL)を置き、試料用ホッパーは振動幅1mmの設定でホッパーを振動させ、目開き710μmの網を通して試料を落下させ試料容器に山盛りに充填し、試料容器の上部においてすり切りヘラですり切りし、その重量を測定する。一種類の試料について同じ操作を3度繰り返し、その平均値をゆるみかさ密度とする。   Place the sample container (volume: 100 mL) on the measuring platform, and the sample hopper vibrates with the setting of the vibration width of 1 mm, drop the sample through the mesh of 710 μm mesh, fill the sample container in the heap, and the upper part of the sample container In, cut with a spatula and measure the weight. The same operation is repeated three times for one type of sample, and the average value is defined as the loose bulk density.

次に、本発明の析出結晶粒子は、当業者によって従来知られている飽和水溶液からの結晶化方法で得ることが出来る。   Next, the precipitated crystal particles of the present invention can be obtained by a crystallization method from a saturated aqueous solution conventionally known by those skilled in the art.

つまり、マンニトールを水、アルコールなどの溶媒に溶解させ飽和溶液を準備したのち、加熱状態または冷却状態にすることにより過飽和をもたらし、種結晶を添加又は添加せず、結晶を析出させ、さらに結晶成長段階を経てもよく、溶媒中に結晶が得られるよう制御する。その後、濾過や遠心分離などで溶媒から結晶体のみを分離することで結晶を回収し、回収した結晶を乾燥し析出結晶粒子が得られる。得られた析出結晶粒子の結晶型はα、β、γのいずれの結晶型でも構わないが、β型結晶が最も安定で、一般的に入手しやすい。また、その結晶形状は針状であり、結晶化の際に溶媒中に析出した細長い形状の結晶、およびその長辺方向で配向した結晶の寄り集まりであることが多く、粉砕機などによる物理的微細化を受けていないものを本発明の析出結晶粒子という。   In other words, after preparing saturating solution by dissolving mannitol in water, alcohol or other solvent, heating or cooling can cause supersaturation, with or without seed crystals added, crystals can be precipitated, and crystal growth Steps may be taken and controlled to obtain crystals in the solvent. Thereafter, the crystal is recovered by separating only the crystal from the solvent by filtration or centrifugation, and the recovered crystal is dried to obtain precipitated crystal particles. The crystal form of the obtained precipitated crystal particles may be any of α, β, and γ, but β-type crystals are the most stable and are generally readily available. In addition, the crystal shape is needle-like, and is often a cluster of elongated crystals precipitated in the solvent during crystallization and crystals oriented in the long side direction. Those that have not been refined are referred to as precipitated crystal particles of the present invention.

析出結晶粒子の平均粒径は70〜200μmであることが好ましい。平均粒径が70μmより小さいものは、流動性が悪く、混合などの作業効率が劣るし、平均粒径が200μmより大きくなると、球形結晶粒子同様、得られる錠剤の硬度が下がる。   The average particle size of the precipitated crystal particles is preferably 70 to 200 μm. When the average particle size is less than 70 μm, the fluidity is poor and the working efficiency of mixing and the like is poor, and when the average particle size is greater than 200 μm, the hardness of the resulting tablet decreases as with the spherical crystal particles.

また、析出結晶粒子は安息角が35〜55度であることが好ましい。溶液から析出させたマンニトールの結晶は針状の長細い形状の多面体であり、55度より大きくなると流動性が非常に悪く、混合の際、粒子が偏析するため好ましくない為である。   Moreover, it is preferable that the angle of repose of the precipitated crystal particles is 35 to 55 degrees. This is because the crystals of mannitol precipitated from the solution are needle-like long and thin polyhedrons, and when it exceeds 55 degrees, the fluidity is very poor and the particles segregate during mixing, which is not preferable.

本発明は、これまで説明したような球形結晶粒子と析出結晶粒子を特定の割合で混合し賦形剤とする。その混合割合は、球形結晶粒子:析出結晶粒子が質量比で1:99から50:50であり、好ましくは30:70から50:50である。球形結晶粒子のごく少量の添加でも、本発明の効果である錠剤の割れやカケを低減することが出来るが、球形粒子が析出結晶粒子間に、適度に存在することで、球形結晶粒子の微細結晶が錠剤の割れやカケを低減する効果に寄与すると考えられる。   In the present invention, spherical crystal particles and precipitated crystal particles as described above are mixed at a specific ratio to obtain an excipient. The mixing ratio of spherical crystal particles: precipitated crystal particles is 1:99 to 50:50, preferably 30:70 to 50:50, by mass ratio. Even with the addition of a very small amount of spherical crystal particles, it is possible to reduce the cracking and chipping of the tablet, which is the effect of the present invention. However, since the spherical particles are appropriately present between the precipitated crystal particles, the fineness of the spherical crystal particles can be reduced. It is considered that the crystals contribute to the effect of reducing tablet breakage and chipping.

また、球形結晶粒子:析出結晶粒子の混合比率において、50:50の割合よりも球形結晶粒子が多い場合は、球形結晶粒子の特性により、錠剤の割れやカケを低減することはできるが、賦形剤中に析出結晶粒子が多い場合に、球形結晶粒子を少量添加するだけで、錠剤の割れやカケを顕著に低減できることは、驚くべきことであった。   In addition, when the spherical crystal particles: the precipitated crystal particles are mixed in a larger proportion than the 50:50 ratio, it is possible to reduce tablet breakage and chipping due to the characteristics of the spherical crystal particles. It was surprising that when there are many precipitated crystal particles in the form, it is possible to remarkably reduce tablet breakage and chipping by simply adding a small amount of spherical crystal particles.

また、本発明の賦形剤の使用態様としては、球形結晶粒子と析出結晶粒子を混合したものを、そのまま賦形剤として、他の錠剤の原料である、薬理活性成分や他の賦形剤、崩壊剤、滑沢剤などと混合して直接打錠してもよいが、球形結晶粒子と析出結晶粒子を混合したあとに造粒してから、錠剤用賦形剤として使用することが好ましい。これは、形状・大きさの異なる球形結晶粒子と析出結晶粒子の混合物中で、球形結晶粒子が偏在することを防ぎ、均一に球形結晶粒子が存在することで、本発明の効果をより得られる状態となるためである。   In addition, as a use mode of the excipient of the present invention, a mixture of spherical crystal particles and precipitated crystal particles is used as it is as an excipient, and a pharmacologically active ingredient or other excipient which is a raw material for other tablets. It may be directly tableted by mixing with a disintegrant, a lubricant, etc., but it is preferably used as an excipient for tablets after granulating after mixing spherical crystal particles and precipitated crystal particles. . This prevents the spherical crystal particles from being unevenly distributed in the mixture of spherical crystal particles and precipitated crystal particles having different shapes and sizes, and the effect of the present invention can be further obtained by uniformly presenting the spherical crystal particles. This is because it becomes a state.

なお、球形結晶粒子と析出結晶粒子の混合は、粉体を均一に混合できる方法であれば、任意の方法でよく、タンブラー型混合機やV型混合機などを用いることが出来る。また、球形結晶粒子と析出結晶粒子の造粒は、撹拌造粒機、流動層造粒乾燥機や押出し造粒機など従来知られた方法で良いが、流動層造粒乾燥機で任意の結着剤をバインダーとして噴霧しながら造粒することが、球形結晶粒子が析出結晶粒子の粒子間に均一に分散した状態で固定され、適度な凝集をもたらすことから好ましい。   The spherical crystal particles and the precipitated crystal particles can be mixed by any method as long as the powder can be uniformly mixed, and a tumbler mixer, a V mixer, or the like can be used. The spherical crystal particles and the precipitated crystal particles may be granulated by a conventionally known method such as an agitation granulator, a fluidized bed granulator / dryer or an extrusion granulator. It is preferable to perform granulation while spraying the adhesive as a binder, since the spherical crystal particles are fixed in a state of being uniformly dispersed between the precipitated crystal particles and cause appropriate aggregation.

以下に、実施例に基づいて本発明の内容を詳細に説明するが、本発明の技術範囲は以下の例に限定されるものではない。   Hereinafter, the contents of the present invention will be described in detail based on examples, but the technical scope of the present invention is not limited to the following examples.

析出結晶粒子のみを賦形剤として用いた錠剤と、析出結晶粒子に球形結晶粒子を混合した賦形剤を用いた錠剤を作成し、本発明の効果である錠剤の割れやカケの程度を比較した。   Create tablets using only precipitated crystal particles as excipients and tablets using spherical crystal particles mixed with precipitated crystal particles, and compare the degree of tablet cracking and chipping that are the effects of the present invention did.

比較の方法は次のようにした。錠剤45錠を15錠ずつに分けて各1回、1.5mの高さから大理石平面へ落下させ、割れやカケが発生した錠剤の数を、試験に供した錠剤の全数で除した値を落下破損率とした。対照となる析出結晶粒子のみを賦形剤として用いた場合の錠剤の落下破損率を求め、同目標硬度の試験区で比較し、球形結晶粒子と析出結晶粒子を混合した場合、どの程度落下破損率が改善されたかを以下の式で求めた。   The comparison method was as follows. 45 tablets divided into 15 tablets each time, dropped from a height of 1.5 m onto a marble plane, and divided by the total number of tablets used in the test. The drop breakage rate was used. Find the drop breakage rate of the tablet when only the precipitated crystal particles as the control are used as excipients, compare with the test section of the same hardness, and how much drop breakage when the spherical crystal particles and precipitated crystal particles are mixed It was calculated | required with the following formula | equation whether the rate was improved.

落下破損改善率(%)=[1−(実施例落下破損率/対照例落下破損率)]×100   Drop breakage improvement rate (%) = [1- (Example drop breakage rate / Control drop drop breakage rate)] × 100

ただし、高硬度の錠剤となるよう成形圧を設定して、対照となる析出結晶粒子のみを賦形剤として用いた場合の錠剤を製造した場合に、打錠時に既に割れなどが起きるキャッピングなどが起きた条件では、全数破損とみなして落下破損率を100%とし、同目標硬度の試験区で、球形結晶粒子と析出結晶粒子を混合した場合の錠剤の落下破損率の改善率について上記の式で求めた。   However, when the molding pressure is set so that the tablet has a high hardness and only the precipitated crystal particles as a control are used as an excipient, capping, etc., in which cracking or the like has already occurred during tableting may occur. Under the conditions that occurred, it was assumed that the total damage was assumed to be 100%, and in the test group with the same target hardness, the above formula was used to improve the drop damage rate of the tablet when spherical crystal particles and precipitated crystal particles were mixed. I asked for it.

[対照例1]
析出結晶粒子として、三菱商事フードテック社製のマンニットSを用いた。粉体の平均粒径などの物性を表1に示す。この析出結晶粒子のみを賦形剤として使用して錠剤を作成した。錠剤は、賦形剤を流動層造粒機によってヒドロキシプロピルセルロース(日本曹達社製「HPC−SSL」)8%溶液をバインダーとして、賦形剤となる粉体仕込み重量に対してヒドロキシプロピルセルロースの固形量を1%となるように噴霧して造粒した賦形剤造粒物を99質量部、崩壊剤(BASFジャパン社製「コリドンCL−F」)1質量部を均一に混合したのちに、この混合物と滑沢剤としてのステアリン酸マグネシウム1質量部とを混合し、φ8mm隅丸の形状で重量180mgとなるよう単発式打錠機(ナノシーズ社製「NS−T100」)を用いて打錠した。打錠圧は、硬度が5kgfとなるよう打錠時の荷重・厚みを適宜変更して錠剤を製造する打錠条件とした。なお、錠剤硬度は、打錠して得られた錠剤から5錠について硬度計(富山産業社製「TH−303MP」)を用いて測定し、平均値を採用した。
[Control Example 1]
As the precipitated crystal particles, Mannitol S manufactured by Mitsubishi Corporation Foodtech was used. Table 1 shows the physical properties such as the average particle diameter of the powder. A tablet was prepared using only the precipitated crystal particles as an excipient. Tablets were prepared by using a fluidized bed granulator with a hydroxypropylcellulose (“HPC-SSL” manufactured by Nippon Soda Co., Ltd.) 8% solution as a binder, After uniformly mixing 99 parts by mass of the excipient granulated product that has been granulated by spraying so that the solid content becomes 1% and 1 part by mass of the disintegrant (“Collidon CL-F” manufactured by BASF Japan) The mixture and 1 part by mass of magnesium stearate as a lubricant are mixed and punched using a single-punch tableting machine (“NS-T100” manufactured by Nano Seeds Co., Ltd.) so that the weight is 180 mg in the shape of φ8 mm round corners. Locked. The tableting pressure was set to the tableting conditions for producing tablets by appropriately changing the load and thickness at the time of tableting so that the hardness was 5 kgf. The tablet hardness was measured using a hardness meter (“TH-303MP” manufactured by Toyama Sangyo Co., Ltd.) for 5 tablets from the tablets obtained by tableting, and an average value was adopted.

得られた錠剤について、硬度と落下破損率を表2に示す。   Table 2 shows the hardness and drop breakage rate of the obtained tablets.

噴霧乾燥で得られた球形結晶粒子として三菱商事フードテック社製のマンニットQを、析出結晶粒子として対照例1と同じマンニットSを用い、1:99の比率で混合して賦形剤として用いて錠剤を製造した。使用したマンニットQの平均粒径などの物性を表1に示す。錠剤は、対照例1と同様に賦形剤を造粒したのち、他の錠剤原料と混合して打錠して得た。得られた錠剤について、硬度と落下破損率、落下破損改善率を表2に示す。   Manitite Q manufactured by Mitsubishi Corporation Foodtech Co., Ltd. as spherical crystal particles obtained by spray drying, and Mannit S same as Control Example 1 as precipitated crystal particles were mixed at a ratio of 1:99 as an excipient. Used to make tablets. Table 1 shows the physical properties such as the average particle size of the Mannit Q used. Tablets were obtained by granulating excipients in the same manner as in Control Example 1, and then mixing with other tablet raw materials and tableting. Table 2 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

球形結晶粒子と析出結晶粒子の比率を、5:95とした以外は、実施例1と同様にして、錠剤を得た。得られた錠剤について、硬度と落下破損率、落下破損改善率を表2に示す。   A tablet was obtained in the same manner as in Example 1 except that the ratio of the spherical crystal particles to the precipitated crystal particles was 5:95. Table 2 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

球形結晶粒子と析出結晶粒子の比率を、10:90とした以外は、実施例1と同様にして、錠剤を得た。得られた錠剤について、硬度と落下破損率、落下破損改善率を表2に示す。   A tablet was obtained in the same manner as in Example 1 except that the ratio of spherical crystal particles to precipitated crystal particles was 10:90. Table 2 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

球形結晶粒子と析出結晶粒子の比率を、30:70とした以外は、実施例1と同様にして、錠剤を得た。得られた錠剤について、硬度と落下破損率、落下破損改善率を表2に示す。   A tablet was obtained in the same manner as in Example 1 except that the ratio of the spherical crystal particles to the precipitated crystal particles was 30:70. Table 2 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

球形結晶粒子と析出結晶粒子の比率を、50:50とした以外は、実施例1と同様にして、錠剤を得た。得られた錠剤について、硬度と落下破損率、落下破損改善率を表2に示す。   A tablet was obtained in the same manner as in Example 1 except that the ratio of the spherical crystal particles to the precipitated crystal particles was 50:50. Table 2 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

Figure 2017071558
Figure 2017071558

Figure 2017071558
Figure 2017071558

[対照例2]
析出結晶粒子として、対照例1とは別のロットのマンニットSを用い、対照例1と同様に造粒し、賦形剤造粒物を得た。この賦形剤造粒物98.5質量部、崩壊剤(コリドンCL−F)を1質量部、導水剤として二酸化ケイ素(日本アエロジル社製「アエロジル200」)0.5質量部を均一に混合したのちに、この混合物と滑沢剤としてのステアリン酸マグネシウム1質量部とを混合し、対照例1と同様に単発式打錠機を用いて打錠した。打錠圧は、硬度が5kgfとなるよう打錠時の荷重・厚みを適宜変更して錠剤を製造する打錠条件とした。なお、使用したマンニットSの物性を表3に示し、得られた錠剤について、硬度と、落下破損率を表4に示す。
[Control Example 2]
Mannitite S of a lot different from that of Control Example 1 was used as the precipitated crystal particles, and granulated in the same manner as in Control Example 1 to obtain an excipient granulated product. 98.5 parts by mass of this excipient granulated product, 1 part by mass of disintegrant (Kollidon CL-F), and 0.5 parts by mass of silicon dioxide (“Aerosil 200” manufactured by Nippon Aerosil Co., Ltd.) as a water-conducting agent are uniformly mixed. After that, this mixture was mixed with 1 part by mass of magnesium stearate as a lubricant, and tableting was performed using a single tableting machine as in Control Example 1. The tableting pressure was set to the tableting conditions for producing tablets by appropriately changing the load and thickness at the time of tableting so that the hardness was 5 kgf. The physical properties of the used Mannit S are shown in Table 3, and the hardness and drop breakage rate of the obtained tablets are shown in Table 4.

噴霧乾燥で得られた球形結晶粒子として実施例1とは別のロットのマンニットQを、析出結晶粒子として対照例2と同じロットのマンニットSを用い、10:90の比率で混合して賦形剤として用いた。使用した球形結晶粒子と析出結晶粒子の物性を表3に示す。錠剤は、対照例2と同様に賦形剤を造粒したのち、他の錠剤原料と混合して打錠して得た。得られた錠剤について、硬度と、落下破損率、落下破損改善率を表4に示す。   Mannite Q of a lot different from that of Example 1 was used as spherical crystal particles obtained by spray drying, and Mannite S of the same lot as that of Control Example 2 was used as precipitated crystal particles, and mixed at a ratio of 10:90. Used as an excipient. Table 3 shows the physical properties of the used spherical crystal particles and precipitated crystal particles. Tablets were obtained by granulating excipients in the same manner as in Control Example 2, and then mixing with other tablet materials to make tablets. Table 4 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

球形結晶粒子と析出結晶粒子の比率を、30:70とした以外は、実施例6と同様にして、錠剤を得た。得られた錠剤について、硬度と、落下破損率、落下破損改善率を表4に示す。   A tablet was obtained in the same manner as in Example 6 except that the ratio of the spherical crystal particles to the precipitated crystal particles was 30:70. Table 4 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

球形結晶粒子と析出結晶粒子の比率を、50:50とした以外は、実施例6と同様にして、錠剤を得た。得られた錠剤について、硬度と、落下破損率、落下破損改善率を表4に示す。   A tablet was obtained in the same manner as in Example 6 except that the ratio of the spherical crystal particles to the precipitated crystal particles was 50:50. Table 4 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

Figure 2017071558
Figure 2017071558

Figure 2017071558
Figure 2017071558

[対照例3]
析出結晶粒子として、対照例1、2とは別のロットのマンニットSを用い、錠剤条件としての目標硬度を8kgfとなるよう変更したほかは対照例2と同様にして錠剤を得た。得られた錠剤はすべてキャッピングしており、硬度は測定できなかった。そのため落下破損率は、前述のとおり、100%とした。なお、使用したマンニットSの物性を表5に示す。
[Control 3]
Tablets were obtained in the same manner as in Control Example 2, except that Mannit S of a lot different from Control Examples 1 and 2 was used as the precipitated crystal particles, and the target hardness as a tablet condition was changed to 8 kgf. All the tablets obtained were capped and the hardness could not be measured. Therefore, the drop breakage rate was set to 100% as described above. Table 5 shows the physical properties of the used Mannit S.

球形結晶粒子として実施例6と同じロットのマンニットQを、析出結晶粒子として対照例3と同じロットのマンニットSを用い、50:50の比率で混合して賦形剤として用いた。使用した球形結晶粒子と析出結晶粒子の物性を表5に示す。錠剤は、対照例3と同様に賦形剤を造粒したのち、他の錠剤原料と混合して打錠して得た。得られた錠剤について、硬度と、落下破損率、落下破損改善率を表6に示す。   The same lot of Mannit Q as in Example 6 was used as spherical crystal particles, and Mannit S from the same lot as Control Example 3 was used as the precipitated crystal particles, which were mixed at a ratio of 50:50 and used as an excipient. Table 5 shows the physical properties of the used spherical crystal particles and precipitated crystal particles. Tablets were obtained by granulating excipients in the same manner as in Control Example 3, and then mixing with other tablet raw materials for tableting. Table 6 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

Figure 2017071558
Figure 2017071558

Figure 2017071558
Figure 2017071558

[対照例4]
析出結晶粒子として、ロケットフレール社製のPEARLITOL160Cを使用した以外は対照例2と同様にして、錠剤を得た。使用したPEARLITOL160Cの物性を表7に示し、得られた錠剤について、硬度と、落下破損率を表8に示す。
[Control 4]
Tablets were obtained in the same manner as in Control Example 2, except that PEARLITO 160C manufactured by Rocket Frere was used as the precipitated crystal particles. Table 7 shows the physical properties of the used PEARLITO 160C, and Table 8 shows the hardness and drop breakage rate of the obtained tablets.

噴霧乾燥で得られた球形結晶粒子として実施例1と同じロットのマンニットQを、析出結晶粒子として対照例4と同じPEARLITOL160Cを用い、30:70の比率で混合して賦形剤として用いた。使用した球形結晶粒子と析出結晶粒子の物性を表7に示す。錠剤は、対照例2と同様に、賦形剤を造粒したのち、他の錠剤原料と混合して打錠して得た。得られた錠剤について、硬度と落下破損率、落下破損改善率を表8に示す。   As the spherical crystal particles obtained by spray drying, Mannit Q of the same lot as in Example 1 was used, and PEARLITL 160C as in Control Example 4 was used as the precipitated crystal particles, mixed at a ratio of 30:70 and used as an excipient. . Table 7 shows the physical properties of the used spherical crystal particles and precipitated crystal particles. The tablets were obtained in the same manner as in Control Example 2, after granulating the excipient, and then mixing with other tablet materials to make tablets. Table 8 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

球形結晶粒子と析出結晶粒子の比率を、50:50とした以外は、実施例10と同様にして、錠剤を得た。得られた錠剤について、硬度と落下破損率、落下破損改善率を表8に示す。   A tablet was obtained in the same manner as in Example 10 except that the ratio of the spherical crystal particles to the precipitated crystal particles was 50:50. Table 8 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

Figure 2017071558
Figure 2017071558

Figure 2017071558
Figure 2017071558

[対照例5]
錠剤条件としての目標硬度を8kgfとなるよう変更したほかは対照例4と同様にして錠剤を得た。使用した析出結晶粒子も対照例4と同様である。得られた錠剤について、硬度と落下破損率、落下破損改善率を表9に示す。
[Control 5]
Tablets were obtained in the same manner as in Control Example 4 except that the target hardness as tablet conditions was changed to 8 kgf. The precipitated crystal particles used are the same as in Control Example 4. Table 9 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

球形結晶粒子として実施例1と同じロットのマンニットQを、析出結晶粒子として対照例4と同じロットのマンニットSを用い、30:70の比率で混合して賦形剤として用いた。錠剤は、対照例5と同様に賦形剤を造粒したのち、他の錠剤原料と混合して打錠して得た。得られた錠剤について、硬度と、落下破損率、落下破損改善率を表9に示す。   The same lot of Mannit Q as in Example 1 was used as spherical crystal particles, and Mannit S from the same lot as Control Example 4 was used as the precipitated crystal particles, which were mixed at a ratio of 30:70 and used as an excipient. Tablets were obtained by granulating excipients in the same manner as in Control Example 5, and then mixing with other tablet raw materials and tableting. Table 9 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

球形結晶粒子と析出結晶粒子の比率を、50:50とした以外は、実施例12と同様にして、錠剤を得た。得られた錠剤について、硬度と落下破損率、落下破損改善率を表9に示す。   A tablet was obtained in the same manner as in Example 12 except that the ratio of the spherical crystal particles to the precipitated crystal particles was 50:50. Table 9 shows the hardness, drop breakage rate, and drop breakage improvement rate of the obtained tablets.

Figure 2017071558
Figure 2017071558

以上の結果から、本発明に係る特定の混合割合のマンニトールの打錠用賦形剤を用いた錠剤は、対照である析出結晶粒子のみからなる賦形剤を用いた錠剤に比べて、顕著に落下破損改善率が向上することが分かる。
From the above results, the tablet using the mannitol tableting excipient of a specific mixing ratio according to the present invention is remarkably compared to the tablet using the excipient consisting only of the precipitated crystal particles as a control. It can be seen that the drop breakage improvement rate is improved.

Claims (5)

マンニトールからなる打錠用賦形剤であって、該マンニトールが、噴霧乾燥によって得られた安息角が30〜50度であることを特徴とする球形結晶粒子と、晶析により得られた析出結晶粒子とを、1:99から50:50の割合で混合したものであることを特徴とする打錠用賦形剤。   A tableting excipient comprising mannitol, characterized in that the mannitol has a repose angle of 30 to 50 degrees obtained by spray drying, and a precipitated crystal obtained by crystallization An excipient for tableting, wherein the particles are mixed in a ratio of 1:99 to 50:50. 前記球形結晶粒子が、アスペクト比が1.0〜1.2、試験法Aによる吸油率1が25〜40%、吸油率2が15〜30%、ゆるみかさ密度が0.4〜0.6g/ml、平均粒径が30〜50μmであることを特徴とする、請求項1に記載の打錠用賦形剤。   The spherical crystal particles have an aspect ratio of 1.0 to 1.2, an oil absorption 1 according to Test Method A of 25 to 40%, an oil absorption 2 of 15 to 30%, and a loose bulk density of 0.4 to 0.6 g. The tableting excipient according to claim 1, wherein the average particle size is 30 to 50 µm. 前記析出結晶粒子が、平均粒径が70〜200μmであることを特徴とする、請求項1または2に記載の打錠用賦形剤。   The excipient for tableting according to claim 1 or 2, wherein the precipitated crystal particles have an average particle size of 70 to 200 µm. 請求項1〜3のいずれか一つに記載の打錠用賦形剤を使用した錠剤落下破損率低下方法。   The tablet fall breakage rate reduction method using the excipient | filler for tableting as described in any one of Claims 1-3. 請求項1〜3のいずれか一つに記載の打錠用賦形剤を用いた落下破損率が低下した口腔内崩壊錠剤。
An orally disintegrating tablet having a reduced drop breakage rate using the tableting excipient according to any one of claims 1 to 3.
JP2015197732A 2015-10-05 2015-10-05 Excipient for improving impact resistance of tablets Active JP6660139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015197732A JP6660139B2 (en) 2015-10-05 2015-10-05 Excipient for improving impact resistance of tablets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197732A JP6660139B2 (en) 2015-10-05 2015-10-05 Excipient for improving impact resistance of tablets

Publications (2)

Publication Number Publication Date
JP2017071558A true JP2017071558A (en) 2017-04-13
JP6660139B2 JP6660139B2 (en) 2020-03-04

Family

ID=58539566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197732A Active JP6660139B2 (en) 2015-10-05 2015-10-05 Excipient for improving impact resistance of tablets

Country Status (1)

Country Link
JP (1) JP6660139B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145203A (en) * 2015-01-29 2016-08-12 三菱商事フードテック株式会社 Excipient for improving shock-tolerance of tablet
CN110787722A (en) * 2019-12-01 2020-02-14 浙江华康药业股份有限公司 Dry granulation device and process for crystallized mannitol
JP2020059660A (en) * 2018-10-05 2020-04-16 三菱商事ライフサイエンス株式会社 Mannitol granule

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146590A1 (en) * 2007-05-28 2008-12-04 Mitsubishi Shoji Foodtech Co., Ltd. Spherical mannitol crystal particle
JP2009114113A (en) * 2007-11-06 2009-05-28 Nipro Corp Intraorally disintegrable tablet and method for producing the same
WO2010021300A1 (en) * 2008-08-18 2010-02-25 三菱商事フードテック株式会社 Novel excipient for mannitol tableting
JP2012031205A (en) * 2003-06-06 2012-02-16 Ethypharm Orally-dispersible multilayer tablet
JP2013067611A (en) * 2011-09-07 2013-04-18 Mitsubishi Shoji Foodtech Co Ltd Intraorally disintegrating tablet enhanced in hardness, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031205A (en) * 2003-06-06 2012-02-16 Ethypharm Orally-dispersible multilayer tablet
WO2008146590A1 (en) * 2007-05-28 2008-12-04 Mitsubishi Shoji Foodtech Co., Ltd. Spherical mannitol crystal particle
JP2009114113A (en) * 2007-11-06 2009-05-28 Nipro Corp Intraorally disintegrable tablet and method for producing the same
WO2010021300A1 (en) * 2008-08-18 2010-02-25 三菱商事フードテック株式会社 Novel excipient for mannitol tableting
JP2013067611A (en) * 2011-09-07 2013-04-18 Mitsubishi Shoji Foodtech Co Ltd Intraorally disintegrating tablet enhanced in hardness, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145203A (en) * 2015-01-29 2016-08-12 三菱商事フードテック株式会社 Excipient for improving shock-tolerance of tablet
JP2020059660A (en) * 2018-10-05 2020-04-16 三菱商事ライフサイエンス株式会社 Mannitol granule
CN110787722A (en) * 2019-12-01 2020-02-14 浙江华康药业股份有限公司 Dry granulation device and process for crystallized mannitol

Also Published As

Publication number Publication date
JP6660139B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
US6743447B2 (en) Pulverulent mannitol and process for preparing it
JP4394313B2 (en) Granules based on starch and lactose
US20220151932A1 (en) Crystalline microspheres and the process of manufacturing the same
JP5676566B2 (en) Compressible free-flow coaggregates of mannitol and granular starch
JP2017071558A (en) Shock resistance-improving excipient for tablet
JP6203182B2 (en) (S) -Ethyl 2-amino-3- (4- (2-amino-6-((R) -1- (4-chloro-2- (3-methyl-1H-pyrazol-1-yl) phenyl) -2,2,2-trifluoroethoxy) pyrimidin-4-yl) phenyl) propanoate solid agent
JP2008525431A (en) Anhydrous lactose aggregates and their production
JP4717414B2 (en) Low melting point drug-containing granule and tablet produced using the same
JP6666731B2 (en) Excipient for improving impact resistance of tablets
US6242008B1 (en) Spherical pharmaceutical granules comprising microcrystalline cellulose and a process for their production
JP2001346600A (en) Powdered mannitol and method for preparing the same
JP5042447B2 (en) Mixed preparation
JPH09301851A (en) Crystalline medicine particle excellent in compression molding property and production of the same compound
CA2830765C (en) Solid preparation containing ambroxol
WO2012091039A1 (en) Particulate formulation
CN117503938A (en) Preparation method of direct-compression mannitol
JP2021130618A (en) Method for producing granule including nuclear particle, granule including nuclear particle, pharmaceutical composition that includes granule including nuclear particle, and pharmaceutical preparation including pharmaceutical composition
CN116850145A (en) Production process of granule
HU227491B1 (en) Tablet containing citalopram hydrogen bromide
MIEN A Study of HPMC-PEG Matrix as Drug Carrier in Spray Congealing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200207

R150 Certificate of patent or registration of utility model

Ref document number: 6660139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250