JPH09300391A - Gas injected hollow molded object - Google Patents

Gas injected hollow molded object

Info

Publication number
JPH09300391A
JPH09300391A JP12356496A JP12356496A JPH09300391A JP H09300391 A JPH09300391 A JP H09300391A JP 12356496 A JP12356496 A JP 12356496A JP 12356496 A JP12356496 A JP 12356496A JP H09300391 A JPH09300391 A JP H09300391A
Authority
JP
Japan
Prior art keywords
gas
styrene
molecular weight
polymer
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12356496A
Other languages
Japanese (ja)
Inventor
Shinichi Mitsui
慎一 三井
Satoshi Nakagawa
聡 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP12356496A priority Critical patent/JPH09300391A/en
Publication of JPH09300391A publication Critical patent/JPH09300391A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas injected hollow molded object good in gas flowability, having large sink preventing effect and excellent in strength or the like and heat resistance. SOLUTION: A gas injected hollow molded object is composed of a styrenic (co)polymer characterized by that a wt. average mol.wt. is 300000-600000 and a methanol soluble component is 5wt.% or less and a ratio (Mw/Mn) of a wt. average mol.wt. (Mw) and a number average mol.wt. (Mn) is 2.4 or a styrenic resin compsn. containing the styrenic (co)polymer. By injecting gas when the molded object is produced, a cavity part is provided to the interior of the molded object.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガス注入中空成形
体に関するものである。更に詳しくは、本発明は、ガス
流動性が良好であり、よって成形体の計量化及びヒケ防
止の効果が大きく、しかも衝撃強度などの機械的強度及
び耐熱性に優れたガス注入中空成形体に関するものであ
る。
TECHNICAL FIELD The present invention relates to a gas injection hollow molded article. More specifically, the present invention relates to a gas-injected hollow molded article which has good gas fluidity and therefore has a large effect of weighing and preventing sink marks of the molded article, and which is excellent in mechanical strength such as impact strength and heat resistance. It is a thing.

【0002】[0002]

【従来の技術】スチレン系樹脂は剛性があり、寸法安定
性に優れ、かつ廉価であることから、成形用途に広く使
用されている。最近、射出成形用途分野においては、成
形体の大型化が進んでおり、そのため軽量化の要求があ
り、その要求に応えるために、成形体内部にガスを注入
し空洞部を設けたガス注入中空成形体とすることが広く
行われている。また、厚肉部を有する成形体では厚肉部
でのヒケが問題となり、ヒケを防止するためにも厚肉部
にガスを注入することが行われている。
2. Description of the Related Art Styrene resins are widely used for molding because of their rigidity, excellent dimensional stability, and low cost. In recent years, in the field of application for injection molding, the size of molded products has been increasing, and therefore there is a demand for weight reduction. In order to meet the demand, a gas injection hollow structure in which a gas is injected into the molded product to provide a cavity. It is widely used as a molded body. Further, in a molded body having a thick portion, sink marks at the thick portion become a problem, and gas is injected into the thick portion in order to prevent sink marks.

【0003】射出成形時にガスを注入しガス注入中空成
形体とする手法は、ガスアシスト射出成形法と呼ばれ、
近年盛んに使用されつつある。ガスアシスト射出成形法
の詳細については、例えば、ふる橋章,プラスチック
ス,Vol.45,No.8(22〜32頁、1994
年)などに記載されている。
A method of injecting a gas at the time of injection molding to form a gas injection hollow molded article is called a gas assist injection molding method,
It is being used actively in recent years. For details of the gas-assisted injection molding method, see, for example, Furuhashi Akira, Plastics, Vol. 45, no. 8 (22-32, 1994)
Year) etc.

【0004】ガスアシスト射出成形によりガス注入中空
成形体を得る際、特に大型の成形体の場合では、できる
だけ中空率を大きくさせる要求がある。中空率が大きな
ガス注入中空成形体とする場合、ガスが成形体内部に容
易に流動される必要がある。
When a gas-injected hollow molded body is obtained by gas-assisted injection molding, particularly in the case of a large-sized molded body, there is a demand to increase the hollow ratio as much as possible. In the case of a gas-injected hollow molded article having a large hollow rate, the gas needs to be easily flown into the molded article.

【0005】かかる要求に応える試みとしては、例えば
樹脂の分子量を低くし、ガスの流動性を高める方法が提
案される。しかしながら、この方法には、樹脂の強度が
低下し、成形体の突き出し工程や成形体の使用時に破損
が生じるといった問題がある。また、ガスの流動性を高
める方法としては、例えば樹脂にミネラルオイルなどの
可塑剤を添加して用いる方法が提案されるが、この方法
では、可塑剤により樹脂の耐熱性及び衝撃強度が低下す
るという問題があった。
As an attempt to meet such a demand, for example, a method of lowering the molecular weight of the resin and increasing the fluidity of gas is proposed. However, this method has a problem that the strength of the resin is lowered and the resin is damaged during the extrusion process of the molded product or during use of the molded product. Further, as a method of increasing the fluidity of gas, for example, a method of adding a plasticizer such as mineral oil to a resin is proposed, but in this method, the plasticizer reduces heat resistance and impact strength of the resin. There was a problem.

【0006】樹脂の耐熱性及び衝撃強度を満足できる水
準に維持し、かつガスの流動性を向上させる方法として
は、例えば成形時の樹脂温度あるいは金型温度を高くす
る方法がある。しかしながら、この方法には、成形体の
冷却時間が長くなり、よって成形サイクルが長くなり、
生産コストが高くなるといった問題がある。また、ガス
注入圧力を高くしてガス流動性を高くする方法では、成
形機及び金型が大型となり、製造コストが高くなるとい
う問題があると同時に、ガス注入圧力を増したことによ
り、ガスを注入すべきでない薄肉部の箇所にまでガスが
染み出して入り、その部分の強度及び外観を低下させる
といった問題がある。
As a method of maintaining the heat resistance and impact strength of the resin at a satisfactory level and improving the fluidity of gas, for example, there is a method of raising the resin temperature or the mold temperature during molding. However, this method increases the cooling time of the molded body and thus the molding cycle,
There is a problem that the production cost becomes high. In addition, in the method of increasing the gas injection pressure to increase the gas fluidity, there is a problem that the molding machine and the mold are large and the manufacturing cost is high. There is a problem in that the gas exudes even into the thin-walled portion that should not be injected, and the strength and appearance of that portion deteriorates.

【0007】[0007]

【発明が解決しようとする課題】かかる状況において、
本発明が解決しようとする課題は、ガスの流動性が良好
であり、よってヒケ防止の効果が大きく、しかも衝撃強
度などの機械的強度及び耐熱性に優れたガス注入中空成
形体を提供する点に存ずる。
In such a situation,
The problem to be solved by the present invention is to provide a gas-injected hollow molded article that has good gas flowability and thus has a large effect of preventing sink marks, and that is also excellent in mechanical strength such as impact strength and heat resistance. Exist.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明は、重
量平均分子量が30万〜60万であり、メタノール可溶
分が5重量%以下であり、かつ重量平均分子量Mwと数
平均分子量Mnの比(Mw/Mn)が2.4以上である
スチレン系(共)重合体または該スチレン系(共)重合
体を含有するスチレン系樹脂組成物からなる成形体であ
って、かつ成形体の製造時にガスを注入することによっ
て成形体内部に空洞部を有することを特徴とするガス注
入中空成形体を提供するものである。以下、本発明を詳
細に説明する。
That is, according to the present invention, the weight average molecular weight is 300,000 to 600,000, the methanol-soluble component is 5% by weight or less, and the weight average molecular weight Mw and the number average molecular weight Mn are A molded product comprising a styrene-based (co) polymer having a ratio (Mw / Mn) of 2.4 or more or a styrene-based resin composition containing the styrene-based (co) polymer, and producing a molded product It is intended to provide a gas-injected hollow molded article characterized by having a cavity inside the molded article by injecting gas at times. Hereinafter, the present invention will be described in detail.

【0009】[0009]

【発明の実施の形態】本発明で用いるスチレン系(共)
重合体を構成する単量体であるスチレン系化合物として
は、例えばスチレン、α−メチルスチレンなどのα−置
換アルキルスチレン、p−メチルスチレンなどの核置換
アルキルスチレンなどが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Styrene series (co) used in the present invention
Examples of the styrene compound which is a monomer constituting the polymer include styrene, α-substituted alkylstyrene such as α-methylstyrene, and nuclear-substituted alkylstyrene such as p-methylstyrene.

【0010】また、本発明で用いるスチレン系(共)重
合体においては、上記の化合物と共に、スチレン系化合
物と共に、スチレン系化合物と共重合可能な化合物、例
えば、アクリロニトリル、メタクリロニトリル、メタク
リル酸、メタクリル酸メチルなどのエステル誘導体など
のビニルモノマー、更には無水マレイン酸、マレイミ
ド、核置換マレイミドなどを併用してもよい。
In the styrene-based (co) polymer used in the present invention, a compound copolymerizable with the above-mentioned compound, together with the styrene-based compound, such as acrylonitrile, methacrylonitrile, methacrylic acid, Vinyl monomers such as ester derivatives such as methyl methacrylate, maleic anhydride, maleimide, and nucleus-substituted maleimide may be used in combination.

【0011】本発明で用いるスチレン系(共)重合体
は、重量平均分子量が30万〜60万、好ましくは30
万〜40万であり、メタノール可溶分が5重量%以下、
好ましくは3重量%以下であり、かつ重量平均分子量M
wと数平均分子量Mnの比(Mw/Mn)が2.4以
上、好ましくは2.4〜3.4であるスチレン系(共)
重合体である。
The styrene (co) polymer used in the present invention has a weight average molecular weight of 300,000 to 600,000, preferably 30.
10,000 to 400,000, and the amount of methanol-soluble matter is 5% by weight or less,
It is preferably 3% by weight or less, and has a weight average molecular weight M.
Styrene-based (co) having a ratio of w and number average molecular weight Mn (Mw / Mn) of 2.4 or more, preferably 2.4 to 3.4.
It is a polymer.

【0012】該分子量が過小な場合は衝撃強度に劣り、
過大な場合はガスの流動性に劣る。該可溶分が過多な場
合は耐熱性に劣る。ここで、メタノール可溶分は次の方
法により測定される。すなわち、スチレン系(共)重合
体約1gを10mlのメチルエチルケトンに室温下に溶
解させ、300mlのメタノールを添加して再沈殿さ
せ、濾過により固形分を集め、乾燥し、精秤する。かか
る操作により減少したスチレン系(共)重合体の最初に
用いたスチレン系(共)重合体に対する重量割合をもっ
てメタノール可溶分とする。
If the molecular weight is too small, the impact strength is poor,
If it is too large, the fluidity of the gas will be poor. If the soluble content is excessive, the heat resistance is poor. Here, the methanol-soluble component is measured by the following method. That is, about 1 g of a styrene-based (co) polymer is dissolved in 10 ml of methyl ethyl ketone at room temperature, 300 ml of methanol is added to cause reprecipitation, solids are collected by filtration, dried and precisely weighed. The weight ratio of the styrene-based (co) polymer reduced by such an operation to the styrene-based (co) polymer initially used is defined as the methanol-soluble component.

【0013】Mw/Mn値が過小の場合、ガスの流動性
に劣る。ここで、Mw/Mnは一般的に分子量分布の広
さを表す指標として用いられる。
If the Mw / Mn value is too small, the fluidity of the gas is poor. Here, Mw / Mn is generally used as an index showing the breadth of the molecular weight distribution.

【0014】広分子量分布のスチレン系(共)重合体を
得る方法としては、例えば、高分子量のポリスチレンと
低分子量のポリスチレンをブレンドしたり、又は多段重
合法を用いることにより広分子量分布のポリスチレンと
する方法があり、例えば特公昭57−30843号公報
及び特公昭62−61231号公報に開示されている。
As a method for obtaining a styrene (co) polymer having a wide molecular weight distribution, for example, a high molecular weight polystyrene and a low molecular weight polystyrene are blended, or a polystyrene having a wide molecular weight distribution is prepared by using a multistage polymerization method. There is a method of doing so, which is disclosed in, for example, Japanese Patent Publication No. 57-30843 and Japanese Patent Publication No. 62-61231.

【0015】本発明の特徴を有するスチレン系(共)重
合体としては、Z平均分子量における分岐点の数が1〜
20、好ましくは2〜10であるスチレン系共重合体が
好ましい。このようなスチレン系共重合体を得る方法と
しては、例えばスチレン系化合物と、二個以上のビニル
基を含有する化合物を、スチレン系化合物に対して、1
00〜1000重量ppmを混合させ、重合する方法が
あり、特開平7−166013号公報に開示されてい
る。ここで、Z平均分子量における分岐点の数とは、あ
る分子量分布を有するスチレン系共重合体の高分子量成
分を代表する分子鎖中に含まれる分岐点の数に相当する
概念であり、下記の方法によって求められる。すなわ
ち、検出器として示差屈折率計及び粘度計を備えたゲル
・パーミエーション・クロマトグラフィー(GPC)を
用いて、粘度−GPC法により求めることができ、詳細
については、日本ゴム協会誌、第45巻、第2号、10
5〜118頁(1972年)に記載されている。分子量
Mにおける分岐点の数(Bn(M))は下式により求め
る。
The styrene-based (co) polymer having the characteristics of the present invention has a number of branch points in the Z-average molecular weight of 1 to
A styrene-based copolymer having a ratio of 20, preferably 2 to 10 is preferable. As a method for obtaining such a styrene-based copolymer, for example, a styrene-based compound and a compound containing two or more vinyl groups are added to
There is a method of polymerizing by mixing 0.00 to 1000 ppm by weight, which is disclosed in JP-A-7-166013. Here, the number of branch points in the Z-average molecular weight is a concept corresponding to the number of branch points contained in a molecular chain that represents a high-molecular weight component of a styrene-based copolymer having a certain molecular weight distribution. Required by the method. That is, it can be determined by a viscosity-GPC method using gel permeation chromatography (GPC) equipped with a differential refractometer and a viscometer as a detector. For details, see Japan Rubber Association Journal, No. 45. Volume, Issue 2, 10
5 to 118 (1972). The number of branch points (Bn (M)) at the molecular weight M is determined by the following equation.

【0016】〔IV(M)/IVL (M)〕2/3
〔(1+Bn(M)/7)1/2 +4/9・Bn
(M)〕-1/2 ここで、IV(M)、IVL (M)はそれぞれ、粘度−
GPC法によって測定した試料及び標準試料としての直
鎖状ポリスチレンの分子量Mでの極限粘度である。
[IV (M) / IV L (M)] 2/3 =
[(1 + Bn (M) / 7) 1/2 +4/9 ・ Bn
(M)] -1/2 where IV (M) and IV L (M) are viscosity-
It is the intrinsic viscosity at the molecular weight M of the linear polystyrene as a sample and a standard sample measured by the GPC method.

【0017】本発明のスチレン系樹脂組成物は、上記ス
チレン系(共)重合体に対して、必要に応じて、滑剤、
帯電防止剤、酸化防止剤、熱安定剤、紫外線吸収剤、顔
料、染料、スチレン−ブタジエンブロック共重合体など
のエラストマーなどを添加してもよい。更に、本発明の
効果を損なわない範囲内において、ミネラルオイルなど
の可塑剤を添加してもよい。
The styrenic resin composition of the present invention is a lubricant for the above styrenic (co) polymer, if necessary.
Antistatic agents, antioxidants, heat stabilizers, UV absorbers, pigments, dyes, elastomers such as styrene-butadiene block copolymers may be added. Further, a plasticizer such as mineral oil may be added within a range that does not impair the effects of the present invention.

【0018】本発明のスチレン系(共)重合体または該
スチレン系(共)重合体を含有するスチレン系樹脂組成
物を用いて、ガス注入中空成形体とする方法としては特
に制限がなく、例えばガスアシスト射出成形法などの公
知の技術を用いることができる。
There is no particular limitation on the method for producing a gas injection hollow molded article by using the styrene-based (co) polymer of the present invention or the styrene-based resin composition containing the styrene-based (co) polymer. Known techniques such as a gas-assisted injection molding method can be used.

【0019】[0019]

【実施例】以下、本発明を実施例に基づき説明するが、
本発明はこれら実施例に何ら限定されるものではない。
Hereinafter, the present invention will be described based on examples.
The present invention is not limited to these examples.

【0020】なお、評価項目のうち、上記した項目以外
の項目については、以下のとおり実施した。 (1)ガス流動性(ガス流動長) 厚さ10mmの楕円スパイラル金型及びバッテンフェル
ド(Buttenfeld)社製BM−T2400/2
X630成形機を用いて、最大シリンダ温度230℃、
射出速度70mm/sec、ガス圧力50bar、計量
値70mmの条件でガスアシスト射出成形した。注入ガ
スはN2 ガスを用いた。得られた成形体のガス注入口か
ら中空部先端までの長さから、スプール部の長さである
80mmを差し引いた値をガス流動長として求め、10
個の成形体を採取し平均値を求めた。該ガス流動長が長
いほどガス流動性が良好であることを示す。
Among the evaluation items, the items other than the above-mentioned items were evaluated as follows. (1) Gas fluidity (gas flow length) 10 mm thick elliptical spiral mold and BM-T2400 / 2 manufactured by Buttenfeld Co.
Using an X630 molding machine, maximum cylinder temperature 230 ° C,
Gas-assisted injection molding was performed under the conditions of an injection speed of 70 mm / sec, a gas pressure of 50 bar, and a measured value of 70 mm. As the injection gas, N 2 gas was used. A value obtained by subtracting 80 mm, which is the length of the spool portion, from the length from the gas inlet of the obtained molded product to the tip of the hollow portion was obtained as the gas flow length,
Individual molded bodies were sampled and the average value was obtained. The longer the gas flow length, the better the gas flowability.

【0021】(2)衝撃強度(落球衝撃強度) 200℃で50×50×2mmの大きさにプレス成形し
たサンプルを用い、球の重量を28.8gとしたこと以
外は、JIS K7211に準拠し、50%破壊高さの
値を測定した。ここで、ガスアシスト射出成形などの低
圧成形においては、従来の射出成形法に比べて、成形体
の残留応力(歪み)が低減される成形法であることも特
徴の一つであり、これらの成形法で得られた成形体の衝
撃強度は残留応力による強度の低下も少ないことから、
ガス注入中空成形体の衝撃強度は、それを形成する樹脂
自信の衝撃強度に大きく依存すると考えられる。よっ
て、該プレス成形体の衝撃強度が高いものほど、ガス注
入中空成形体の衝撃強度は高いといえる。
(2) Impact strength (falling ball impact strength) According to JIS K7211, except that the sample was press-molded at 200 ° C. to a size of 50 × 50 × 2 mm and the weight of the ball was 28.8 g. The value of 50% breaking height was measured. Here, in low-pressure molding such as gas-assisted injection molding, one of the features is that the residual stress (strain) of the molded body is reduced as compared with the conventional injection molding method. Since the impact strength of the molded body obtained by the molding method is less likely to decrease due to residual stress,
The impact strength of the gas-injected hollow molded article is considered to largely depend on the impact strength of the resin forming the hollow molded article. Therefore, it can be said that the higher the impact strength of the press molded body, the higher the impact strength of the gas injection hollow molded body.

【0022】(3)耐熱性(ビカット軟化点) JIS K6871に準拠し、荷重5kgで測定した。
ここで、ガス注入中空成形体の耐熱性は、それを形成す
る樹脂自信の耐熱性に大きく依存すると考えられること
から、該値が高いものほど、ガス注入中空成形体の耐熱
性は高いといえる。 (4)ヒケ防止 上記(1)で得られたガス注入中空成形体のヒケの程度
を目視により下記のとおり評価した。 ○・・・ヒケが発生していない。 △・・・一部ヒケが発生している。 ×・・・全体的にヒケが発生している。
(3) Heat resistance (Vicat softening point) Measured under a load of 5 kg in accordance with JIS K6871.
Here, the heat resistance of the gas-injected hollow molded article is considered to largely depend on the heat resistance of the resin forming the gas-injected hollow molded article. Therefore, it can be said that the higher the value, the higher the heat resistance of the gas-injected hollow molded article. . (4) Prevention of sink mark The degree of sink mark of the gas-injected hollow molded article obtained in (1) above was visually evaluated as follows. ○: No sink mark has occurred. △: Some sink marks have occurred. X: A sink mark is generated as a whole.

【0023】実施例1、2 2個以上のビニル基を含有する化合物であるジビニルベ
ンゼン(純度55重量%、東京化成工業社製)を用い、
表1に示す単量体組成に調合した溶液を連続バルク重合
反応層に連続的に供給し、表1に示す重合温度及び最終
転化率で重合を行い、重合混合物を240℃で真空脱気
槽を通し、未反応モノマーを回収し、樹脂ペレットにし
たものを用い、成形体を製造した。結果を表1に示す。
Examples 1, 22 Using divinylbenzene (purity 55% by weight, manufactured by Tokyo Kasei Kogyo Co., Ltd.), which is a compound containing at least two vinyl groups,
A solution prepared to have a monomer composition shown in Table 1 was continuously supplied to a continuous bulk polymerization reaction layer, polymerization was carried out at a polymerization temperature and a final conversion rate shown in Table 1, and the polymerization mixture was vacuum degassed at 240 ° C. The unreacted monomer was recovered by passing through, and a resin pellet was used to produce a molded body. The results are shown in Table 1.

【0024】比較例1〜4 ジビニルベンゼンを用いず、表1に示す条件で重合する
以外は、実施例1と同様にして成形体を製造した。結果
を表1に示す。
Comparative Examples 1 to 4 Molded articles were produced in the same manner as in Example 1 except that divinylbenzene was not used and the polymerization was carried out under the conditions shown in Table 1. The results are shown in Table 1.

【0025】比較例5 ガス注入を行わない以外は、実施例2と同様にして成形
体を製造した。結果を表1に示す。
Comparative Example 5 A molded body was manufactured in the same manner as in Example 2 except that gas injection was not performed. The results are shown in Table 1.

【0026】[0026]

【表1】 ─────────────────────────────────── 実施例 比 較 例 1 2 1 2 3 4 5 ─────────────────────────────────── 重合単量体 スチレン wt% 95 95 95 95 95 91 95 エチルベンゼン wt% 5 5 5 5 5 5 5 ジビニルベンゼン wtppm*1 150 300 0 0 0 0 300 ミネラルオイル wt% 0 0 0 0 0 4 0 重合温度 ℃ 140 145 155 145 120 130 145 最終転化率 wt%*2 60 60 70 60 60 60 60 重量平均分子量 104 37 38 21 29 38 35 38 Mw/Mn*3 2.5 3.0 2.0 2.0 2.0 2.0 3.0 メタノール可溶分 wt% 1.2 1.2 1.2 1.2 1.2 5.2 1.2 分岐点の数*4 2.1 4.0 0 0 0 0 4.0 ガス注入 有 有 有 有 有 有 無 〔評価結果〕 ガス流動長 cm 20 26 42 20 9 30 0 落球衝撃強度 cm 42 45 30 35 45 40 45 ビカット軟化点 ℃ 102 102 102 102 102 88 102 ヒケ防止 ○ ○ ○ ○ △ ○ × ───────────────────────────────────[Table 1] ─────────────────────────────────── Example Comparative Example 1 2 1 2 3 4 5 ─────────────────────────────────── Polymerization monomer Styrene wt% 95 95 95 95 95 91 95 Ethylbenzene wt% 5 5 5 5 5 5 5 Divinylbenzene wtppm * 1 150 300 0 0 0 0 300 Mineral oil wt% 0 0 0 0 0 0 4 0 Polymerization temperature ℃ 140 145 155 145 120 130 145 Final conversion wt% * 2 60 60 70 60 60 60 60 Weight average molecular weight 10 4 37 38 21 29 38 35 38 Mw / Mn * 3 2.5 3.0 2.0 2.0 2.0 2.0 3.0 Methanol soluble content wt% 1.2 1.2 1.2 1.2 1.2 5.2 1.2 Number of branch points * 4 2.1 4.0 0 0 0 0 4.0 Gas injection Yes Yes Yes Yes Yes Yes Yes No [Evaluation result] Gas flow length cm 20 26 42 20 9 30 0 Falling ball impact strength cm 42 45 30 35 45 40 45 Vicat softening point ℃ 102 102 102 102 102 88 102 Sink prevention ○ ○ ○ ○ △ ○ × ──────── ───────────────────────────

【0027】*1 ジビニルベンゼン:数値はスチレン
系化合物に対する重量ppmである。 *2 最終転化率:最終重合反応層から予熱器への配管
途中より抜き取った、重合溶液約0.1gを精秤し、8
0℃で1時間、150℃で2時間真空乾燥させ、乾燥後
重量を乾燥前重量で割った。値を百分率で表したものを
最終転化率とした。 *3 Mw/Mn:重量平均分子量(Mw)と数平均分
子量(Mn)の比 *4 分岐点の数:Z平均分子量における分岐点の数
〔Bn(Mz)〕
* 1 Divinylbenzene: The value is ppm by weight based on the styrene compound. * 2 Final conversion: About 0.1 g of the polymerization solution extracted from the final polymerization reaction layer from the middle of the pipe to the preheater was precisely weighed, and 8
It was vacuum dried at 0 ° C. for 1 hour and at 150 ° C. for 2 hours, and the weight after drying was divided by the weight before drying. The value expressed as a percentage was taken as the final conversion rate. * 3 Mw / Mn: Ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) * 4 Number of branch points: number of branch points in Z average molecular weight [Bn (Mz)]

【0028】結果から次のことが分かる。本発明の条件
を満足する実施例1、2は、すべての評価項目において
優れた結果を示している。一方、重量平均分子量が30
万より過小である比較例1、及び2は衝撃強度に劣る。
重量平均分子量Mwと数平均分子量Mnの比、Mw/M
nが2.4以下である比較例3は、ガス流動性及びヒケ
防止に劣る。メタノール可溶分が5重量%以上である比
較例4は耐熱性に劣る。ガス注入を行わなかった比較例
5はヒケが発生した。
The results show the following. Examples 1 and 2 satisfying the conditions of the present invention show excellent results in all evaluation items. On the other hand, the weight average molecular weight is 30
Comparative Examples 1 and 2, which are less than 10,000, are inferior in impact strength.
Ratio of weight average molecular weight Mw and number average molecular weight Mn, Mw / M
Comparative Example 3 in which n is 2.4 or less is inferior in gas fluidity and sink prevention. Comparative Example 4 having a methanol-soluble content of 5% by weight or more is inferior in heat resistance. In Comparative Example 5 in which gas injection was not performed, sink marks were generated.

【0029】[0029]

【発明の効果】以上説明したとおり、本発明によれば、
ガス流動性が良好であり、よってヒケ防止の効果が大き
く、しかも衝撃強度などの機械的強度及び耐熱性に優れ
たガス注入中空成形体を提供することができる。
As described above, according to the present invention,
It is possible to provide a gas-injected hollow molded article that has good gas fluidity and thus has a large effect of preventing sink marks, and that is excellent in mechanical strength such as impact strength and heat resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 25:04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C08L 25:04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量平均分子量が30万〜60万であり、
メタノール可溶分が5重量%以下であり、かつ重量平均
分子量Mwと数平均分子量Mnの比(Mw/Mn)が
2.4以上であるスチレン系(共)重合体または該スチ
レン系(共)重合体を含有するスチレン系樹脂組成物か
らなる成形体であって、かつ成形体の製造時にガスを注
入することによって成形体内部に空洞部を有することを
特徴とするガス注入中空成形体。
1. A weight average molecular weight of 300,000 to 600,000,
A styrene-based (co) polymer or a styrene-based (co) polymer having a methanol-soluble content of 5% by weight or less and a ratio (Mw / Mn) of the weight average molecular weight Mw to the number average molecular weight Mn of 2.4 or more. A hollow body for gas injection, which is a molded body made of a styrene resin composition containing a polymer and has a hollow portion inside the molded body by injecting a gas during the production of the molded body.
【請求項2】スチレン系(共)重合体が、そのZ平均分
子量における分岐点の数を1〜20としたスチレン系共
重合体である請求項1記載のガス注入中空成形体。
2. The gas-injected hollow molded article according to claim 1, wherein the styrene-based (co) polymer is a styrene-based copolymer in which the number of branch points in the Z average molecular weight is 1 to 20.
JP12356496A 1996-05-17 1996-05-17 Gas injected hollow molded object Pending JPH09300391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12356496A JPH09300391A (en) 1996-05-17 1996-05-17 Gas injected hollow molded object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12356496A JPH09300391A (en) 1996-05-17 1996-05-17 Gas injected hollow molded object

Publications (1)

Publication Number Publication Date
JPH09300391A true JPH09300391A (en) 1997-11-25

Family

ID=14863714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12356496A Pending JPH09300391A (en) 1996-05-17 1996-05-17 Gas injected hollow molded object

Country Status (1)

Country Link
JP (1) JPH09300391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044746A (en) * 1998-08-04 2000-02-15 Denki Kagaku Kogyo Kk Styrene-based resin composition
JP2006273914A (en) * 2005-03-28 2006-10-12 Dainippon Ink & Chem Inc Bioriented styrene-based resin sheet and formed product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044746A (en) * 1998-08-04 2000-02-15 Denki Kagaku Kogyo Kk Styrene-based resin composition
JP2006273914A (en) * 2005-03-28 2006-10-12 Dainippon Ink & Chem Inc Bioriented styrene-based resin sheet and formed product

Similar Documents

Publication Publication Date Title
JPH01158007A (en) Styrene based polymer and production thereof
KR101150016B1 (en) Styrenic themoplastic resin compositions with good mechanical properties and low gloss
KR100300142B1 (en) Styrene copolymer, polystyrene composition, styrene copolymer manufacturing method and injection molding product
US4594391A (en) Impact-modified monovinylidene aromatic polymer injection molding resins
EP0379284A2 (en) Styrene-based polymer and method for the preparation thereof
US5723554A (en) Process for producing styrenic polymer
JP3603425B2 (en) Styrene random copolymer and method for producing the same
JPH0463099B2 (en)
JP2993338B2 (en) Rubber-modified polystyrene resin composition, method for producing the same, and injection molded article
US3963807A (en) Polymers of acrylonitrile and aromatic olefins which contain grafted rubber
JPH09300391A (en) Gas injected hollow molded object
EP0016882B1 (en) Copolymer blends
JP3060085B2 (en) Polystyrene-based copolymer, method for producing polystyrene-based copolymer, and injection-molded product
JPS5856561B2 (en) Manufacturing method of styrenic polymer
US5703184A (en) Process for producing styrenic polymer
EP1559747B1 (en) Amorphous polyester resin composition
US5880232A (en) Process for producing styrene based polymer and molded articles comprising the polymer
JPS61254650A (en) Block copolymer composition and production thereof
KR100576325B1 (en) Continuous Process for Preparing High Impact Polystyrene Resin
KR20080076940A (en) Process for preparing anhydride-containing vinylaromatic-vinyl cyanide copolymers
KR100583524B1 (en) High Impact Polystyrene Resin with Good Falling Dart Impact Prepared by Continuous Mass Polymerization process
KR100853432B1 (en) Styrenic thermoplastic resin compositions with good mechanical properties and low gloss
JP3567648B2 (en) Blow molding
WO2000014157A1 (en) Monovinylidene aromatic resins
JPH04258665A (en) Polyphenylene ether composition having improved melt strength