JPH09299792A - Catalytic material for removal of nitrogen oxides(nox), device for treating nox with same and method for removing nox - Google Patents

Catalytic material for removal of nitrogen oxides(nox), device for treating nox with same and method for removing nox

Info

Publication number
JPH09299792A
JPH09299792A JP8116549A JP11654996A JPH09299792A JP H09299792 A JPH09299792 A JP H09299792A JP 8116549 A JP8116549 A JP 8116549A JP 11654996 A JP11654996 A JP 11654996A JP H09299792 A JPH09299792 A JP H09299792A
Authority
JP
Japan
Prior art keywords
nox
nitrogen oxides
exhaust gas
catalytic material
nitrogen oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8116549A
Other languages
Japanese (ja)
Inventor
Yasuyuki Okimura
康之 沖村
Hitoshi Yokoi
等 横井
Tadashi Hattori
忠 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP8116549A priority Critical patent/JPH09299792A/en
Publication of JPH09299792A publication Critical patent/JPH09299792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a catalytic material capable of removing NOx even in exhaust gas having a high concn. of oxygen from a lean burning engine, a diesel engine, etc., and not requiring a highly poisonous reducing agent such as ammonia, to obtain a device for treating NOx with the catalytic material and to provide a method for removing NOx. SOLUTION: A multiple oxide forming this catalytic material contains Al and Zn as metallic elements, the molar ratio of Zn to Al is >0 to <0.5 and the oxide has a spinel type crystal structure. When NOx-contg. gas is brought into contact with this catalytic material in the presence of hydrocarbon such as ethylene, propylene or propane as a reducing agent, NOx, e.g. in exhaust gas from an automobile is reduced and removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば各種燃焼機
関の排ガス中の窒素酸化物を還元除去することのできる
新規な窒素酸化物除去用触媒材料、及びその材料を用い
た窒素酸化物処理装置、並びに窒素酸化物の除去方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel catalyst material for removing nitrogen oxides, which can reduce and remove nitrogen oxides in exhaust gas from various combustion engines, for example, and a nitrogen oxide treating apparatus using the same. And a method for removing nitrogen oxides.

【0002】[0002]

【従来の技術】近年問題となっている環境汚染問題の中
で、排気ガス中の窒素酸化物等の有害物質を分解、除去
する方法の開発が急務となっている。排気ガス浄化用触
媒としては、一酸化炭素(CO)、炭化水素(HC)、
窒素酸化物(NOx)の除去を同時に行う三元触媒法
や、アンモニアを用いた選択還元法が実用化されてい
る。ここで、三元触媒としては、γ一アルミナをコート
したコーディエライトなどの耐熱性担体にPd、Pt、
Rhなどの貴金属を担持したものが一般に用いられてい
る。また、アンモニア選択還元法においては、V、T
i、Wなどの金属の酸化物が一般に用いられている。
2. Description of the Related Art In the recent environmental pollution problem, there is an urgent need to develop a method for decomposing and removing harmful substances such as nitrogen oxides in exhaust gas. Exhaust gas purification catalysts include carbon monoxide (CO), hydrocarbons (HC),
A three-way catalyst method for simultaneously removing nitrogen oxides (NOx) and a selective reduction method using ammonia have been put into practical use. Here, as the three-way catalyst, Pd, Pt, and Pd on a heat-resistant carrier such as cordierite coated with γ-alumina.
Those carrying a noble metal such as Rh are generally used. In the ammonia selective reduction method, V, T
Oxides of metals such as i and W are generally used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、三元触
媒においては、排ガス中に共存する酸素によって前記貴
金属が被毒を受け活性が著しく低下するという欠点を有
しており、理論空燃比近傍のごく狭い領域でしか排ガス
浄化の効果が得られない。また、酸素過剰雰囲気下で機
能する触媒として金属イオン交換ゼオライトの研究が進
んでいるが、耐熱性、耐水性の点で十分なものは得られ
ていない。
However, the three-way catalyst has a disadvantage that the noble metal is poisoned by oxygen coexisting in the exhaust gas and the activity is remarkably reduced. The exhaust gas purifying effect can be obtained only in a narrow area. Research on metal ion-exchanged zeolites as a catalyst that functions in an oxygen-excess atmosphere has been advanced, but none of them has been obtained in terms of heat resistance and water resistance.

【0004】これらに対し、アンモニア選択還元法は、
火力発電所などの固定式燃焼装置において実用化されて
おり、酸素共存下でも窒素酸化物の除去が可能である
が、使用するアンモニアの毒性、危険性などのために、
都市部や移動体で使用することは安全性の面で問題があ
る。
On the other hand, the ammonia selective reduction method is
It has been put to practical use in stationary combustion devices such as thermal power plants, and it can remove nitrogen oxides even in the presence of oxygen.However, due to the toxicity and dangers of ammonia used,
There is a problem in terms of safety when used in urban areas and mobiles.

【0005】本発明は、前記課題を解決するためになさ
れたものであり、リーンバーンエンジンやディーゼルエ
ンジンなどのような酸素濃度の高い排気ガス中でも窒素
酸化物の除去が可能で、且つアンモニアなどの毒性の強
い還元剤を必要としない窒素酸化物除去用触媒材料、及
びその材料を用いた窒素酸化物処理装置並びに窒素酸化
物の除去方法を提供することを目的とする。
The present invention has been made in order to solve the above problems, and is capable of removing nitrogen oxides even in exhaust gas having a high oxygen concentration, such as lean burn engines and diesel engines, and is capable of removing ammonia and the like. An object of the present invention is to provide a catalyst material for removing nitrogen oxides that does not require a highly toxic reducing agent, a nitrogen oxide treatment apparatus using the material, and a method for removing nitrogen oxides.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に、請求項1の発明は、金属元素としてAl及びZnを
含有し、Zn/Alのモル比Xが0<X<0.5の範囲
で、且つスピネル型結晶構造を有する複合酸化物を主相
とすることを特徴とする窒素酸化物除去用触媒材料を要
旨とする。
In order to solve the above-mentioned problems, the invention of claim 1 contains Al and Zn as metal elements, and the Zn / Al molar ratio X is 0 <X <0.5. A gist of a nitrogen oxide-removing catalyst material is characterized in that a main component is a composite oxide having a spinel type crystal structure within the range.

【0007】請求項2の発明は、前記請求項1に記載の
窒素酸化物除去用触媒材料を、その一部又は全体に用い
て構成されたことを特徴とする窒素酸化物処理装置を要
旨とする。請求項3の発明は、前記請求項1に記載の窒
素酸化物除去用触媒材料に、窒素酸化物含有ガス及び還
元剤を接触させて窒素酸化物を還元除去することを特徴
とする窒素酸化物の除去方法を要旨とする。
A second aspect of the present invention provides a nitrogen oxide treating apparatus, characterized in that the nitrogen oxide removing catalyst material according to the first aspect is used as a part or the whole thereof. To do. The invention according to claim 3 is characterized in that the catalyst for removing nitrogen oxides according to claim 1 is brought into contact with a nitrogen oxide-containing gas and a reducing agent to reduce and remove the nitrogen oxides. The removal method is summarized.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(請求項1の発明)本発明者らは、前記課題に対して鋭
意研究を進めた結果、アルミニウム(Al)と亜鉛(Z
n)を主金属元素として含み、特定の結晶構造を有する
複合酸化物が高い窒素酸化物還元作用を有することを見
出し、本発明に至ったものである。
(Invention of Claim 1) As a result of intensive research on the above problems, the present inventors have found that aluminum (Al) and zinc (Z
The present invention is based on the finding that a composite oxide containing n) as a main metal element and having a specific crystal structure has a high nitrogen oxide reducing action.

【0009】本発明の窒素酸化物除去用触媒材料を構
成する複合酸化物は、金属元素としてAl、Znを含有
し、Zn/Alのモル比Xが0<X<0.5の範囲であ
り、且つスピネル型結晶構造をもつ。このスピネル型結
晶構造とは、ZnAl24−Al23の固溶体であるの
で、本発明の材料は、Zn/Alのモル比Xが0<X<
0.5の範囲でのZnAl24−Al23の固溶体と表
現することができる。
The composite oxide constituting the catalyst material for removing nitrogen oxides of the present invention contains Al and Zn as metal elements, and the Zn / Al molar ratio X is in the range of 0 <X <0.5. And has a spinel type crystal structure. Since this spinel type crystal structure is a solid solution of ZnAl 2 O 4 —Al 2 O 3 , the material of the present invention has a Zn / Al molar ratio X of 0 <X <
It can be expressed as a solid solution of ZnAl 2 O 4 —Al 2 O 3 in the range of 0.5.

【0010】尚、前記Zn/Alのモル比Xが0.5以
上になると、スピネル型構造以外の結晶が生成し、触媒
活性が劣化する場合がある。また、X=0の場合はγ一
アルミナ単味の結晶相となり、Znを添加した場合と比
較して触媒活性の点で劣る。上述した構成の複合酸化物
からなる材料は、例えば内燃機関の排気ガスと接触させ
ることにより、排気ガス中に含まれる窒素酸化物(NO
x)を、同様に排気ガス中に含まれる例えば炭化水素な
どを還元剤として、還元除去することができる。このメ
カニズムは未だ十分には明らかにされていないが、Zn
の添加に伴う電荷のバランスの偏り(酸素欠陥の増加)
が、窒素酸化物還元特性の向上をもたらしているものと
考えられる。
When the Zn / Al molar ratio X is 0.5 or more, crystals other than the spinel type structure may be generated, and the catalytic activity may be deteriorated. Further, when X = 0, the crystal phase is a γ-alumina simple substance, which is inferior in catalytic activity as compared with the case where Zn is added. The material composed of the complex oxide having the above-mentioned structure is contacted with, for example, the exhaust gas of an internal combustion engine to generate a nitrogen oxide (NO) contained in the exhaust gas.
Similarly, x) can be reduced and removed using, for example, a hydrocarbon contained in the exhaust gas as a reducing agent. Although the mechanism has not been fully clarified yet, Zn
Of charge balance due to addition of oxygen (increased oxygen defects)
However, it is considered that the nitrogen oxide reduction characteristics are improved.

【0011】本発明の窒素酸化物除去用触媒材料を製
造する方法としては、例えば、純水中にAlとZnの硝
酸塩を溶解して加水分解後に、蒸発乾固あるいはそのま
ま蒸発乾固して得られた残渣を、500℃以上で熱処理
する方法が挙げられる。ここで最も好ましい熱処理温度
は600℃から1000℃であり、それによってスピネ
ル型構造の結晶が十分生成し、分解もなく且つ比表面積
の大きい良好な粉末が得られる。
The method for producing the nitrogen oxide-removing catalyst material of the present invention can be obtained, for example, by dissolving nitrates of Al and Zn in pure water, hydrolyzing, and then evaporating to dryness or evaporating to dryness as it is. The method of heat-treating the obtained residue at 500 degreeC or more is mentioned. The most preferable heat treatment temperature here is 600 ° C. to 1000 ° C., whereby a crystal having a spinel structure is sufficiently generated, good powder having a large specific surface area without decomposition is obtained.

【0012】また、前記の製造方法の他に、AlとZn
の酸化物をボールミルにて湿式混合した後、乾燥及び熱
処理することによっても合成することができる。尚、本
発明の窒素酸化物除去用触媒材料は、何等これらの製造
方法により製造されるものに限定はされない。
In addition to the above manufacturing method, Al and Zn
The oxide can also be synthesized by wet-mixing the oxide with a ball mill, followed by drying and heat treatment. The catalyst material for removing nitrogen oxides of the present invention is not limited to those produced by these production methods.

【0013】本発明の窒素酸化物除去用触媒材料は、
前記一般式(ZnAl24−Al23の固溶体;但し、
Zn/Alのモル比Xが0<X<0.5)で表される複
合酸化物を主成分として含むものであればその機能を十
分発揮し得るものであり、構成元素の未反応物や前記一
般式に合致しない化合物、さらには不可避的に存在する
不純物が少量残存していても差し支えない。しかし、窒
素酸化物の除去効率を高めるには、前記一般式で表され
る複合酸化物のみを単一構成相として有することが好ま
しい。 (請求項2の発明)請求項2の発明では、窒素酸化物を
除去する機能を有する上述した窒素酸化物除去用触媒材
料を、その一部または全体に用いて窒素酸化物処理装置
を構成し、例えば自動車の排気ガスなどをこの窒素酸化
物処理装置に導いて、排気ガス中の窒素酸化物と炭化水
素などの還元剤成分とをこの窒素酸化物除去用触媒材料
と接触させることによって、排気ガス中の窒素酸化物を
窒素に還元し、排気ガスの浄化を効果的に行うことが可
能となる。
The catalyst material for removing nitrogen oxides of the present invention is
A solid solution of the general formula (ZnAl 2 O 4 -Al 2 O 3 ;
As long as the Zn / Al molar ratio X contains a complex oxide represented by 0 <X <0.5) as a main component, its function can be sufficiently exhibited, and unreacted substances of constituent elements and A small amount of a compound that does not conform to the above general formula and further inevitably present impurities may remain. However, in order to improve the removal efficiency of nitrogen oxides, it is preferable to have only the composite oxide represented by the above general formula as a single constituent phase. (Invention of Claim 2) In the invention of Claim 2, the above-mentioned catalyst material for removing nitrogen oxides having a function of removing nitrogen oxides is used as a part or the whole thereof to configure a nitrogen oxide treating apparatus. , For example, by guiding the exhaust gas of an automobile to the nitrogen oxide treatment device and contacting the nitrogen oxide and the reducing agent component such as hydrocarbon in the exhaust gas with the catalytic material for removing nitrogen oxide, It becomes possible to reduce the nitrogen oxides in the gas to nitrogen and effectively purify the exhaust gas.

【0014】窒素酸化物処理装置の構成としては、例え
ば処理対象とするガスの流路内または末端部に設けられ
た耐熱性容器内に上述した触媒材料を装填してなるもの
としてもよいし、前記触媒材料自体でもって装置の全体
を構成してもよい。このとき、排気ガスと接触し得る有
効面積を稼いで浄化効率を高めるために、粉末状、粒子
状、ペレット状、ハニカム形状などの各種形態とするこ
とが望ましい。 (請求項3の発明)請求項3の発明では、窒素酸化物を
除去する機能を有する上述した窒素酸化物除去用触媒材
料に、還元剤として例えばエチレン、プロピレン、プロ
パンなどの炭化水素等を用いて、窒素酸化物を含有する
ガスと共に接触させ、窒素酸化物を還元除去することが
できる。
The structure of the nitrogen oxide treating apparatus may be, for example, one in which the above-mentioned catalyst material is loaded in a heat-resistant container provided in the flow path or the end of the gas to be treated, The catalyst material itself may constitute the entire apparatus. At this time, in order to obtain an effective area that can come into contact with the exhaust gas and enhance the purification efficiency, it is desirable to have various forms such as powder, particles, pellets, and honeycomb shapes. (Invention of Claim 3) In the invention of Claim 3, a hydrocarbon such as ethylene, propylene or propane is used as a reducing agent in the above-mentioned catalyst material for removing nitrogen oxides having a function of removing nitrogen oxides. Then, the nitrogen oxide can be reduced and removed by bringing it into contact with a gas containing the nitrogen oxide.

【0015】[0015]

【実施例】以下、本発明の窒素酸化物除去用触媒材料の
実施例について、その製造方法とともに説明する。ま
ず、本実施例の窒素酸化物除去用触媒材料である複合酸
化物の製造方法について説明する。
EXAMPLES Examples of the catalyst material for removing nitrogen oxides of the present invention will be described below together with a method for producing the same. First, a method for producing a composite oxide which is a catalyst material for removing nitrogen oxides according to the present embodiment will be described.

【0016】(実施例1)試薬特級の硝酸アルミニウム
(Al(NO33・9H2O)及び硝酸亜鉛(Zn(N
32・6H2O)を純水中に溶解させた。このときZ
n/Alのモル比Xが0.05となるようにした。
[0016] (Example 1) reagent grade aluminum nitrate (Al (NO 3) 3 · 9H 2 O) and zinc nitrate (Zn (N
O 3) was 2 · 6H the 2 O) was dissolved in pure water. At this time Z
The molar ratio X of n / Al was set to 0.05.

【0017】その後、この溶液に7%アンモニア水を徐
々に滴下し、加水分解させ、沈殿物を得た。次に、この
沈殿物を150℃で蒸発乾固し、アルミナ乳鉢で粉砕し
て原料組成物とした。
Thereafter, 7% aqueous ammonia was gradually added dropwise to this solution to cause hydrolysis, and a precipitate was obtained. Next, the precipitate was evaporated to dryness at 150 ° C. and pulverized in an alumina mortar to obtain a raw material composition.

【0018】これを、大気雰囲気中、800℃で6時間
熱処理して合成粉末を得た。そして、粉末X線回折によ
り、この合成粉末の結晶相がZnAl24−γ−Al2
3固溶体であること、即ち、この合成粉末がスピネル
型結晶構造を有する複合酸化物であることを確認した。
なお、結晶相の確認はJCPDS:5−669と同様の
ピークパターン(固溶のため若干高角側にシフトしてい
る)であることを利用して行った。
This was heat-treated at 800 ° C. for 6 hours in an air atmosphere to obtain a synthetic powder. Then, by powder X-ray diffraction, the crystal phase of this synthetic powder was ZnAl 2 O 4 -γ-Al 2
It was confirmed to be an O 3 solid solution, that is, this synthetic powder was a complex oxide having a spinel type crystal structure.
The crystal phase was confirmed by utilizing the same peak pattern as in JCPDS: 5-669 (shifted to a higher angle side due to solid solution).

【0019】(実施例2)Zn/Alのモル比Xが0.
15である他は、実施例1と同様に合成粉末を得た。こ
の合成粉末も同様に分析したところ、スピネル型結晶構
造を有するZnAl24−γ−Al23固溶体であっ
た。
(Example 2) The Zn / Al molar ratio X was 0.
Synthetic powder was obtained in the same manner as in Example 1 except that the number was 15. When this synthetic powder was analyzed in the same manner, it was a ZnAl 2 O 4 -γ-Al 2 O 3 solid solution having a spinel type crystal structure.

【0020】(実施例3)Zn/Alのモル比Xが0.
28である他は、実施例1と同様に合成粉末を得た。こ
の合成粉末も同様に分析したところ、スピネル型結晶構
造を有するZnAl24−γ−Al23固溶体であっ
た。
Example 3 A Zn / Al molar ratio X is 0.
Synthetic powder was obtained in the same manner as in Example 1 except that No. 28 was used. When this synthetic powder was analyzed in the same manner, it was a ZnAl 2 O 4 -γ-Al 2 O 3 solid solution having a spinel type crystal structure.

【0021】(実施例4)Zn/Alのモル比Xが0.
30である他は、実施例1と同様に合成粉末を得た。こ
の合成粉末も同様に分析したところ、スピネル型結晶構
造を有するZnAl24−γ−Al23固溶体であっ
た。
(Example 4) The Zn / Al molar ratio X was 0.
A synthetic powder was obtained in the same manner as in Example 1 except that the amount was 30. When this synthetic powder was analyzed in the same manner, it was a ZnAl 2 O 4 -γ-Al 2 O 3 solid solution having a spinel type crystal structure.

【0022】(実施例5)Zn/Alのモル比Xが0.
40である他は、実施例1と同様に合成粉末を得た。こ
の合成粉末も同様に分析したところ、スピネル型結晶構
造を有するZnAl24−γ−Al23固溶体であっ
た。
(Example 5) The molar ratio X of Zn / Al was 0.
A synthetic powder was obtained in the same manner as in Example 1 except that the amount was 40. When this synthetic powder was analyzed in the same manner, it was a ZnAl 2 O 4 -γ-Al 2 O 3 solid solution having a spinel type crystal structure.

【0023】(実施例6)Zn/Alのモル比Xが0.
47である他は、実施例1と同様に合成粉末を得た。こ
の合成粉末も同様に分析したところ、スピネル型結晶構
造を有するZnAl24−γ−Al23固溶体であっ
た。
Example 6 The Zn / Al molar ratio X is 0.
A synthetic powder was obtained in the same manner as in Example 1 except that the amount was 47. When this synthetic powder was analyzed in the same manner, it was a ZnAl 2 O 4 -γ-Al 2 O 3 solid solution having a spinel type crystal structure.

【0024】(比較例1)Zn/Alのモル比Xが0す
なわちZn成分を添加しない組成である他は、実施例1
と同様に合成粉末を得た。この合成粉末も同様に分析し
たところ、γ−Al23(JCPDS:10−425)
であった。
(Comparative Example 1) Example 1 was repeated except that the Zn / Al molar ratio X was 0, that is, the composition did not contain the Zn component.
A synthetic powder was obtained in the same manner as. When this synthetic powder was analyzed in the same manner, γ-Al 2 O 3 (JCPDS: 10-425)
Met.

【0025】(比較例2)Zn/Alのモル比Xが0.
5すなわちZnAl24定比組成である他は、実施例1
と同様に合成粉末を得た。この合成粉末も同様に分析し
たところ、ZnAl24(JCPDS:5−669)で
あった。
Comparative Example 2 Zn / Al molar ratio X was 0.
5, ie, ZnAl 2 O 4 stoichiometric composition, Example 1
A synthetic powder was obtained in the same manner as. This synthetic powder was also analyzed in the same manner and found to be ZnAl 2 O 4 (JCPDS: 5-669).

【0026】(実験例)次に、本実施例の窒素酸化物除
去用触媒材料の効果を確認するために行った実験例につ
いて説明する。上述した製造方法によって得られた実施
例1〜6、比較例1、2の合成粉末を、200kg/c
2の圧力で一定形状に成形した後、その成形体を粉砕
し、標準ふるいにて26−50メッシュの粒度のものに
整粒した。整粒した粉末0.5gを石英ガラス製の反応
管に詰め、この反応管に、NO:1000ppm、C3
6:1000ppm、O2:6%を含有するヘリウムガ
スを、流速100ml/min.(SV:10000〜
15000h-1)で流通させた。
(Experimental Example) Next, an experimental example conducted for confirming the effect of the nitrogen oxide removing catalyst material of the present embodiment will be described. 200 kg / c of the synthetic powders of Examples 1 to 6 and Comparative Examples 1 and 2 obtained by the above-described manufacturing method
After being molded into a constant shape under a pressure of m 2 , the molded body was crushed and sized with a standard sieve into a particle size of 26-50 mesh. 0.5 g of the sized powder was packed in a reaction tube made of quartz glass, and NO: 1000 ppm, C 3
Helium gas containing H 6 : 1000 ppm and O 2 : 6% was used at a flow rate of 100 ml / min. (SV: 10,000-
It was distributed at 15000 h -1 ).

【0027】そして、反応管から出てきたガスに対し、
化学発光式窒素酸化物分析計及びガスクロマトグラフを
用いて、窒素酸化物還元特性を評価した。具体的には、
反応管から排出されるガス中のNOxの濃度を化学発光
式窒素酸化物分析計で、また、N2、O2、CO、C
2、C36の濃度をガスクロマトグラフで測定した。
また、測定した温度範囲は300〜700℃である。
Then, for the gas coming out of the reaction tube,
Nitrogen oxide reduction characteristics were evaluated using a chemiluminescent nitrogen oxide analyzer and a gas chromatograph. In particular,
The concentration of NOx in the gas discharged from the reaction tube was measured by a chemiluminescence type nitrogen oxide analyzer, and N 2 , O 2 , CO, C
The concentrations of O 2 and C 3 H 6 were measured by gas chromatography.
The measured temperature range is 300 to 700 ° C.

【0028】そして、得られた測定値をもとにして、N
OからN2への転化率を求めた。この転化率は温度に応
じて変化するので、転化率の最高値をその温度とともに
下記表1に示した。 但し、NO転化率(%)={(供給されるNO量−排出
されるNO量)/(供給されるNO量)}×100
Then, based on the obtained measured value, N
The conversion rate from O to N 2 was determined. Since this conversion rate changes depending on the temperature, the maximum value of the conversion rate is shown in Table 1 below together with the temperature. However, NO conversion rate (%) = {(NO amount supplied−NO amount discharged) / (NO amount supplied)} × 100

【0029】[0029]

【表1】 [Table 1]

【0030】表1から明らかなように、本発明の範囲で
ある実施例1〜6の触媒材料は、NO転化率が高く良好
なNO還元活性を示した。それに対して、比較例1、2
のものは、NO転化率が低く好ましくない。この様に、
本実施例の窒素酸化物除去用触媒材料は、窒素酸化物と
炭化水素などの還元剤成分とを触媒に接触させることに
より、窒素酸化物を還元する高い機能を有し、自動車な
どの内燃機関から排出される高温の排気ガスの浄化処理
に好適である。
As is clear from Table 1, the catalyst materials of Examples 1 to 6, which are within the scope of the present invention, had a high NO conversion rate and exhibited good NO reduction activity. On the other hand, Comparative Examples 1 and 2
Those having a low NO conversion rate are not preferable. Like this
The catalyst material for removing nitrogen oxides of this example has a high function of reducing nitrogen oxides by bringing the nitrogen oxides and a reducing agent component such as hydrocarbon into contact with the catalyst, and is used for internal combustion engines such as automobiles. It is suitable for purification treatment of high-temperature exhaust gas discharged from the exhaust gas.

【0031】従って、例えば、本実施例の窒素酸化物除
去用触媒材料を、粉体のまま、または粒状やペレット状
に加工して、またはハニカム形状などに成形して、排気
ガスの通路に設けられた排気ガス浄化装置内に装填する
ことにより、効果的に自動車などの排気ガス中の窒素酸
化物を分解して除去することができる。
Therefore, for example, the nitrogen oxide removing catalyst material of this embodiment is provided in the exhaust gas passage as it is as a powder, or is processed into a granule or a pellet, or is formed into a honeycomb shape or the like. By loading the exhaust gas in the exhaust gas purifying apparatus, it is possible to effectively decompose and remove nitrogen oxides in the exhaust gas of an automobile or the like.

【0032】尚、本発明は前記実施例に限定されるもの
ではなく、本実施例の要旨を逸脱しない範囲内で各種の
態様で実施できることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be implemented in various modes without departing from the gist of the present embodiment.

【0033】[0033]

【発明の効果】以上、詳述したとおり、本発明の複合酸
化物からなる窒素酸化物除去用触媒材料は、炭化水素な
どの還元剤を用いて窒素酸化物を還元除去することがで
き、内燃機関の排気ガス浄化用触媒として有用なもので
ある。本発明の窒素酸化物除去用触媒材料は、例えばリ
ーンバーンエンジンやディーゼルエンジンなどのような
酸素濃度の高い排気ガス中でも窒素酸化物の除去が可能
で、しかもアンモニアなどの毒性の強い還元剤を必要と
しないという利点を有する。
As described above in detail, the catalyst material for removing nitrogen oxides comprising the complex oxide of the present invention can reduce and remove nitrogen oxides by using a reducing agent such as hydrocarbon. It is useful as a catalyst for purifying engine exhaust gas. INDUSTRIAL APPLICABILITY The catalyst material for removing nitrogen oxides of the present invention is capable of removing nitrogen oxides even in exhaust gas with high oxygen concentration such as lean burn engine and diesel engine, and requires a highly toxic reducing agent such as ammonia. It has the advantage of not doing.

【0034】従って、この窒素酸化物除去用触媒材料を
用いて窒素酸化物処理装置を構成することにより、効果
的に自動車などの排気ガスの浄化を行うことができる。
Therefore, by constructing a nitrogen oxide treating apparatus using this nitrogen oxide removing catalyst material, it is possible to effectively purify exhaust gas from an automobile or the like.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属元素としてAl及びZnを含有し、
Zn/Alのモル比Xが0<X<0.5の範囲で、且つ
スピネル型結晶構造を有する複合酸化物を主相とするこ
とを特徴とする窒素酸化物除去用触媒材料。
1. A metal element containing Al and Zn,
A catalyst material for removing nitrogen oxides, characterized in that a Zn / Al molar ratio X is in a range of 0 <X <0.5 and a composite oxide having a spinel type crystal structure is used as a main phase.
【請求項2】 前記請求項1に記載の窒素酸化物除去用
触媒材料を、その一部又は全体に用いて構成されたこと
を特徴とする窒素酸化物処理装置。
2. A nitrogen oxide treating apparatus comprising the catalyst material for removing nitrogen oxide according to claim 1 as a part or the whole thereof.
【請求項3】 前記請求項1に記載の窒素酸化物除去用
触媒材料に、窒素酸化物含有ガス及び還元剤を接触させ
て窒素酸化物を還元除去することを特徴とする窒素酸化
物の除去方法。
3. A nitrogen oxide-removing catalyst material according to claim 1, wherein the nitrogen oxide-containing gas and a reducing agent are brought into contact with each other to reduce and remove the nitrogen oxide. Method.
JP8116549A 1996-05-10 1996-05-10 Catalytic material for removal of nitrogen oxides(nox), device for treating nox with same and method for removing nox Pending JPH09299792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8116549A JPH09299792A (en) 1996-05-10 1996-05-10 Catalytic material for removal of nitrogen oxides(nox), device for treating nox with same and method for removing nox

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8116549A JPH09299792A (en) 1996-05-10 1996-05-10 Catalytic material for removal of nitrogen oxides(nox), device for treating nox with same and method for removing nox

Publications (1)

Publication Number Publication Date
JPH09299792A true JPH09299792A (en) 1997-11-25

Family

ID=14689875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8116549A Pending JPH09299792A (en) 1996-05-10 1996-05-10 Catalytic material for removal of nitrogen oxides(nox), device for treating nox with same and method for removing nox

Country Status (1)

Country Link
JP (1) JPH09299792A (en)

Similar Documents

Publication Publication Date Title
JPH0760119A (en) Material for purification of waste gas and method thereof
JPH10235192A (en) Catalyst for cleaning exhaust gas
EP0714693A1 (en) Exhaust gas cleaner and method for cleaning exhaust gas
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
JP3889467B2 (en) Nitrogen oxide removing catalyst material, nitrogen oxide treatment apparatus using the material, and nitrogen oxide removing method
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JP2851773B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JPH09299792A (en) Catalytic material for removal of nitrogen oxides(nox), device for treating nox with same and method for removing nox
JP3199562B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JP3266471B2 (en) Nitrogen oxide storage material and nitrogen oxide treatment apparatus using the material
JPH0568888A (en) Waste gas cleaning catalyst
JP3266472B2 (en) Nitrogen oxide storage material and nitrogen oxide treatment apparatus using the material
JPH06262079A (en) Catalyst for nitrogen oxide purification and nitrogen oxide purification
JPH0957064A (en) Waste gas purifying material and waste gas purifying method
KR0166465B1 (en) Preparation of catalyst for cleaning exhaust gases
JP3686753B2 (en) Oxide catalyst material for decomposing nitrogen oxide and method for decomposing and removing nitrogen oxide
JP2851769B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JP2922759B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JP3302036B2 (en) Nitrogen oxide removal method
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH1190225A (en) Oxide catalytic material for removing nitrogen oxide and removing method therefor
KR100429825B1 (en) Catalyst for purifying exhaust gas of automobil and method for manufacturing the same
JPH10180103A (en) Oxide catalyst material for removing nitrogen oxide and its preparation
JP3273319B2 (en) Nitrogen oxide reduction catalyst and nitrogen oxide removal method
JPH0838902A (en) Catalyst for purification of exhaust gas and device therefor