JPH09298806A - Power supply method for electric motor car and its equipment - Google Patents

Power supply method for electric motor car and its equipment

Info

Publication number
JPH09298806A
JPH09298806A JP8110775A JP11077596A JPH09298806A JP H09298806 A JPH09298806 A JP H09298806A JP 8110775 A JP8110775 A JP 8110775A JP 11077596 A JP11077596 A JP 11077596A JP H09298806 A JPH09298806 A JP H09298806A
Authority
JP
Japan
Prior art keywords
storage battery
electric vehicle
power supply
storage
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8110775A
Other languages
Japanese (ja)
Inventor
Masaki Ito
雅樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP8110775A priority Critical patent/JPH09298806A/en
Publication of JPH09298806A publication Critical patent/JPH09298806A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the size and weight of a power supply equipment and moreover increase the discharge capacity and output by installing 2 kinds of storage batteries to electric motor cars and supplying power by selecting one of the batteries depending on the value of a discharge current requested. SOLUTION: A power supply equipment 1 for electric motor car has two kinds of storage batteries: a battery A with a large energy density, and a battery B with a large output density, and power can be supplied by selecting one of the batteries depending on the value of the discharge current requested. That is, if the detected information from discharge current detection means 10 exceeds a predetermined value, then a change-over switch SWa opens and a change-over switch Swb closes, power is supplied from the battery B to a load 4 and, if it is lower than the predetermined value, then the change-over switch SWb is opened, charge-over switch SWa is closed, and power is supplied from the battery A to the load 4. The switching of the batteries A and B is indicated on a power supply switching means 23. As started above, the compact, lightweight power source having large discharge power and output can be obtained for the electric motor car.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】この発明は、例えば電動二輪
車や電動三輪車等の電動車両に搭載される電動車両用電
力供給方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for supplying electric power to an electric vehicle mounted on an electric vehicle such as an electric two-wheeled vehicle or an electric three-wheeled vehicle.

【0002】[0002]

【従来の技術】例えば、電力源として蓄電池を備えた電
動車両があり、この電動車両には蓄電池の電力でモータ
を駆動し、このモータの駆動力のみで走行するものやあ
るいは人力とモータの駆動力との合力で走行するものな
どがある。
2. Description of the Related Art For example, there is an electric vehicle equipped with a storage battery as an electric power source. In the electric vehicle, a motor is driven by the electric power of the storage battery and the vehicle is driven only by the driving force of the motor, or the human power and the motor are driven. There are things that run with the combined force of power.

【0003】電動車両の蓄電池は頻繁に充電する必要が
あり、蓄電池を車両から取り外して行なう単体充電方式
と、車両に取り付けたまま行なう車載充電方式とが用い
られ、取扱が便利なようにどちらの方式でも充電できる
ようにしている。
The storage battery of an electric vehicle needs to be charged frequently, and a single charging system in which the storage battery is removed from the vehicle and an in-vehicle charging system in which the storage battery is mounted in the vehicle are used. The system allows charging.

【0004】[0004]

【発明が解決しようとする課題】このような蓄電池を備
えた電動車両は、蓄電池の放電容量に制限があり走行距
離が短い、加速、登坂性能が不足し、また蓄電池により
車両重量が大きくなる等の問題がある。
An electric vehicle equipped with such a storage battery has a limited discharge capacity of the storage battery, a short mileage, insufficient acceleration and climbing performance, and the storage battery increases the weight of the vehicle. I have a problem.

【0005】ところで、1種類の蓄電池でこれら電動車
両の問題を解決しようとした場合、使用する蓄電池の放
電特性として、エネルギー密度は大きいが、出力密度が
小さい場合には、加速、登坂時に必要とされる放電電流
を満足させるために蓄電池の重量、体積は増加する等の
問題がある。また、使用する蓄電池の放電特性として、
出力密度は大きいが、エネルギー密度が小さい場合に
は、走行距離を満足させるためには、同様に蓄電池の重
量、体積は増加する等の問題がある。
By the way, when one type of storage battery is used to solve the problems of these electric vehicles, the storage battery to be used has a large energy density but a small output density, which is necessary for acceleration and climbing. There is a problem that the weight and volume of the storage battery increase in order to satisfy the generated discharge current. Also, as the discharge characteristics of the storage battery used,
When the output density is high, but the energy density is low, there is a problem that the weight and volume of the storage battery similarly increase in order to satisfy the traveling distance.

【0006】したがって、どちらの蓄電池の場合も搭載
電池量は増加して車両用電力源としての課題、即ち、走
行距離が長く、加速、登坂性能がよく、また車両重量が
軽減する等の課題を満足することができなかった。
[0006] Therefore, in the case of either storage battery, the amount of the on-board battery increases and the problem as the electric power source for the vehicle, that is, the problem that the traveling distance is long, the acceleration and climbing performance are good, and the vehicle weight is reduced. I couldn't be satisfied.

【0007】この発明は、かかる点に鑑みてなされたも
ので、前記課題を解決し、小型軽量で、しかも放電容量
及び出力の大きな電動車両用電力供給方法及びその装置
を提供することを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the above-mentioned problems and to provide a small-sized and light-weight electric power supply method and device for an electric vehicle that has a large discharge capacity and a large output. There is.

【0008】[0008]

【課題を解決するための手段】前記課題を解決し、かつ
目的を達成するために、請求項1記載の電動車両用電力
供給方法は、電動車両に、出力密度の大きな蓄電池とエ
ネルギー密度の大きな蓄電池の2種類の蓄電池を搭載
し、要求放電電流の大小に応じて2種類の蓄電池のどち
らか一方の蓄電池を選択して電力を供給することを特徴
としている。電動車両の要求放電電流の大きさに応じて
2種類の蓄電池のどちらか一方の蓄電池を選択して放電
することで、小型軽量で、しかも放電容量及び出力の大
きな電動車両用電力源を得ることができる。
In order to solve the above-mentioned problems and to achieve the object, a power supply method for an electric vehicle according to a first aspect of the present invention is such that an electric vehicle has a storage battery having a large output density and a large energy density. It is characterized in that two types of storage batteries, that is, storage batteries, are installed, and one of the two types of storage batteries is selected according to the magnitude of the required discharge current to supply electric power. To obtain a power source for an electric vehicle that is small and lightweight and has a large discharge capacity and output by selecting and discharging one of the two types of storage batteries according to the magnitude of the required discharge current of the electric vehicle. You can

【0009】請求項2記載の電動車両用電力供給方法
は、電動車両の発進、登坂時等大きな電流が必要な時
は、出力密度の大きな蓄電池から電力を供給することを
特徴としている。電動車両の発進、登坂時等大きな電流
が必要な時は、出力密度の大きな蓄電池から電力を供給
するから、小型軽量で、加速、登坂性能が向上する。
A power supply method for an electric vehicle according to a second aspect of the present invention is characterized in that, when a large current is required such as when the electric vehicle starts or climbs a slope, electric power is supplied from a storage battery having a large output density. When a large current is required when starting an electric vehicle or climbing a hill, electric power is supplied from a storage battery having a large output density, so that it is small and lightweight, and acceleration and climbing performance are improved.

【0010】請求項3記載の電動車両用電力供給方法
は、電動車両の発進後、一定の速度での走行時は、エネ
ルギー密度の大きな蓄電池から電力を供給することを特
徴としている。電動車両の発進後、一定の速度での走行
時は、エネルギー密度の大きな蓄電池から電力を供給す
るから、小型軽量で、走行距離が長くなる。
According to a third aspect of the present invention, there is provided a power supply method for an electric vehicle in which electric power is supplied from a storage battery having a large energy density when the electric vehicle is running at a constant speed after starting. When the electric vehicle is running at a constant speed after starting, electric power is supplied from a storage battery having a large energy density, so that the vehicle is small and lightweight, and the traveling distance is long.

【0011】請求項4記載の電動車両用電力供給方法
は、電動車両に、前記2種類の蓄電池を搭載し、この両
蓄電池から同時に放電するものとし、放電時両蓄電池の
放電電流の割合を、出力密度の大きな蓄電池の放電深度
に応じて変化させ、この2種類の蓄電池の両方から電力
を供給することを特徴としている。両方の蓄電池の放電
電流の割合を、出力密度の大きな蓄電池の放電密度に応
じて変化させ、この2種類の蓄電池の両方から負荷ヘ電
力を供給することで、小型軽量で、しかも放電容量及び
出力の大きな電動車両用電力源を得ることができる。
According to a fourth aspect of the present invention, there is provided an electric vehicle power supply method in which an electric vehicle is equipped with the two types of storage batteries, and both storage batteries are discharged at the same time. It is characterized in that it is changed according to the depth of discharge of a storage battery having a large output density, and electric power is supplied from both of these two types of storage batteries. By changing the ratio of the discharge current of both storage batteries according to the discharge density of the storage battery with a large output density, and supplying power to the load from both of these two types of storage batteries, it is compact and lightweight, yet has a discharge capacity and output. It is possible to obtain a large electric power source for an electric vehicle.

【0012】請求項5記載の電動車両用電力供給方法
は、前記両蓄電池からの要求放電電流の50%以下をエ
ネルギー密度の大きな蓄電池の負担とし、かつ0〜50
%の間で可変させることを特徴としている。2種類の蓄
電池の両方から負荷ヘ放電して電力を供給することで、
小型軽量で、しかも放電容量及び出力の大きな電動車両
用電力源を得ることができる。
According to a fifth aspect of the present invention, there is provided a power supply method for an electric vehicle, wherein 50% or less of the required discharge current from both storage batteries is charged to the storage battery having a large energy density, and 0 to 50.
The feature is that it is variable between%. By discharging electricity from both of two types of storage batteries to the load,
It is possible to obtain a power source for an electric vehicle that is small and lightweight, and that has a large discharge capacity and a large output.

【0013】請求項6記載の電動車両用電力供給方法
は、電動車両に、出力密度の大きな蓄電池と、エネルギ
ー密度の大きな蓄電池とを搭載し、前記出力密度の大き
な蓄電池の残存容量が低下した場合、前記エネルギー密
度の大きな蓄電池から前記出力密度の大きな蓄電池に対
して充電を実施することを特徴としている。出力密度の
大きな蓄電池の残存容量が低下した場合、エネルギー密
度の大きな蓄電池から出力密度の大きな蓄電池に対して
充電することで、電動車両の次回の発進、登坂時等大き
な電流が必要な時は、出力密度の大きな蓄電池から電力
を供給することができ、小型軽量で、加速、登坂性能が
向上する。
According to a sixth aspect of the present invention, there is provided a power supply method for an electric vehicle, wherein an electric vehicle is equipped with a storage battery having a large output density and a storage battery having a large energy density, and the remaining capacity of the storage battery having a large output density is reduced. Charging is performed from the storage battery having a large energy density to the storage battery having a large output density. When the remaining capacity of a storage battery with a large output density decreases, by charging the storage battery with a large output density from a storage battery with a large energy density, the next start of an electric vehicle, when a large current is required such as when climbing a slope, Electric power can be supplied from a storage battery with a high output density, and it is small and lightweight, improving acceleration and climbing performance.

【0014】請求項7記載の電動車両用電力供給方法
は、電動車両の用途に適した比率で2種類の蓄電池を搭
載することを特徴としている。電動車両の用途に適した
比率で2種類の蓄電池を搭載し、小型軽量で、しかも放
電容量及び出力の大きな電動車両用電力源を得ることが
できる。
According to a seventh aspect of the present invention, there is provided a power supply method for an electric vehicle in which two types of storage batteries are mounted at a ratio suitable for the purpose of the electric vehicle. It is possible to obtain a small-sized and lightweight electric power source for an electric vehicle that has a large discharge capacity and a large output by mounting two types of storage batteries at a ratio suitable for the purpose of the electric vehicle.

【0015】請求項8記載の電動車両用電力供給装置
は、電動車両に搭載された出力密度の大きな蓄電池とエ
ネルギー密度の大きな蓄電池の2種類の蓄電池と、要求
放電電流を検出する電流検出手段と、この要求放電電流
の大小に応じて2種類の蓄電池のどちらか一方の蓄電池
を選択して電力を供給する制御手段と、を備えることを
特徴としている。電動車両の負荷の大きさに応じて2種
類の蓄電池のどちらか一方の蓄電池を選択して放電する
ことで、簡単な電源装置により小型軽量で、しかも放電
容量及び出力の大きな電動車両用電源を得ることができ
る。
According to another aspect of the present invention, there is provided a power supply device for an electric vehicle, comprising two types of storage batteries mounted on the electric vehicle: a storage battery having a large output density and a storage battery having a large energy density; A control means for selecting one of the two types of storage batteries and supplying power according to the magnitude of the required discharge current. By selecting and discharging one of two types of storage batteries according to the size of the load of the electric vehicle, a simple power supply device can be used to provide a small and lightweight power supply for electric vehicles that has a large discharge capacity and output. Obtainable.

【0016】請求項9記載の電動車両用電力供給装置
は、前記制御手段が、電動車両の発進、登坂時等大きな
電流が必要な時は、出力密度の大きな蓄電池を選択して
電力を供給することを特徴としている。電動車両の発
進、登坂時等大きな電流が必要な時は、出力密度の大き
な蓄電池から電力を供給するから、簡単な電源装置によ
り小型軽量で、加速、登坂性能が向上する。
In a power supply device for an electric vehicle according to a ninth aspect of the present invention, the control means selects a storage battery having a large output density to supply electric power when a large current is required such as when the electric vehicle starts or climbs a slope. It is characterized by that. When a large current is required when starting an electric vehicle or climbing a slope, electric power is supplied from a storage battery having a large output density. Therefore, a simple power supply unit is small and lightweight, and acceleration and climbing performance is improved.

【0017】請求項10記載の電動車両用電力供給装置
は、前記制御手段が、電動車両の発進後、一定の速度で
の走行時は、エネルギー密度の大きな蓄電池を選択して
電力を供給することを特徴としている。電動車両の発進
後、一定の速度での走行時は、エネルギー密度の大きな
蓄電池から電力を供給するから、簡単な電源装置により
小型軽量で、走行距離が長くなる。
In the power supply device for an electric vehicle according to the tenth aspect, the control means supplies electric power by selecting a storage battery having a large energy density when the electric vehicle is running at a constant speed after starting. Is characterized by. When the electric vehicle is running at a constant speed after starting, electric power is supplied from a storage battery having a large energy density. Therefore, a simple power supply device is used to reduce the size and weight of the vehicle and to increase the traveling distance.

【0018】請求項11記載の電動車両用電力供給装置
は、電動車両に搭載された前記2種類の蓄電池と、この
両蓄電池からの同時放電の割合を設定する放電割合設定
手段と、この両蓄電池からの放電電流割合を設定に際し
て一方の蓄電池の放電電流割合を、出力密度の大きな蓄
電池の放電深度に応じて変化させ2種類の蓄電池の両方
から負荷ヘ電力を供給する制御手段と、を備えることを
特徴としている。一方の蓄電池の放電電流の割合を、出
力密度の大きな蓄電池の放電深度に応じて変化させ、こ
の2種類の蓄電池の両方から負荷ヘ電力を供給すること
で、簡単な電源装置により小型軽量で、しかも放電容量
及び出力の大きな電動車両用電力源を得ることができ
る。
An electric power supply system for an electric vehicle according to claim 11 is characterized in that the two types of storage batteries mounted on the electric vehicle, a discharge ratio setting means for setting a ratio of simultaneous discharge from both storage batteries, and both storage batteries. Control means for changing the discharge current ratio of one of the storage batteries according to the depth of discharge of the storage battery having a large output density when setting the discharge current ratio from the two storage batteries, and supplying electric power to the load from both of the two types of storage batteries. Is characterized by. By changing the ratio of the discharge current of one storage battery according to the depth of discharge of the storage battery with a large output density, and supplying power to the load from both of these two types of storage batteries, a simple power supply device is small and lightweight, Moreover, it is possible to obtain an electric vehicle power source having a large discharge capacity and a large output.

【0019】請求項12記載の電動車両用電力供給装置
は、前記制御手段が、前記放電割合設定手段の設定に基
づき前記両蓄電池からの要求放電電流の50%以下をエ
ネルギー密度の大きな蓄電池の負担とし、かつ0〜50
%の間で可変させることを特徴としている。2種類の蓄
電池の両方から負荷ヘ電力を供給することで、簡単な電
源装置により小型軽量で、しかも放電容量及び出力の大
きな電動車両用電力源を得ることができる。
In the electric power supply system for an electric vehicle according to claim 12, the control means sets 50% or less of the required discharge current from both storage batteries to the storage battery having a large energy density based on the setting of the discharge ratio setting means. And 0 to 50
The feature is that it is variable between%. By supplying electric power to the load from both of the two types of storage batteries, it is possible to obtain a small-sized and lightweight electric power source for an electric vehicle that has a large discharge capacity and a large output with a simple power supply device.

【0020】請求項13記載の電動車両用電力供給装置
は、電動車両に搭載された出力密度の大きな蓄電池及び
エネルギー密度の大きな蓄電池と、要求放電電流の大小
に応じて前記2種類の蓄電池から電力を供給する制御手
段と、出力密度の大きな蓄電池の残存容量を検出する残
存容量検出手段と、前記出力密度の大きな蓄電池の放電
容量が低下した場合、前記エネルギー密度の大きな蓄電
池から前記出力密度の大きな蓄電池に対して充電を実施
させる充電手段と、を備えることを特徴としている。出
力密度の大きな蓄電池の残存容量が低下した場合、エネ
ルギー密度の大きな蓄電池から出力密度の大きな蓄電池
に対して充電することで、簡単な電源装置により電動車
両の次回の発進、登坂時等大きな電流が必要な時は、出
力密度の大きな蓄電池から電力を供給することができ、
小型軽量で、加速、登坂性能が向上する。
According to a thirteenth aspect of the present invention, there is provided a power supply device for an electric vehicle in which electric power is supplied from a storage battery having a large output density and a storage battery having a large energy density, which are mounted on the electric vehicle, and the two types of storage batteries depending on the required discharge current. Supply means, a remaining capacity detection means for detecting the remaining capacity of a storage battery having a large output density, and the discharge capacity of the storage battery having a large output density is reduced, the storage battery having a large energy density from the storage battery having a large output density. And a charging means for charging the storage battery. When the remaining capacity of a storage battery with a large output density decreases, the storage battery with a large energy density charges the storage battery with a large output density, so that a large current such as when the electric vehicle is next started or when climbing a slope is generated with a simple power supply device. When necessary, power can be supplied from a storage battery with a large output density,
It is small and lightweight, which improves acceleration and climbing performance.

【0021】請求項14記載の電動車両用電力供給装置
は、電動車両の用途に適した比率で前記2種類の蓄電池
を搭載することを特徴としている。電動車両の用途に適
した比率で2種類の蓄電池を搭載し、簡単な電源装置に
より小型軽量で、しかも放電容量及び出力の大きな電動
車両用電力源を得ることができる。
A power supply device for an electric vehicle according to a fourteenth aspect is characterized in that the two types of storage batteries are mounted in a ratio suitable for the purpose of the electric vehicle. It is possible to obtain a power source for an electric vehicle that is equipped with two types of storage batteries in a ratio suitable for the purpose of the electric vehicle and is small and lightweight with a simple power supply device and has a large discharge capacity and a large output.

【0022】[0022]

【発明の実施の形態】以下、この発明の電動車両用電力
供給方法及びその装置蓄の実施例を図面に基づいて詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the electric power supply method for an electric vehicle and the device storage thereof according to the present invention will be described below in detail with reference to the drawings.

【0023】図1は電動車両用電力供給装置の第1実施
例の概略構成を示すブロック図、図2は電動車両用電力
供給装置の第1実施例の作動を示すフローチャートであ
る。
FIG. 1 is a block diagram showing a schematic configuration of a first embodiment of an electric vehicle power supply apparatus, and FIG. 2 is a flow chart showing an operation of the first embodiment of the electric vehicle power supply apparatus.

【0024】電動車両用電力供給装置1は、電動車両に
搭載され、エネルギー密度の大きな蓄電池Aと、出力密
度の大きな蓄電池Bの2種類の蓄電池A,Bを備え、要
求放電電流の大小に応じて2種類の蓄電池A,Bから放
電して電源を供給するように構成されている。
The power supply device 1 for an electric vehicle is mounted on an electric vehicle and includes two types of storage batteries A and B, which are a storage battery A having a large energy density and a storage battery B having a large output density. The two types of storage batteries A and B are discharged to supply power.

【0025】エネルギー密度の大きな蓄電池Aとして、
例えばNi−MH電池、Liイオン電池、燃料電池、太
陽電池等があり、走行距離、重量に関してはなるべくエ
ネルギー密度の大きな蓄電池Aが必要である。また、出
力密度の大きな蓄電池Bとして、例えば鉛電池(バイポ
ーラ)、Ni−Cd電池、キャパシター等があり、加速
性、登坂性に関しては電池の出力密度の大きな蓄電池B
が必要である。
As the storage battery A having a large energy density,
For example, there are Ni-MH batteries, Li-ion batteries, fuel cells, solar cells, etc., and a storage battery A having a large energy density is required in terms of traveling distance and weight. Further, as the storage battery B having a large output density, there are, for example, a lead battery (bipolar), a Ni-Cd battery, a capacitor, etc., and the storage battery B having a large output density of the battery in terms of acceleration and climbability.
is required.

【0026】蓄電池Aと切換スイッチSWaの直列回路
2と、蓄電池Bと切換スイッチSWbの直列回路3と、
負荷4と電源スイッチSW1の直列回路5と、充電スイ
ッチSW2とが、それぞれ並列に接続される。
A series circuit 2 of the storage battery A and the changeover switch SWa, a series circuit 3 of the storage battery B and the changeover switch SWb,
The load 4 and the series circuit 5 of the power switch SW1 and the charging switch SW2 are connected in parallel.

【0027】また、負荷4としてはモータ類等がある。
充電時には、コネクタ6を介して充電器7が接続され
る。なお、図1及び図2では、便宜上放電と充電とをま
とめて説明している。
The load 4 may be a motor or the like.
At the time of charging, the charger 7 is connected via the connector 6. In addition, in FIG. 1 and FIG. 2, the discharge and the charge are collectively described for convenience.

【0028】電動車両を停止し、例えば夜間の充電時に
は、コネクタ6を介して充電器7が接続され、充電スイ
ッチSW2を手動で閉じれば制御手段を構成するコント
ローラ8の制御で、切換スイッチSWa及び切換スイッ
チSWbを閉じ、手動で切換スイッチSW1を開くこと
で蓄電池A,Bの充電が行なわれる。切換スイッチSW
aと切換スイッチSWbとの間に、電流センサ9が接続
され、この電流情報がコントローラ8の放電電流検出手
段10に入力され要求放電電流を検出する。
When the electric vehicle is stopped and, for example, charging is performed at night, the charger 7 is connected via the connector 6, and if the charging switch SW2 is manually closed, the changeover switch SWa and the changeover switch SWa are controlled under the control of the controller 8 constituting the control means. The storage batteries A and B are charged by closing the changeover switch SWb and manually opening the changeover switch SW1. Changeover switch SW
A current sensor 9 is connected between a and the changeover switch SWb, and this current information is input to the discharge current detecting means 10 of the controller 8 to detect the required discharge current.

【0029】蓄電池Aには電圧センサ11aが並列に接
続され、蓄電池Bには電圧センサ11bが並列に接続さ
れ、この電圧情報がコントローラ8の電池電圧検出手段
12に入力される。
A voltage sensor 11a is connected in parallel to the storage battery A, a voltage sensor 11b is connected in parallel to the storage battery B, and this voltage information is input to the battery voltage detection means 12 of the controller 8.

【0030】また、コントローラ8には、電源切換手段
21と、放電停止手段22とが備えられ、電源切換手段
21は、放電電流検出手段10からの電流情報が所定値
以上になると、切換スイッチSWaを開き、切換スイッ
チSWbを閉じ蓄電池Bから負荷4に電力を供給し、所
定値以下の場合には、切換スイッチSWbを開き、切換
スイッチSWaを閉じ蓄電池Aから負荷4に電力を供給
する。このように要求放電電流の大小に応じて2種類の
蓄電池A,Bのどちらか一方の蓄電池を選択して電力を
供給し、この蓄電池A,Bの切換は、電源切換表示手段
23に表示される。
Further, the controller 8 is provided with a power supply switching means 21 and a discharge stopping means 22, and the power supply switching means 21 switches the changeover switch SWa when the current information from the discharge current detecting means 10 exceeds a predetermined value. Power is supplied from the storage battery B to the load 4, and when the value is not more than a predetermined value, the changeover switch SWb is opened and the changeover switch SWa is closed to supply power from the storage battery A to the load 4. In this way, one of the two types of storage batteries A and B is selected according to the magnitude of the required discharge current to supply power, and the switching between the storage batteries A and B is displayed on the power source switching display means 23. It

【0031】また、放電停止手段22は、電池電圧検出
手段12からの電圧情報が入力され、それぞれの蓄電池
A及び蓄電池Bの電圧が所定値(終止電圧)以下になる
と作動し、電動車両を停止させると共に、放電停止警告
手段24を駆動する。放電停止警告手段24として、警
告ランプまたは警告ブザーを用いることができる。
Further, the discharge stopping means 22 is operated when the voltage information from the battery voltage detecting means 12 is inputted and the voltages of the respective storage batteries A and B become equal to or lower than a predetermined value (end voltage) and stops the electric vehicle. At the same time, the discharge stop warning means 24 is driven. As the discharge stop warning means 24, a warning lamp or a warning buzzer can be used.

【0032】次に、コントローラ9の制御を、図2のフ
ローチャートに基づいて説明する。電動車両の始動時に
は、切換スイッチSWa及び切換スイッチSWbはいず
れも閉じており、ステップa1において、始動時には手
動で電源スイッチSW1を閉じると、放電が開始され
る。ステップb1において、電動車両が発進、登坂のた
めの負荷4により電流センサ9で検出する蓄電池A,B
に対する要求放電電流Itが10A以上ならば、切換ス
イッチSWaがOFF状態になり、切換スイッチSWb
がON状態であるため、出力密度の大きな蓄電池Bが放
電される(ステップc1)。このとき、ステップd1で
電圧センサ11bで検出される出力密度の大きな蓄電池
Bの電圧Vbが終止電圧V0以下か否かの判断を行な
い、終止電圧V0以下でないときには、ステップb1へ
移行して放電を行ない、放電が終了するとステップi1
へ移行する(ステップe1)。
Next, the control of the controller 9 will be described based on the flowchart of FIG. At the time of starting the electric vehicle, both the changeover switch SWa and the changeover switch SWb are closed, and in step a1, if the power switch SW1 is manually closed at the time of start, discharging is started. In step b1, the electric vehicle starts and the storage batteries A and B detected by the current sensor 9 by the load 4 for climbing uphill.
If the required discharge current It for is 10 A or more, the changeover switch SWa is turned off, and the changeover switch SWb
Is on, the storage battery B having a high output density is discharged (step c1). At this time, it is determined in step d1 whether or not the voltage Vb of the storage battery B having a high output density detected by the voltage sensor 11b is equal to or lower than the final voltage V0. If the voltage is not lower than the final voltage V0, the process proceeds to step b1 to discharge. Step i1
(Step e1).

【0033】電動車両が走行を開始して、それにともな
い、要求放電電流が10A以下になれば(ステップb
1)、切換スイッチSWbがOFF状態になり、切換ス
イッチSWaがON状態になってエネルギー密度の大き
な蓄電池Aが放電される(ステップf1)。このとき、
ステップf1で電圧センサ11で検出される蓄電池Aの
電圧Vaが終止電圧V1以下か否かの判断を行ない、蓄
電池Aの電圧Vaが終止電圧V1以下のときは放電を終
了し(ステップh1)、終止電圧V1以下でないときに
は、ステップb1へ移行して放電を行なう。
When the electric vehicle starts running and the required discharge current is 10 A or less (step b)
1), the changeover switch SWb is turned off, the changeover switch SWa is turned on, and the storage battery A having a large energy density is discharged (step f1). At this time,
In step f1, it is determined whether or not the voltage Va of the storage battery A detected by the voltage sensor 11 is equal to or lower than the final voltage V1, and when the voltage Va of the storage battery A is equal to or lower than the final voltage V1, discharging is finished (step h1). If it is not lower than the cutoff voltage V1, the process proceeds to step b1 to discharge.

【0034】この電動車両の発進、走行、停止の繰り返
しの間、エネルギー密度の大きな蓄電池Aと、出力密度
の大きな蓄電池Bの間で切換が行なわれ、蓄電池A、蓄
電池Bの放電が実施される。蓄電池Aの残存容量が低下
し電池電圧が終止電圧に達すると、ステップh1で放電
を終了し、同様に、蓄電池Bの容量が低下し電池電圧が
終止電圧に達すると、ステップe1で放電を終了して電
動車両は走行を停止する。
During the repetition of starting, running and stopping of the electric vehicle, the storage battery A having a large energy density and the storage battery B having a large output density are switched to discharge the storage battery A and the storage battery B. . When the remaining capacity of the storage battery A decreases and the battery voltage reaches the final voltage, the discharging ends in step h1. Similarly, when the capacity of the storage battery B decreases and the battery voltage reaches the final voltage, the discharging ends in step e1. Then, the electric vehicle stops traveling.

【0035】このように、電動車両の要求放電電流の大
きさに応じて2種類の蓄電池A,Bのどちらか一方の蓄
電池を選択して放電することで、簡単な電源装置により
小型軽量で、しかも放電容量及び出力の大きな電動車両
用電力源を得ることができる。
As described above, by selecting and discharging one of the two types of storage batteries A and B in accordance with the magnitude of the required discharge current of the electric vehicle, a simple power supply device is provided which is small and lightweight, Moreover, it is possible to obtain an electric vehicle power source having a large discharge capacity and a large output.

【0036】また、電動車両の発進、登坂時等大きな電
流が必要な時は、出力密度の大きな蓄電池Bを選択して
電力を供給するから、簡単な電源装置により小型軽量
で、加速、登坂性能が向上する。さらに、電動車両の発
進後、一定の速度での走行時は、エネルギー密度の大き
な蓄電池Aを選択して電力を供給するから、簡単な電源
装置により小型軽量で、走行距離が長くなる。
In addition, when a large current is required such as when starting an electric vehicle or climbing a hill, the storage battery B having a large output density is selected to supply electric power. Is improved. Furthermore, when the electric vehicle is running at a constant speed after starting, the storage battery A having a large energy density is selected to supply electric power. Therefore, the simple power supply device is small and lightweight, and the traveling distance is long.

【0037】電動車両は走行を停止すると、例えば夜間
の充電時にコネクタ6を介して充電器7が接続され、コ
ントローラ8の制御で、切換スイッチSWa、切換スイ
ッチSWbを閉じ、充電スイッチSW2を手動で閉じ、
電源スイッチSW1を同様に手動で開くことで蓄電池
A,Bの充電が行なわれる(ステップi1)。このよう
に、走行を停止した後、充電器7を用いて蓄電池A,B
の充電を実施し、電動車両は再度走行可能な状態にな
り、充電器7により蓄電池A,Bを最適に充電する(ス
テップj1)。
When the electric vehicle stops running, the charger 7 is connected through the connector 6 for charging at night, for example, and the controller 8 controls the changeover switches SWa and SWb to be closed and the charge switch SW2 to be manually changed. Close,
Similarly, the storage batteries A and B are charged by manually opening the power switch SW1 (step i1). In this way, after stopping traveling, the storage batteries A and B are charged using the charger 7.
Charging is performed, the electric vehicle is allowed to run again, and the chargers 7 optimally charge the storage batteries A and B (step j1).

【0038】図3は電動車両用電力供給装置の第2実施
例の概略構成を示すブロック図、図4は電動車両用電力
供給装置の第2実施例の作動を示すフローチャートであ
る。
FIG. 3 is a block diagram showing the schematic construction of a second embodiment of the electric vehicle power supply apparatus, and FIG. 4 is a flow chart showing the operation of the second embodiment of the electric vehicle power supply apparatus.

【0039】この第2実施例の電動車両用電力供給装置
1は、図1及び図2に示す第1実施例と同様に構成され
るものは同じ符号を付して説明を省略する。
In the electric vehicle power supply system 1 of the second embodiment, the same components as those of the first embodiment shown in FIGS. 1 and 2 are designated by the same reference numerals and the description thereof will be omitted.

【0040】第2実施例の電動車両用電力供給装置1の
コントローラ8は、放電電流積算手段30、放電深度算
出手段31、放電電流割合設定手段32が備えられてい
る。放電電流積算手段30には、蓄電池Bに直列に接続
された電流計33から放電電流情報が入力され、これを
積算する。放電深度算出手段31は、放電電流の積算か
ら蓄電池Bの放電深度を算出する。放電割合設定手段3
2は、蓄電池Bの放電深度の算出情報から両蓄電池A,
Bからの同時放電の割合を設定し、この両蓄電池A,B
からの放電電流割合を設定に際して一方の蓄電池の放電
電流割合を、出力密度の大きな蓄電池の放電深度に応じ
て変化させ2種類の蓄電池の両方から負荷ヘ電力を供給
する。このように、一方の蓄電池の放電電流の割合を、
出力密度の大きな蓄電池の放電深度に応じて変化させ、
この2種類の蓄電池の両方から負荷ヘ電力を供給するこ
とで、簡単な電源装置により小型軽量で、しかも放電容
量及び出力の大きな電動車両用電力源を得ることができ
る。
The controller 8 of the electric vehicle power supply system 1 of the second embodiment is provided with a discharge current integration means 30, a discharge depth calculation means 31, and a discharge current ratio setting means 32. The discharge current information is input from the ammeter 33 connected in series to the storage battery B to the discharge current integration means 30, and the discharge current information is integrated. The discharge depth calculation means 31 calculates the discharge depth of the storage battery B from the integration of the discharge current. Discharge rate setting means 3
2 indicates that both storage batteries A, from the calculation information of the depth of discharge of the storage battery B,
The ratio of simultaneous discharge from B is set, and both storage batteries A and B are set.
When setting the discharge current ratio from the one storage battery, the discharge current ratio of one storage battery is changed according to the depth of discharge of the storage battery having a large output density, and electric power is supplied to the load from both of the two types of storage batteries. In this way, the ratio of the discharge current of one storage battery is
It changes according to the depth of discharge of a storage battery with a large output density,
By supplying electric power to the load from both of these two types of storage batteries, it is possible to obtain a small-sized and lightweight electric power source for an electric vehicle having a large discharge capacity and a large output with a simple power supply device.

【0041】この実施例では、放電電流割合設定手段3
2の設定に基づき両蓄電池A,Bからの放電の全放電電
流の50%以下を一方の蓄電池Aの負担とし、かつ0〜
50%の間で可変させている。このように、両蓄電池
A,Bの放電電流割合を、出力密度の大きさな蓄電池B
の放電深度に応じて変化させ、この2種類の蓄電池A,
Bの両方から負荷ヘ電力を供給することで、簡単な電源
装置により小型軽量で、しかも放電容量及び出力の大き
な電動車両用電源を得ることができる。
In this embodiment, the discharge current ratio setting means 3
Based on the setting of 2, one of the storage batteries A bears 50% or less of the total discharge current of the discharges from both storage batteries A and B, and 0 to
It is variable between 50%. In this way, the discharge current ratio of the two storage batteries A and B is calculated as follows.
These two types of storage batteries A,
By supplying electric power to the load from both B, it is possible to obtain a small-sized and lightweight electric power source for an electric vehicle that has a large discharge capacity and a large output with a simple power supply device.

【0042】次に、コントローラ8の制御を、図4のフ
ローチャートに基づいて説明する。ステップa2におい
て、手動で電源スイッチSW1を閉じると、放電が開始
され(ステップb2)、車両の発進、走行、停止の繰り
返しの間、蓄電池A、蓄電池Bの放電が実施される。
Next, the control of the controller 8 will be described based on the flowchart of FIG. In step a2, when the power switch SW1 is manually closed, discharging is started (step b2), and the storage battery A and the storage battery B are discharged while the vehicle is repeatedly started, running, and stopped.

【0043】出力密度の大きな蓄電池Bの放電深度C
P、即ち公称容量に対する放電容量の割合が所定値のY
%以下か否かを判断し(ステップc2)、Y%以下の場
合、即ち蓄電池Bに十分な容量がある場合には、エネル
ギー密度の大きな蓄電池Aが要求放電電流Itの30%
放電し、蓄電池Bが70%放電する(ステップc2)。
ステップe2で蓄電池Bの放電容量を積算し、蓄電池B
の放電深度CPを計算により求める。ステップf2でい
ずれかの蓄電池A,Bの電池電圧Va,Vbが終止電圧
Va0,Vb0以下か否かを判断し、いずれかが終止電
圧以下でない場合にはステップc2へ移行する。
Depth of discharge C of storage battery B having a large output density C
P, that is, Y having a predetermined value of the discharge capacity to the nominal capacity
% Or less (step c2), and when Y% or less, that is, when the storage battery B has a sufficient capacity, the storage battery A having a large energy density is 30% of the required discharge current It.
The battery B is discharged, and the storage battery B is discharged by 70% (step c2).
In step e2, the discharge capacities of the storage battery B are integrated to obtain the storage battery B
The discharge depth CP of is calculated. In step f2, it is determined whether the battery voltages Va and Vb of any of the storage batteries A and B are equal to or lower than the final voltages Va0 and Vb0. If either is not equal to or lower than the final voltage, the process proceeds to step c2.

【0044】ステップc2において、蓄電池Bの放電深
度CPがY%以上の場合、即ち蓄電池Bの残存容量が少
ない場合には、ステップg2において、蓄電池Aが要求
放電電流Itの50%放電し、蓄電池Bが50%放電す
る。ステップh2で蓄電池Bの放電容量を積算し、蓄電
池Bの放電深度CPを計算により求める。ステップi2
でいずれかの蓄電池A,Bの電池電圧Va,Vbが終止
電圧Va0,Vb0以下か否かを判断し、いずれも終止
電圧以下でない場合にはステップb2へ移行する。
In step c2, when the depth of discharge CP of the storage battery B is Y% or more, that is, when the remaining capacity of the storage battery B is small, the storage battery A discharges 50% of the required discharge current It in step g2, and the storage battery B is discharged. B discharges 50%. In step h2, the discharge capacity of the storage battery B is integrated, and the discharge depth CP of the storage battery B is calculated. Step i2
Then, it is determined whether or not the battery voltages Va and Vb of any of the storage batteries A and B are equal to or lower than the final voltages Va0 and Vb0. If neither is equal to or lower than the final voltage, the process proceeds to step b2.

【0045】ステップf2で、蓄電池A,Bのいずれか
が終止電圧Va0,Vb0に達すると、ステップj2で
放電を終了し、電動車両は走行を停止する。
When either of the storage batteries A, B reaches the final voltage Va0, Vb0 in step f2, the discharge is terminated in step j2 and the electric vehicle stops running.

【0046】そして、ステップk2で充電器7を接続し
て蓄電池A、蓄電池Bの充電を開始し、ステップl2で
充電を終了して走行可能になる。また、ステップi2
で、蓄電池A,Bのいずれかが終止電圧Va0,Vb0
に達すると、同様にステップm2で放電を終了し、電動
車両は走行を停止し、ステップn2で充電器7を接続し
て蓄電池A、蓄電池Bの充電を開始し、ステップo2で
充電を終了して走行可能になる。
Then, in step k2, the charger 7 is connected to start charging the storage battery A and the storage battery B, and in step l2 the charging is completed to enable traveling. Also, step i2
And either of the storage batteries A, B has a final voltage of Va0, Vb0.
In the same manner, the discharge is ended in step m2, the electric vehicle stops traveling, the charger 7 is connected in step n2 to start charging the storage battery A and the storage battery B, and the charging is ended in step o2. It becomes possible to run.

【0047】このように、両方の蓄電池A,Bの放電電
流の割合を、出力密度の大きな蓄電池の放電深度に応じ
て変化させ、この2種類の蓄電池の両方から負荷ヘ電力
を供給することで、簡単な電源装置により小型軽量で、
しかも放電容量及び出力の大きな電動車両用電源を得る
ことができる。
As described above, the ratio of the discharge currents of both storage batteries A and B is changed according to the depth of discharge of the storage batteries having a large output density, and electric power is supplied to the load from both of these two types of storage batteries. , Small size and light weight with simple power supply,
Moreover, it is possible to obtain a power supply for an electric vehicle having a large discharge capacity and a large output.

【0048】また、放電電流割合設定手段32の設定に
基づき要求放電電流の50%以下をエネルギー密度の大
きな蓄電池Aの負担とし、かつ0〜50%の間で可変さ
せ、2種類の蓄電池A,Bの両方から負荷ヘ電力を供給
することで、簡単な電源装置により小型軽量で、しかも
放電容量及び出力の大きな電動車両用電力源を得ること
ができる。
Further, based on the setting of the discharge current ratio setting means 32, 50% or less of the required discharge current is set as a burden on the storage battery A having a large energy density, and the storage battery A is made variable between 0 and 50%. By supplying electric power to the load from both B, it is possible to obtain a small and lightweight electric power source for an electric vehicle having a large discharge capacity and a large output by a simple power supply device.

【0049】図5は電動車両用電力供給装置の第3実施
例の概略構成を示すブロック図、図6は電動車両用電力
供給装置の第3実施例の作動を示すフローチャートであ
る。
FIG. 5 is a block diagram showing the schematic construction of the third embodiment of the electric vehicle power supply apparatus, and FIG. 6 is a flow chart showing the operation of the third embodiment of the electric vehicle power supply apparatus.

【0050】この第3実施例の電動車両用電力供給装置
1は、図1及び図2に示す実施例と同様に構成されるも
のは同じ符号を付して説明を省略する。この第3実施例
の電動車両用電力供給装置1には、蓄電池Aと、蓄電池
Bとの間に、DC/DCコンバータ50が接続され、出
力密度の大きな蓄電池Bの残存容量が低下すると、エネ
ルギー密度の大きな蓄電池Aから充電可能に構成されて
いる。
In the electric power supply system 1 for an electric vehicle of the third embodiment, the same components as those of the embodiment shown in FIGS. 1 and 2 are designated by the same reference numerals and the description thereof will be omitted. In the electric vehicle power supply device 1 of the third embodiment, a DC / DC converter 50 is connected between a storage battery A and a storage battery B, and when the remaining capacity of the storage battery B having a large output density decreases, energy It is configured such that it can be charged from the storage battery A having a high density.

【0051】コントローラ8の充電制御手段51は、出
力密度の大きな蓄電池Bの残存容量が低下した場合、エ
ネルギー密度の大きな蓄電池Aから出力密度の大きな蓄
電池Bに対して充電を実施させ、簡単な電源装置により
電動車両の次回の発進、登坂時等大きな電流が必要な時
は、出力密度の大きな蓄電池Bから電力を供給すること
ができ、小型軽量で、加速、登坂性能が向上する。
When the remaining capacity of the storage battery B having a large output density decreases, the charge control means 51 of the controller 8 causes the storage battery A having a large energy density to charge the storage battery B having a large output density, and a simple power source. When a large current is required by the device, such as when the electric vehicle is next started or when climbing a hill, electric power can be supplied from the storage battery B having a large output density, which is small and lightweight, and acceleration and climbing performance are improved.

【0052】次に、コントローラ8の制御を、図6のフ
ローチャートに基づいて説明する。ステップa3におい
て、電源スイッチSW1を手動で閉じると、放電が開始
される。電動車両が発進、登坂のための負荷4による蓄
電池A,Bに対する要求放電電流Itが10A以上であ
ると(ステップb3)、ステップc3で切換スイッチS
WbがON状態になり、出力密度の大きな蓄電池Bが放
電される。蓄電池Bの電圧Vbが終止電圧V4以下にな
ると(ステップd3)、ステップe3で放電を停止す
る。
Next, the control of the controller 8 will be described based on the flowchart of FIG. In step a3, when the power switch SW1 is manually closed, discharging is started. When the required discharge current It for the storage batteries A and B by the load 4 for starting and climbing the electric vehicle is 10 A or more (step b3), the changeover switch S is selected in step c3.
Wb is turned on, and storage battery B having a high output density is discharged. When the voltage Vb of the storage battery B becomes equal to or lower than the final voltage V4 (step d3), discharging is stopped at step e3.

【0053】電動車両が走行を開始して、それにともな
い、ステップb3で要求放電電流Itが10A以下にな
れば、ステップf3でエネルギー密度の大きな蓄電池A
の電圧Vaがあるしきい値電圧V1より小さいと、ステ
ップg3で切換スイッチSWbがOFF状態になって、
切換スイッチSWaがON状態になり蓄電池Aが放電さ
れる。蓄電池Aの電圧Vaが終止電圧V2以下になると
(ステップh3)、ステップi3で放電を停止する。
When the electric vehicle starts running and the required discharge current It becomes 10 A or less at step b3, the storage battery A having a large energy density is obtained at step f3.
If the voltage Va is lower than a certain threshold voltage V1, the changeover switch SWb is turned off in step g3,
The changeover switch SWa is turned on and the storage battery A is discharged. When the voltage Va of the storage battery A becomes equal to or lower than the final voltage V2 (step h3), discharging is stopped at step i3.

【0054】ステップf3でエネルギー密度の大きな蓄
電池Aの電圧Vaがあるしきい値電圧V1より大きい
と、ステップj3で切換スイッチSWa,SWbがON
状態になって、蓄電池Aが放電され、蓄電池Bの充電が
開始される。蓄電池Aの電圧Vaがあるしきい値電圧V
1より大きいと(ステップk3)、ステップl3で蓄電
池Bの充電により電圧Vbが充電停止電圧V3になる
と、蓄電池Bへの充電を停止する(ステップm3)。
If the voltage Va of the storage battery A having a large energy density is higher than a certain threshold voltage V1 in step f3, the changeover switches SWa and SWb are turned on in step j3.
The storage battery A is discharged, and the storage battery B starts to be charged. Threshold voltage V with voltage Va of storage battery A
When it is larger than 1 (step k3), when the voltage Vb becomes the charging stop voltage V3 due to the charging of the storage battery B in step l3, the charging of the storage battery B is stopped (step m3).

【0055】ステップk3で蓄電池Aの電圧Vaがある
しきい値電圧V1より小さいと、ステップn3で蓄電池
Aが放電され、蓄電池Bの充電が停止される。蓄電池A
の電圧Vaが終止電圧V2以下になると(ステップo
3)、ステップp3で放電を停止する。
When the voltage Va of the storage battery A is smaller than a certain threshold voltage V1 in step k3, the storage battery A is discharged and the charging of the storage battery B is stopped in step n3. Storage battery A
When the voltage Va of the voltage becomes equal to or lower than the final voltage V2 (step o
3), the discharge is stopped in step p3.

【0056】ステップe3,p3で放電が停止される
と、ステップq3で蓄電池A,Bの充電を行ない、充電
が終了するすると走行可能な状態になる(ステップr
3)。
When the discharging is stopped in steps e3 and p3, the storage batteries A and B are charged in step q3, and when the charging is completed, the vehicle is ready to run (step r).
3).

【0057】蓄電池A,Bの放電停止を終止電圧で制御
しているが放電容量を積算して設定放電量になったら、
放電を停止するという方法でも可能であり、この方法は
温度、充電状態等、他の要因の影響を受けにくく、精度
は良好である。
Although the discharge stop of the storage batteries A and B is controlled by the final voltage, when the discharge capacity is integrated and the set discharge amount is reached,
A method of stopping the discharge is also possible, and this method is not easily affected by other factors such as temperature and state of charge and has good accuracy.

【0058】また、電動車両用電力供給装置1は、電動
車両の用途に適した比率で2種類の蓄電池A,Bを搭載
することで、簡単な電源装置により小型軽量で、しかも
放電容量及び出力の大きな電動車両用電力源を得ること
ができる。
Further, the electric vehicle power supply device 1 is equipped with two types of storage batteries A and B in a ratio suitable for the purpose of the electric vehicle, so that the electric power supply device 1 is small in size and light in weight with a simple power supply device and has a discharge capacity and an output. It is possible to obtain a large electric power source for an electric vehicle.

【0059】[0059]

【発明の効果】前記したように、請求項1及び請求項8
記載の発明では、電動車両の要求放電電流の大きさに応
じて2種類の蓄電池のどちらか一方の蓄電池を選択して
放電するから、小型軽量で、しかも放電容量及び出力の
大きな電動車両用電力源を得ることができる。
As described above, the first and the eighth aspects are provided.
According to the invention described above, one of two types of storage batteries is selected and discharged according to the magnitude of the required discharge current of the electric vehicle. Therefore, the electric power for an electric vehicle is small and lightweight and has a large discharge capacity and a large output. You can get the source.

【0060】請求項2記載及び請求項9記載の発明で
は、電動車両の発進、登坂時等大きな電流が必要な時
は、出力密度の大きな蓄電池から電力を供給するから、
小型軽量で、加速、登坂性能を向上することができる。
According to the second and ninth aspects of the present invention, when a large current is required such as when the electric vehicle is starting or climbing a slope, electric power is supplied from a storage battery having a large output density.
It is compact and lightweight, and can improve acceleration and climbing performance.

【0061】請求項3記載及び請求項10記載の発明で
は、電動車両の発進後、一定の速度での走行時は、エネ
ルギー密度の大きな蓄電池から電力を供給するから、小
型軽量で、走行距離を長くすることができる。
According to the third and tenth aspects of the present invention, when the electric vehicle is driven at a constant speed after starting, electric power is supplied from a storage battery having a large energy density, so that the vehicle is small and lightweight and has a long traveling distance. Can be long.

【0062】請求項4記載及び請求項11記載の発明で
は、2種類の蓄電池の放電電流の割合を、出力密度の大
きな蓄電池の放電密度に応じて変化させ、この2種類の
蓄電池の両方から負荷ヘ電力を供給するから、小型軽量
で、しかも放電容量及び出力の大きな電動車両用電力源
を得ることができる。
In the inventions according to claims 4 and 11, the ratios of the discharge currents of the two types of storage batteries are changed in accordance with the discharge densities of the storage batteries having large output densities, and the load from both of the two types of storage batteries is changed. (F) Since electric power is supplied, it is possible to obtain a small and lightweight electric power source for an electric vehicle that has a large discharge capacity and a large output.

【0063】請求項5記載及び請求項12記載の発明で
は、両蓄電池からの要求放電電流の50%以下をエネル
ギー密度の大きな蓄電池の負担とし、かつ0〜50%の
間で可変させ2種類の蓄電池の両方から負荷ヘ放電して
電力を供給するから、小型軽量で、しかも放電容量及び
出力の大きな電動車両用電力源を得ることができる。
According to the fifth and the twelfth aspects of the invention, 50% or less of the required discharge current from both storage batteries is a burden on the storage battery having a large energy density and is variable between 0 and 50%. Since electric power is supplied by discharging the load from both of the storage batteries, it is possible to obtain a small and lightweight electric power source for an electric vehicle that has a large discharge capacity and a large output.

【0064】請求項6記載及び請求項13記載の発明で
は、出力密度の大きな蓄電池の残存容量が低下した場
合、エネルギー密度の大きな蓄電池から出力密度の大き
な蓄電池に対して充電するから、電動車両の次回の発
進、登坂時等大きな電流が必要な時は、出力密度の大き
な蓄電池から電力を供給することができ、小型軽量で、
加速、登坂性能を向上することができる。
According to the sixth and thirteenth aspects of the present invention, when the remaining capacity of the storage battery having a large output density decreases, the storage battery having a large energy density charges the storage battery having a large output density. When a large amount of current is required, such as when starting or climbing the next time, power can be supplied from a storage battery with a large output density, and it is small and lightweight.
Acceleration and climbing performance can be improved.

【0065】請求項7記載及び請求項14記載の発明で
は、電動車両の用途に適した比率で2種類の蓄電池を搭
載するから、小型軽量で、しかも放電容量及び出力の大
きな電動車両用電力源を得ることができる。
In the inventions according to claims 7 and 14, since two types of storage batteries are mounted in a ratio suitable for the purpose of use of the electric vehicle, the power source for the electric vehicle is small and lightweight and has a large discharge capacity and a large output. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】電動車両用電力供給装置の第1実施例の概略構
成を示すブロック図である。
FIG. 1 is a block diagram showing a schematic configuration of a first embodiment of an electric vehicle power supply device.

【図2】電動車両用電力供給装置の第1実施例の作動を
示すフローチャートである。
FIG. 2 is a flowchart showing the operation of the first embodiment of the electric vehicle power supply system.

【図3】電動車両用電力供給装置の第2実施例の概略構
成を示すブロック図である。
FIG. 3 is a block diagram showing a schematic configuration of a second embodiment of the electric vehicle power supply device.

【図4】電動車両用電力供給装置の第2実施例の作動を
示すフローチャートである。
FIG. 4 is a flowchart showing an operation of the second embodiment of the electric vehicle power supply system.

【図5】電動車両用電力供給装置の第3実施例の概略構
成を示すブロック図である。
FIG. 5 is a block diagram showing a schematic configuration of a third embodiment of an electric vehicle power supply device.

【図6】電動車両用電力供給装置の第3実施例の作動を
示すフローチャートである。
FIG. 6 is a flowchart showing the operation of the third embodiment of the electric vehicle power supply system.

【符号の説明】[Explanation of symbols]

1 電動車両用電力供給装置 2 蓄電池Aと切換スイッチSWaの直列回路 3 蓄電池Bと切換スイッチSWbの直列回路 4 負荷 5 負荷4と電源スイッチSW1の直列回路 7 充電器 8 コントローラ 9 電流センサ SWa 切換スイッチ SWb 切換スイッチ A 蓄電池 B 蓄電池 1 Electric Power Supply Device for Electric Vehicle 2 Series Circuit of Storage Battery A and Changeover Switch SW 3 Series Circuit of Storage Battery B and Changeover Switch SWb 4 Load 5 Series Circuit of Load 4 and Power Switch SW1 7 Charger 8 Controller 9 Current Sensor SWa Changeover Switch SWb selector switch A storage battery B storage battery

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02J 7/00 H02J 7/00 X 302 302C Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H02J 7/00 H02J 7/00 X 302 302C

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】電動車両に、出力密度の大きな蓄電池とエ
ネルギー密度の大きな蓄電池の2種類の蓄電池を搭載
し、要求放電電流の大小に応じて2種類の蓄電池のどち
らか一方の蓄電池を選択して電力を供給することを特徴
とする電動車両用電力供給方法。
1. An electric vehicle equipped with two types of storage batteries, a storage battery having a large output density and a storage battery having a large energy density, and one of the two storage batteries is selected according to the required discharge current. A power supply method for an electric vehicle, comprising:
【請求項2】電動車両の発進、登坂時等大きな電流が必
要な時は、出力密度の大きな蓄電池から電力を供給する
ことを特徴とする請求項1記載の電動車両用電力供給方
法。
2. A power supply method for an electric vehicle according to claim 1, wherein when a large current is required such as when the electric vehicle starts or climbs a slope, electric power is supplied from a storage battery having a large output density.
【請求項3】電動車両の発進後、一定の速度での走行時
は、エネルギー密度の大きな蓄電池から電力を供給する
ことを特徴とする請求項1記載の電動車両用電力供給方
法。
3. The electric power supply method for an electric vehicle according to claim 1, wherein electric power is supplied from a storage battery having a large energy density when the electric vehicle is running at a constant speed after starting.
【請求項4】電動車両に、前記2種類の蓄電池を搭載
し、この両蓄電池から同時に放電するものとし、放電時
両蓄電池の放電電流の割合を、出力密度の大きな蓄電池
の放電深度に応じて変化させ、この2種類の蓄電池の両
方から電力を供給することを特徴とする電動車両用電力
供給方法。
4. An electric vehicle equipped with the above-mentioned two types of storage batteries, and these two storage batteries are discharged simultaneously, and the ratio of the discharge current of both storage batteries at the time of discharging is determined according to the depth of discharge of the storage battery having a large output density. A power supply method for an electric vehicle, which is changed and power is supplied from both of these two types of storage batteries.
【請求項5】前記両蓄電池からの要求放電電流の50%
以下をエネルギー密度の大きな蓄電池の負担とし、かつ
0〜50%の間で可変させることを特徴とする請求項4
記載の電動車両用電力供給方法。
5. 50% of the required discharge current from both storage batteries
The following is a load of the storage battery having a large energy density, and is variable between 0 and 50%.
The electric power supply method for an electric vehicle according to claim 1.
【請求項6】電動車両に、出力密度の大きな蓄電池と、
エネルギー密度の大きな蓄電池とを搭載し、前記出力密
度の大きな蓄電池の残存容量が低下した場合、前記エネ
ルギー密度の大きな蓄電池から前記出力密度の大きな蓄
電池に対して充電を実施することを特徴とする電動車両
用電力供給方法。
6. An electric vehicle, and a storage battery having a high output density,
When a storage battery with a large energy density is installed and the remaining capacity of the storage battery with a large output density is reduced, charging is performed from the storage battery with a large energy density to the storage battery with a large output density. Vehicle power supply method.
【請求項7】電動車両の用途に適した比率で2種類の蓄
電池を搭載することを特徴とする請求項1乃至請求項6
のいずれかに記載の電動車両用電力供給方法。
7. The storage battery according to claim 1, wherein two types of storage batteries are mounted at a ratio suitable for use in an electric vehicle.
The electric power supply method for an electric vehicle according to any one of 1.
【請求項8】電動車両に搭載された出力密度の大きな蓄
電池とエネルギー密度の大きな蓄電池の2種類の蓄電池
と、要求放電電流を検出する電流検出手段と、この要求
放電電流の大小に応じて2種類の蓄電池のどちらか一方
の蓄電池を選択して電力を供給する制御手段と、を備え
ることを特徴とする電動車両用電力供給装置。
8. An electric vehicle equipped with two types of storage batteries, a high output density storage battery and a high energy density storage battery, current detection means for detecting a required discharge current, and 2 according to the required discharge current. A power supply device for an electric vehicle, comprising: a control unit that supplies power by selecting one of two types of storage batteries.
【請求項9】前記制御手段は、電動車両の発進、登坂時
等大きな電流が必要な時は、出力密度の大きな蓄電池を
選択して電力を供給することを特徴とする請求項8記載
の電動車両用電力供給装置。
9. The electric motor according to claim 8, wherein the control means supplies a power by selecting a storage battery having a high output density when a large current is required such as when the electric vehicle starts or climbs a slope. Vehicle power supply device.
【請求項10】前記制御手段は、電動車両の発進後、一
定の速度での走行時は、エネルギー密度の大きな蓄電池
を選択して電力を供給することを特徴とする請求項10
記載の電動車両用電力供給装置。
10. The control means supplies power by selecting a storage battery having a large energy density when the electric vehicle is running at a constant speed after starting.
A power supply device for an electric vehicle as described.
【請求項11】電動車両に搭載された前記2種類の蓄電
池と、この両蓄電池からの同時放電の割合を設定する放
電割合設定手段と、この両蓄電池からの放電電流割合を
設定に際して一方の蓄電池の放電電流割合を、出力密度
の大きな蓄電池の放電深度に応じて変化させ2種類の蓄
電池の両方から負荷ヘ電力を供給する制御手段と、を備
えることを特徴とする電動車両用電力供給装置。
11. A storage battery installed in an electric vehicle, a discharge ratio setting means for setting a ratio of simultaneous discharge from both storage batteries, and one storage battery when setting a discharge current ratio from both storage batteries. The electric power supply apparatus for an electric vehicle, comprising: a control unit configured to change the discharge current ratio of the storage battery according to the depth of discharge of a storage battery having a large output density to supply electric power to a load from both of the two types of storage batteries.
【請求項12】前記制御手段は、前記放電割合設定手段
の設定に基づき前記両蓄電池からの要求放電電流の50
%以下をエネルギー密度の大きな蓄電池の負担とし、か
つ0〜50%の間で可変させることを特徴とする請求項
11記載の電動車両用電力供給装置。
12. The control means sets the required discharge current of 50 from both storage batteries based on the setting of the discharge ratio setting means.
The electric power supply device for an electric vehicle according to claim 11, wherein the load of the battery having a large energy density is less than or equal to%, and is varied between 0 and 50%.
【請求項13】電動車両に搭載された出力密度の大きな
蓄電池及びエネルギー密度の大きな蓄電池と、要求放電
電流の大小に応じて前記2種類の蓄電池から電力を供給
する制御手段と、出力密度の大きな蓄電池の残存容量を
検出する残存容量検出手段と、前記出力密度の大きな蓄
電池の放電容量が低下した場合、前記エネルギー密度の
大きな蓄電池から前記出力密度の大きな蓄電池に対して
充電を実施させる充電手段と、を備えることを特徴とす
る電動車両用電力供給装置。
13. A storage battery having a large output density and a storage battery having a large energy density, which is mounted on an electric vehicle, a control means for supplying electric power from the two types of storage batteries according to the magnitude of a required discharge current, and a large output density. Remaining capacity detection means for detecting the remaining capacity of the storage battery, and charging means for performing charging from the storage battery with large energy density to the storage battery with large output density when the discharge capacity of the storage battery with large output density is reduced. An electric power supply device for an electric vehicle, comprising:
【請求項14】電動車両の用途に適した比率で前記2種
類の蓄電池を搭載することを特徴とする請求項8乃至請
求項13のいずれかに記載の電動車両用電力供給装置。
14. The electric power supply apparatus for an electric vehicle according to claim 8, wherein the two types of storage batteries are mounted in a ratio suitable for the purpose of use of the electric vehicle.
JP8110775A 1996-05-01 1996-05-01 Power supply method for electric motor car and its equipment Pending JPH09298806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8110775A JPH09298806A (en) 1996-05-01 1996-05-01 Power supply method for electric motor car and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8110775A JPH09298806A (en) 1996-05-01 1996-05-01 Power supply method for electric motor car and its equipment

Publications (1)

Publication Number Publication Date
JPH09298806A true JPH09298806A (en) 1997-11-18

Family

ID=14544291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8110775A Pending JPH09298806A (en) 1996-05-01 1996-05-01 Power supply method for electric motor car and its equipment

Country Status (1)

Country Link
JP (1) JPH09298806A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182676A (en) * 1998-11-12 2000-06-30 General Electric Co <Ge> Hybrid storage battery device
KR20000063237A (en) * 2000-05-30 2000-11-06 이주호 Automatic charging and starting system for vehicles
WO2005090101A1 (en) * 2004-03-22 2005-09-29 The Yokohama Rubber Co., Ltd. Tire-mounted electronic device
US7196492B2 (en) 2001-12-19 2007-03-27 Toyota Jidosha Kabushiki Kaisha Power supply apparatus including fuel cell and capacitor, and operation method thereof
JP2007290845A (en) * 2006-04-27 2007-11-08 Hitachi Ltd Elevator system and battery unit
JP2007323997A (en) * 2006-06-01 2007-12-13 Equos Research Co Ltd Fuel cell system, and its operation method
US7354671B2 (en) 2002-12-16 2008-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system having secondary cell
WO2008053783A1 (en) * 2006-10-31 2008-05-08 Kabushikikaisya Equos Reserch Electric vehicle and its control method
WO2009072514A1 (en) * 2007-12-07 2009-06-11 Toyota Jidosha Kabushiki Kaisha Vehicle
WO2011021718A1 (en) * 2009-08-21 2011-02-24 Jfeエンジニアリング株式会社 Quick charging device
WO2012014941A1 (en) * 2010-07-29 2012-02-02 三菱重工業株式会社 Battery system for moving body, and method of controlling battery system for moving body
WO2012026244A1 (en) * 2010-08-24 2012-03-01 スズキ株式会社 Power storage system
WO2012114794A1 (en) * 2011-02-21 2012-08-30 日立建機株式会社 Electric construction machine
WO2013038441A1 (en) 2011-09-13 2013-03-21 トヨタ自動車株式会社 Vehicle battery system and method for controlling same
EP2592686A2 (en) 2011-11-10 2013-05-15 Hitachi Ltd. Storage battery control system and storage battery control method
KR101272945B1 (en) * 2011-10-28 2013-06-11 현대자동차주식회사 System and method for boosting control of electric vehicle
JP2015508552A (en) * 2011-12-15 2015-03-19 エイ123 システムズ インコーポレイテッド Hybrid battery system
WO2019186962A1 (en) * 2018-03-29 2019-10-03 本田技研工業株式会社 Control device for a hybrid engine generator device
JP2019170093A (en) * 2018-03-23 2019-10-03 いすゞ自動車株式会社 Vehicle power system
US10875601B2 (en) 2017-02-10 2020-12-29 Sram, Llc Bicycle derailleur and connection

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650911B2 (en) * 1998-11-12 2011-03-16 ゼネラル・エレクトリック・カンパニイ Hybrid storage battery device
JP2000182676A (en) * 1998-11-12 2000-06-30 General Electric Co <Ge> Hybrid storage battery device
KR20000063237A (en) * 2000-05-30 2000-11-06 이주호 Automatic charging and starting system for vehicles
US7196492B2 (en) 2001-12-19 2007-03-27 Toyota Jidosha Kabushiki Kaisha Power supply apparatus including fuel cell and capacitor, and operation method thereof
US7354671B2 (en) 2002-12-16 2008-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system having secondary cell
WO2005090101A1 (en) * 2004-03-22 2005-09-29 The Yokohama Rubber Co., Ltd. Tire-mounted electronic device
US7377157B2 (en) 2004-03-22 2008-05-27 The Yokohama Rubber Co., Ltd. Tire-side-mounted electronic device
JP2007290845A (en) * 2006-04-27 2007-11-08 Hitachi Ltd Elevator system and battery unit
JP2007323997A (en) * 2006-06-01 2007-12-13 Equos Research Co Ltd Fuel cell system, and its operation method
WO2008053783A1 (en) * 2006-10-31 2008-05-08 Kabushikikaisya Equos Reserch Electric vehicle and its control method
JP2008113507A (en) * 2006-10-31 2008-05-15 Equos Research Co Ltd Electric vehicle and control method therefor
WO2009072514A1 (en) * 2007-12-07 2009-06-11 Toyota Jidosha Kabushiki Kaisha Vehicle
JP2009142102A (en) * 2007-12-07 2009-06-25 Toyota Motor Corp Vehicle
US7933695B2 (en) 2007-12-07 2011-04-26 Toyota Jidosha Kabushiki Kaisha Electric vehicle power source selection
WO2011021718A1 (en) * 2009-08-21 2011-02-24 Jfeエンジニアリング株式会社 Quick charging device
JP2012034554A (en) * 2009-08-21 2012-02-16 Jfe Engineering Corp Fast charger
CN102484377A (en) * 2009-08-21 2012-05-30 Jfe(杰富意)工程技术株式会社 Quick charging device
WO2012014941A1 (en) * 2010-07-29 2012-02-02 三菱重工業株式会社 Battery system for moving body, and method of controlling battery system for moving body
US9136726B2 (en) 2010-07-29 2015-09-15 Mitsubishi Heavy Industries, Ltd. Battery system for movable object and controlling method for the same
WO2012026244A1 (en) * 2010-08-24 2012-03-01 スズキ株式会社 Power storage system
JP2012050157A (en) * 2010-08-24 2012-03-08 Suzuki Motor Corp Power storage system
US9461494B2 (en) 2010-08-24 2016-10-04 Suzuki Motor Corporation Power storage system
CN103069683A (en) * 2010-08-24 2013-04-24 铃木株式会社 Power storage system
WO2012114794A1 (en) * 2011-02-21 2012-08-30 日立建機株式会社 Electric construction machine
CN103299005A (en) * 2011-02-21 2013-09-11 日立建机株式会社 Electric construction machine
EP2679734A4 (en) * 2011-02-21 2018-01-03 Hitachi Construction Machinery Tierra Co., Ltd. Electric construction machine
JP5778752B2 (en) * 2011-02-21 2015-09-16 日立建機株式会社 Electric construction machine
CN103299005B (en) * 2011-02-21 2015-10-21 日立建机株式会社 Electric construction machine
WO2013038441A1 (en) 2011-09-13 2013-03-21 トヨタ自動車株式会社 Vehicle battery system and method for controlling same
US8884461B2 (en) 2011-09-13 2014-11-11 Toyota Jidosha Kabushiki Kaisha Battery system for vehicle and control method thereof
KR101272945B1 (en) * 2011-10-28 2013-06-11 현대자동차주식회사 System and method for boosting control of electric vehicle
US9520735B2 (en) 2011-11-10 2016-12-13 Hitachi, Ltd. Storage battery control system and storage battery control method
EP2592686A2 (en) 2011-11-10 2013-05-15 Hitachi Ltd. Storage battery control system and storage battery control method
JP2015508552A (en) * 2011-12-15 2015-03-19 エイ123 システムズ インコーポレイテッド Hybrid battery system
US9979053B2 (en) 2011-12-15 2018-05-22 A123 Systems, LLC Hybrid battery system
US10875601B2 (en) 2017-02-10 2020-12-29 Sram, Llc Bicycle derailleur and connection
TWI723249B (en) * 2017-02-10 2021-04-01 美商速聯有限責任公司 Device train for a bicycle, electric power assisted bicycle system and apparatus for a bicycle
TWI765585B (en) * 2017-02-10 2022-05-21 美商速聯有限責任公司 Drive train for a bicycle, electric power assisted bicycle system and apparatus for a bicycle
US11541961B2 (en) 2017-02-10 2023-01-03 Sram, Llc Bicycle derailleur and connection
JP2019170093A (en) * 2018-03-23 2019-10-03 いすゞ自動車株式会社 Vehicle power system
WO2019186962A1 (en) * 2018-03-29 2019-10-03 本田技研工業株式会社 Control device for a hybrid engine generator device
CN111903032A (en) * 2018-03-29 2020-11-06 本田技研工业株式会社 Control device for hybrid engine generator
US11431187B2 (en) 2018-03-29 2022-08-30 Honda Motor Co., Ltd. Controller of hybrid-type engine generator

Similar Documents

Publication Publication Date Title
JPH09298806A (en) Power supply method for electric motor car and its equipment
EP1786647B1 (en) Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery
CN101484332B (en) Power controller of vehicle
CN109552109B (en) Dual function battery system and method
JP5029331B2 (en) Vehicle power supply
JP4714170B2 (en) Fuel cell vehicle
US20110074354A1 (en) Car power source apparatus, and capacity equalizing method for the car power source apparatus
CN102044724A (en) Power supply device, vehicle having the same, and method for controlling charging/discharging operation of the power supply device
US20080011528A1 (en) Vehicular Electrical System and Control Method Therefor
JP2001078306A (en) Controller of hybrid vehicle
JP2002369391A (en) Method and device for controlling residual capacity of secondary battery
JPH104602A (en) Controller of battery, mounted on vehicle
JPH10295045A (en) Control apparatus for power generation of hybrid electric vehicle
JP2009072039A (en) Power system
US20130057213A1 (en) Battery monitoring and charging system and motor-driven vehicle
KR20160013551A (en) Charging control method for eco-friendly vehicle
JP3620517B2 (en) Voltage control device for battery pack
CN103052527A (en) Vehicle power source device
WO2011001606A1 (en) Power source device
JP2003079059A (en) On vehicle battery pack control device
US20200376949A1 (en) Vehicle drive system
CN113682165A (en) Vehicle-mounted charging and discharging device, charging and discharging method, intelligent automobile and readable storage medium
JP2014150593A (en) Power supply system for vehicle
JP2004166350A (en) Battery controller
JP2012050281A (en) Battery charging system of electric vehicle