JPH09298054A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH09298054A
JPH09298054A JP8109096A JP10909696A JPH09298054A JP H09298054 A JPH09298054 A JP H09298054A JP 8109096 A JP8109096 A JP 8109096A JP 10909696 A JP10909696 A JP 10909696A JP H09298054 A JPH09298054 A JP H09298054A
Authority
JP
Japan
Prior art keywords
battery
polyethylene microporous
separator
melting point
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8109096A
Other languages
Japanese (ja)
Inventor
Masatoshi Takahashi
昌利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8109096A priority Critical patent/JPH09298054A/en
Publication of JPH09298054A publication Critical patent/JPH09298054A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery in which workability in manufacturing the battery can be improved while improving shutdown characteristics and achieving high film breakage temperature. SOLUTION: A device is provided with a positive electrode 1 comprising lithium containing compound oxide, a negative electrode 2 comprising negative electrode material capable of storing and emitting metal lithium or lithium ion, a separator, and organic electrolyte. In this case, the separator 3 comprises a multi-layer structure comprising plural polyethylene fine porous films laminated with each other, and at least one polyethylene fine porous film has a different fusing point than that of the others.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム含有複合
酸化物から成る正極と、リチウムを活物質とする負極
と、セパレータと、有機電解液とを備えた非水系二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous secondary battery provided with a positive electrode made of a lithium-containing composite oxide, a negative electrode using lithium as an active material, a separator, and an organic electrolytic solution.

【0002】[0002]

【従来の技術】この種電池は、高エネルギー密度を有し
ているが、その反面、外部短絡を生じた場合には以下の
ような問題を生じていた。即ち、外部短絡が起こると、
電池内に大きな短絡電流が流れてジュール熱が発生する
ため、電池内で異常な温度上昇が生じる。このため、有
機電解液と電極(特に、正極)とが反応して、有機電解
液が燃えることがあるという問題を有していた。したが
って、従来より、電池が異常に温度上昇した時には、ポ
リオレフィン系の微多孔膜から成るセパレータがメルト
ダウンして孔が目詰まりすることによって、電流をシャ
ットダウンして安全性を確保していた。しかしながら、
メルトダウン温度よりも更に高温となった場合には、セ
パレータが破膜して内部短絡を生じ、有機電解液が燃え
ることがあるという課題を有していた。
2. Description of the Related Art This type of battery has a high energy density, but on the other hand, when an external short circuit occurs, the following problems occur. That is, when an external short circuit occurs,
Since a large short-circuit current flows in the battery and Joule heat is generated, an abnormal temperature rise occurs in the battery. Therefore, there is a problem that the organic electrolytic solution and the electrode (particularly, the positive electrode) may react with each other to burn the organic electrolytic solution. Therefore, conventionally, when the temperature of the battery is abnormally increased, the separator made of the polyolefin microporous film is melted down and the pores are clogged, and the current is shut down to ensure safety. However,
When the temperature becomes higher than the meltdown temperature, there is a problem that the separator may rupture and an internal short circuit may occur, causing the organic electrolyte solution to burn.

【0003】そこで、ポリエチレンから成る微多孔膜
(以下、PE微多孔膜と略す)とポリプロピレンから成
る微多孔膜(以下、PP微多孔膜と略す)とを積層する
(具体的には、PP微多孔膜間にPE微多孔膜を配置す
るような3層構造とする)ようなセパレータが提案され
ている。このような構造であれば、融点の高いPP微多
孔膜の存在によりセパレータの破膜を防止でき、且つ融
点の低いPE微多孔膜の存在により低温で電流をシャッ
トダウンすることができる。
Therefore, a microporous film made of polyethylene (hereinafter abbreviated as PE microporous film) and a microporous film made of polypropylene (hereinafter abbreviated as PP microporous film) are laminated (specifically, PP microporous film). A separator having a three-layer structure in which a PE microporous film is arranged between the porous films) has been proposed. With such a structure, it is possible to prevent the separator from rupturing due to the presence of the PP microporous film having a high melting point, and to shut down the current at a low temperature due to the presence of the PE microporous film having a low melting point.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の構造では、材質の異なる微多孔膜同士が密着されて
いるため、微多孔膜間の界面強度が弱くなる。このた
め、微多孔膜同士が剥離し易く、作業性に劣る等、電池
製造工程上の課題があった。
However, in the above-mentioned conventional structure, since the microporous membranes made of different materials are in close contact with each other, the interfacial strength between the microporous membranes becomes weak. Therefore, there are problems in the battery manufacturing process such that the microporous membranes are easily separated from each other and the workability is poor.

【0005】本発明は上記従来の課題を考慮してなされ
たものであって、シャットダウン特性の向上と破膜温度
の高温化を図りつつ、電池作製時の作業性を向上させる
ことができる非水系二次電池の提供を目的としている。
The present invention has been made in consideration of the above-mentioned conventional problems, and is a non-aqueous system capable of improving workability at the time of manufacturing a battery while improving shutdown characteristics and raising the film rupture temperature. The purpose is to provide secondary batteries.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、リチウム含
有複合酸化物から成る正極と、金属リチウム又はリチウ
ムイオンを吸蔵、放出し得る物質を負極材料とする負極
と、セパレータと、有機電解液とを備えた非水系二次電
池において、前記セパレータは、ポリエチレン微多孔膜
が複数枚積層された多層構造を成し、且つ、少なくとも
一つのポリエチレン微多孔膜は、他のポリエチレン微多
孔膜と融点が異なることを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention is a positive electrode comprising a lithium-containing composite oxide, and stores and releases metallic lithium or lithium ions. In the non-aqueous secondary battery comprising a negative electrode using the substance to be obtained as a negative electrode material, a separator, and an organic electrolytic solution, the separator has a multilayer structure in which a plurality of polyethylene microporous membranes are laminated, and at least One polyethylene microporous membrane is characterized by having a different melting point from other polyethylene microporous membranes.

【0007】このように、多層構造のポリエチレン微多
孔膜のうち、少なくとも一つのポリエチレン微多孔膜
は、他のポリエチレン微多孔膜と融点が異なっていれ
ば、融点の高いポリエチレン微多孔膜の存在によりセパ
レータの破膜を防止でき、且つ融点の低いポリエチレン
微多孔膜の存在により低温で電流をシャットダウンする
ことができる。
As described above, among the multi-layered polyethylene microporous membranes, if at least one polyethylene microporous membrane has a different melting point from other polyethylene microporous membranes, the presence of the polyethylene microporous membrane having a high melting point The separator can be prevented from rupturing and the current can be shut down at a low temperature due to the presence of the polyethylene microporous film having a low melting point.

【0008】加えて、材質の同じくする微多孔膜同士が
密着されているため、微多孔膜間の界面強度が強くな
る。このため、微多孔膜同士が剥離し難く、電池の製造
が容易となる。
In addition, since the microporous membranes made of the same material are in close contact with each other, the interfacial strength between the microporous membranes becomes strong. Therefore, the microporous membranes are unlikely to peel off from each other, and the battery can be easily manufactured.

【0009】また請求項2記載の発明は、請求項1記載
の発明において、セパレータはポリエチレン微多孔膜の
三層膜から成り、且つ、中央部のポリエチレン微多孔膜
は、このポリエチレン微多孔膜を挟む外側のポリエチレ
ン微多孔膜よりも融点が低いことを特徴とする。
According to a second aspect of the present invention, in the first aspect of the invention, the separator comprises a three-layer polyethylene microporous membrane, and the polyethylene microporous membrane in the central portion is formed of the polyethylene microporous membrane. It is characterized by having a lower melting point than the polyethylene microporous membrane on the outside.

【0010】このような構成とすれば、外側のポリエチ
レン微多孔膜の方が耐熱性に優れるので、中央のポリエ
チレン微多孔膜がメルトダウンした場合であってもセパ
レータ形状が十分に維持できるという効果がある。
With such a construction, the outer polyethylene microporous membrane is more excellent in heat resistance, so that the separator shape can be sufficiently maintained even when the central polyethylene microporous membrane is melted down. There is.

【0011】また請求項3記載の発明は、請求項2記載
の発明において、中央部のポリエチレン微多孔膜の融点
が140℃以上200℃以下で、外側のポリエチレン微
多孔膜の融点が100℃以上140℃未満であることを
特徴とする。このような構成とすれば、請求項2の作用
が一層発揮されることになる。
According to a third aspect of the present invention, in the invention of the second aspect, the melting point of the polyethylene microporous membrane in the central portion is 140 ° C. or higher and 200 ° C. or lower, and the melting point of the outer polyethylene microporous membrane is 100 ° C. or higher. It is characterized by being less than 140 ° C. With such a configuration, the action of claim 2 is further exerted.

【0012】尚、正極材料(活物質)としては、LiC
oO2 、LiNiO2 、LiMnO 2 、LiFeO2
例示される。また、負極材料としては、金属リチウム又
はリチウムイオンを吸蔵、放出し得る合金及び炭素材料
が例示される。
The positive electrode material (active material) is LiC.
oOTwo, LiNiOTwo, LiMnO Two, LiFeOTwoBut
Is exemplified. Further, as the negative electrode material, metallic lithium or
Is an alloy and carbon material that can store and release lithium ions
Is exemplified.

【0013】更に、電解液としては、エチレンカーボネ
ート、ビニレンカーボネート、プロピレンカーボネート
などの有機溶媒や、これらとジメチルカーボネート、ジ
エチルカーボネート、1,2−ジメトキシエタン、1,
2−ジエトキシエタン、エトキシメトキシエタンなどの
低沸点溶媒との混合溶媒に、LiPF6 、LiCl
4 、LiCF3 SO3 などの溶質を溶かした溶液が例
示される。
Further, as the electrolytic solution, ethylene carbonate is used.
, Vinylene carbonate, propylene carbonate
Organic solvents such as these and dimethyl carbonate, di
Ethyl carbonate, 1,2-dimethoxyethane, 1,
2-diethoxyethane, ethoxymethoxyethane, etc.
As a mixed solvent with a low boiling point solvent, LiPF6, LiCl
O Four, LiCFThreeSOThreeAn example is a solution in which a solute such as
Is shown.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を、図1に基
づいて、以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIG.

【0015】図1は本発明の非水系二次電池を模式的に
示す断面図であり、図1の本発明電池は、LiCoO2
から成る正極1、黒鉛から成る負極2、これら両電極を
離間するセパレータ3、正極リード4、負極リード5、
正極外部端子6、負極缶7などからなる。正極1及び負
極2は、セパレータ3を介して渦巻き状に巻き取られた
状態で、負極缶7内に収納され、次いで、負極缶7内に
電解液が注液されており、正極1は正極リード4を介し
て正極外部端子6に、また負極2は負極リード5を介し
て負極缶7に接続され、電池内部で生じた化学エネルギ
ーを電気エネルギーとして外部へ取り出し得るようにな
っている。尚、上記電解液としては、エチレンカーボネ
ートとジエチルカーボネートとの混合溶媒に、溶質とし
てのLiPF6 を1モル/リットルの割合で溶解したも
のを用いた。
FIG. 1 is a cross-sectional view schematically showing the non-aqueous secondary battery of the present invention. The present invention battery of FIG. 1 is made of LiCoO 2
A positive electrode 1 made of graphite, a negative electrode 2 made of graphite, a separator 3 separating these electrodes, a positive electrode lead 4, a negative electrode lead 5,
It comprises a positive electrode external terminal 6, a negative electrode can 7 and the like. The positive electrode 1 and the negative electrode 2 are housed in a negative electrode can 7 while being wound in a spiral shape via a separator 3, and then an electrolytic solution is injected into the negative electrode can 7. The negative electrode 2 is connected to the positive electrode external terminal 6 via the lead 4 and the negative electrode 2 is connected to the negative electrode can 7 via the negative electrode lead 5 so that chemical energy generated inside the battery can be taken out as electric energy to the outside. The electrolytic solution used was a solution of LiPF 6 as a solute dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate at a rate of 1 mol / liter.

【0016】ここで、上記セパレータ3としては、ポリ
エチレン微多孔膜が3枚積層されたものを用いた。これ
らポリエチレン微多孔膜のうち外側に位置する2枚のポ
リエチレン微多孔膜は、これらポリエチレン微多孔膜に
挟まれたポリエチレン微多孔膜より融点が高くなるよう
な構成である。具体的には、外側のポリエチレン微多孔
膜としては融点が180℃のものを用い、中央のポリエ
チレン微多孔膜では、融点が130℃のものを用いた。
また、各ブレンドポリマー微多孔膜の厚みは約8μmで
ある。
Here, as the separator 3, a laminate of three polyethylene microporous membranes was used. Of these polyethylene microporous membranes, the two polyethylene microporous membranes located on the outer side have a higher melting point than the polyethylene microporous membrane sandwiched between these polyethylene microporous membranes. Specifically, the outer polyethylene microporous film had a melting point of 180 ° C., and the central polyethylene microporous film had a melting point of 130 ° C.
Further, the thickness of each blend polymer microporous membrane is about 8 μm.

【0017】このようなセパレータ3は、融点の高いポ
リエチレン微多孔膜の間に、融点の低いポリエチレン微
多孔膜を配置した後、ポリエチレン微多孔膜の融点以下
の温度で加熱することにより作製した。
Such a separator 3 was prepared by placing a polyethylene microporous membrane having a low melting point between polyethylene microporous membranes having a high melting point, and then heating the polyethylene microporous membrane at a temperature not higher than the melting point of the polyethylene microporous membrane.

【0018】尚、ポリエチレン微多孔膜の数としては3
枚に限定するものではなく、2枚或いは4枚以上であっ
ても良い。また、ポリエチレン微多孔膜の構造として
は、融点の高い2枚のポリエチレン微多孔膜の間に、融
点の低いポリエチレン微多孔膜を配置する構造に限定さ
れるものではなく、融点の低い2枚のポリエチレン微多
孔膜の間に、融点の高いポリエチレン微多孔膜を配置す
る構造であっても良い。但し、前者の構造であれば、外
側のポリエチレン微多孔膜の方が耐熱性に優れるので、
メルトダウン温度となって中央のポリエチレン微多孔膜
が溶けた場合であっても、セパレータ形状が十分に維持
できるという効果がある。
The number of polyethylene microporous membranes is 3
The number of sheets is not limited to two, and may be two or four or more. Further, the structure of the polyethylene microporous film is not limited to the structure in which the polyethylene microporous film having a low melting point is disposed between the two polyethylene microporous films having a high melting point. It may have a structure in which a polyethylene microporous film having a high melting point is arranged between the polyethylene microporous films. However, with the former structure, the outer polyethylene microporous membrane has better heat resistance,
Even if the polyethylene microporous film in the center is melted at the meltdown temperature, the separator shape can be sufficiently maintained.

【0019】加えて、ポリエチレン微多孔膜の融点の温
度を変化させる方法としては、例えばポリエチレン微多
孔膜の分子量を変えるという方法がある。
In addition, as a method of changing the melting point temperature of the polyethylene microporous membrane, there is a method of changing the molecular weight of the polyethylene microporous membrane.

【0020】[0020]

【実施例】本発明の一実施例を、図2〜図11に基づい
て、さらに詳細に説明する。
EXAMPLE An example of the present invention will be described in more detail with reference to FIGS.

【0021】(実施例1)実施例の非水系二次電池とし
ては、上記発明の実施の態様で示す電池を用いた。この
ような構造の電池を、以下本発明電池A1と称する。
(Example 1) As the non-aqueous secondary battery of the example, the battery shown in the embodiment of the present invention was used. The battery having such a structure is hereinafter referred to as Battery A1 of the invention.

【0022】(実施例2)外側のポリエチレン微多孔膜
として、融点が160℃のものを用いる他は、上記実施
例1の電池と同様の構造である。このような構造の電池
を、以下本発明電池A2と称する。
Example 2 The structure is the same as that of the battery of Example 1 except that the outer polyethylene microporous film having a melting point of 160 ° C. is used. The battery having such a structure is hereinafter referred to as Battery A2 of the invention.

【0023】(比較例1)セパレータとして、ポリエチ
レンから成る微多孔膜(単層であり、融点が130℃)
を用いる他は、上記実施例1の電池と同様の構造であ
る。このような構造の電池を、以下比較電池X1と称す
る。
(Comparative Example 1) As a separator, a microporous membrane made of polyethylene (single layer, melting point: 130 ° C.)
The structure is similar to that of the battery of Example 1 except that The battery having such a structure is hereinafter referred to as comparative battery X1.

【0024】(比較例2)セパレータとして、ポリプロ
ピレンから成る微多孔膜(単層であり、融点が160
℃)を用いる他は、上記実施例1の電池と同様の構造で
ある。このような構造の電池を、以下比較電池X2と称
する。
(Comparative Example 2) As a separator, a microporous film made of polypropylene (a single layer, having a melting point of 160).
(° C.) is used, but the structure is similar to that of the battery of Example 1 above. The battery having such a structure is hereinafter referred to as comparative battery X2.

【0025】(比較例3)セパレータとして、2枚のポ
リプロピレン微多孔膜(融点が160℃)の間に1枚の
ポリエチレン微多孔膜(融点が130℃)が配置された
もの(即ち、三層構造)を用いる他は、上記実施例1の
電池と同様の構造である。このような構造の電池を、以
下比較電池X3と称する。
(Comparative Example 3) As a separator, one polypropylene microporous membrane (melting point 130 ° C) is arranged between two polypropylene microporous membranes (melting point 160 ° C) (that is, three layers). The structure is the same as that of the battery of Example 1 except that the structure) is used. The battery having such a structure is hereinafter referred to as comparative battery X3.

【0026】(実験1)上記本発明電池A1及びA2と
比較電池X1〜X3とを用い、各電池を満充電状態とし
た後、外部短絡させたときの経過時間と、電池温度の変
化及び電流との関係について調べたので、その結果を図
2〜図6に示す。尚、本発明電池A1及びA2は各々図
2及び図3に、比較電池X1〜X3は各々図4〜図6に
示す。
(Experiment 1) The above-mentioned batteries A1 and A2 of the present invention and comparative batteries X1 to X3 were used, and after the respective batteries were fully charged, the elapsed time and the change in battery temperature and current when externally shorted. The results are shown in FIGS. 2 to 6. The batteries A1 and A2 of the present invention are shown in FIGS. 2 and 3, and the comparative batteries X1 to X3 are shown in FIGS.

【0027】図2〜図6から明らかなように、各電池を
外部短絡させたとき、本発明電池A1・A2(図2、図
3参照)及び比較電池X1・X3(図4、図6参照)で
は数分経過後に電流が全く流れなくなって、その後電池
温度が徐々に低下する。これに対して、比較電池X2
(図5参照)では数分経過後(但し、本発明電池A1・
A2及び比較電池X1・X3より若干時間を要してい
る)に電流が流れなくなるものの、その後も電池温度が
上昇し続ける。この結果、比較電池X2では、発煙、発
火が生じることが認められた。
As is apparent from FIGS. 2 to 6, when the respective batteries are externally short-circuited, the present batteries A1 and A2 (see FIGS. 2 and 3) and the comparative batteries X1 and X3 (see FIGS. 4 and 6). ), After a few minutes, no current flows, and then the battery temperature gradually decreases. On the other hand, the comparative battery X2
(See FIG. 5) After several minutes (however, the battery A1
A2 and comparative batteries X1 and X3 require a little more time), but the battery temperature continues to rise after that. As a result, it was confirmed that smoking and ignition occurred in Comparative Battery X2.

【0028】これは、本発明電池A1・A2・X3では
中央のポリエチレン微多孔膜が約130℃で完全にメル
トダウンし、また比較電池X1ではセパレータ全体が約
130℃で完全にメルトダウンするので、電流が全く流
れなくなる結果、電池温度が130℃以上に上昇しな
い。これに対して、比較電池X2では、130℃で完全
にメルトダウンせず、更に電流が流れるため、電池温度
が180℃以上に上昇して過反応モードになるという理
由によるものと考えられる。
This is because the central polyethylene microporous membrane completely melts down at about 130 ° C. in the present invention batteries A1, A2 and X3, and the entire separator completely melts down at about 130 ° C. in the comparative battery X1. As a result of no current flowing, the battery temperature does not rise above 130 ° C. On the other hand, it is considered that the comparative battery X2 does not completely melt down at 130 ° C., and further current flows, so that the battery temperature rises to 180 ° C. or higher and becomes the overreaction mode.

【0029】(実験2)上記本発明電池A2を満充電状
態とした後、130℃の雰囲気中で保持し、経過時間
と、雰囲気温度、電池温度及び電池電圧との関係につい
て調べたので、その結果を図7に示す。図7から明らか
なように、長時間経過した後であっても電池温度に急激
な上昇は認められず、電池に異常が発生していないこと
がわかる。これは、長時間経過した後であってもセパレ
ータが破膜しないので、電池の内部短絡が生じないとい
う理由によるものと考えられる。尚、セパレータが破膜
していないことは、電池電圧の急激な低下がないことよ
り明らかである。
(Experiment 2) The battery A2 of the present invention was fully charged and then held in an atmosphere of 130 ° C., and the relationship between elapsed time and atmosphere temperature, battery temperature and battery voltage was investigated. The results are shown in Fig. 7. As is clear from FIG. 7, no rapid increase in the battery temperature was observed even after a long time, and it can be seen that no abnormality occurred in the battery. It is considered that this is because the separator does not rupture even after a long time, so that an internal short circuit of the battery does not occur. The fact that the separator did not break is apparent from the fact that there is no sudden drop in battery voltage.

【0030】尚、図示はしないが、本発明電池A1及び
比較電池X1〜X3について同じ実験をしたところ、本
発明電池A2と同様に、長時間経過した後であってもセ
パレータが破膜しないことが確認された。
Although not shown, the same experiment was carried out on the battery A1 of the present invention and the comparative batteries X1 to X3. As with the battery A2 of the present invention, the separator did not break even after a long time. Was confirmed.

【0031】(実験3)上記本発明電池A2と比較電池
X1とを満充電状態とした後、150℃の雰囲気中で保
持し、経過時間と、雰囲気温度、電池温度及び電池電圧
との関係について調べたので、その結果を各々図8及び
図9に示す。図8から明らかなように、本発明電池A2
では、長時間経過した後であっても電池温度に急激な上
昇は認められず、電池に異常が発生していないことがわ
かる。これは、上記実験2で示した理由と同様の理由に
よるものと考えられる。
(Experiment 3) The battery A2 of the present invention and the comparative battery X1 were fully charged and then held in an atmosphere of 150 ° C. to evaluate the relationship between the elapsed time and the ambient temperature, battery temperature and battery voltage. The results are shown in FIGS. 8 and 9, respectively. As is clear from FIG. 8, the present invention battery A2
Then, even after a lapse of a long time, no rapid rise in the battery temperature was observed, and it can be seen that no abnormality occurred in the battery. It is considered that this is due to the same reason as that shown in Experiment 2.

【0032】一方、図9から明らかなように、比較電池
X1では、約45分経過後(雰囲気温度が160℃に達
した頃)から電池電圧の急激な低下が始まり、約57分
で完全に0Vになっていることが認められる。このこと
から、約45分経過後からセパレータの破膜が始まり、
約57分で完全にセパレータが破膜し、この結果、過反
応モードとなって電池温度が急激に上昇することがわか
る。尚、比較電池X1では、電池温度の急激な上昇によ
って、電池が発煙、発火することを確認している。
On the other hand, as is clear from FIG. 9, in the comparative battery X1, the battery voltage started to sharply decrease after about 45 minutes (when the ambient temperature reached 160 ° C.), and completely disappeared in about 57 minutes. It is recognized that it is 0V. From this, the rupture of the separator begins after about 45 minutes,
It can be seen that the separator completely ruptured in about 57 minutes, and as a result, the overreaction mode was entered and the battery temperature rapidly increased. In the comparative battery X1, it has been confirmed that the battery smokes and ignites due to a rapid increase in the battery temperature.

【0033】(実験4)上記本発明電池A1・A2を満
充電状態とした後、170℃の雰囲気中で保持し、経過
時間と、雰囲気温度、電池温度及び電池電圧との関係に
ついて調べたので、その結果を各々図10及び図11に
示す。図10から明らかなように、本発明電池A1で
は、長時間経過した後であっても電池温度に急激な上昇
は認められず、電池に異常が発生していないことがわか
る。これは、上記実験2で示した理由と同様の理由によ
るものと考えられる。
(Experiment 4) The above-mentioned batteries A1 and A2 of the present invention were fully charged and then held in an atmosphere of 170 ° C., and the relationship between elapsed time and atmosphere temperature, battery temperature and battery voltage was investigated. The results are shown in FIGS. 10 and 11, respectively. As is clear from FIG. 10, in the battery A1 of the present invention, no rapid increase in battery temperature was observed even after a long time, and no abnormality occurred in the battery. It is considered that this is due to the same reason as that shown in Experiment 2.

【0034】一方、図11から明らかなように、本発明
電池A2では、約30分経過後(雰囲気温度が160℃
に達した頃)から電池電圧の急激な低下が始まり、約4
8分で完全に0Vになっていることが認められる。この
ことから、約30分経過後からセパレータの破膜が始ま
り、約48分で完全にセパレータが破膜し、この結果、
過反応モードとなって電池温度が急激に上昇することが
わかる。尚、本発明電池A2では、電池温度の急激な上
昇によって、電池が発煙、発火することを確認してい
る。以上より、セパレータの破膜を防止して、電池の発
煙、発火を防ぐには、外側のポリエチレン微多孔膜とし
て融点のより高いものを用いるのが好ましいことがわか
る。
On the other hand, as is apparent from FIG. 11, in the battery A2 of the present invention, after about 30 minutes (at ambient temperature of 160 ° C.
Battery voltage started to drop suddenly from about 4
It is recognized that the voltage is completely 0 V in 8 minutes. From this, the rupture of the separator started after about 30 minutes, and the rupture of the separator was completely completed in about 48 minutes.
It can be seen that the battery temperature rises rapidly in the overreaction mode. In the battery A2 of the present invention, it was confirmed that the battery smokes and ignites when the battery temperature rapidly rises. From the above, it can be seen that it is preferable to use the outer polyethylene microporous film having a higher melting point in order to prevent the separator from rupturing and prevent the battery from smoking and igniting.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
融点の高いポリエチレン微多孔膜の存在によりセパレー
タの破膜を防止でき、且つ融点の低いポリエチレン微多
孔膜の存在により低温で電流をシャットダウンすること
ができると共に、微多孔膜間の界面強度が強くなるた
め、微多孔膜同士が剥離し難く、電池の製造が容易とな
るといった優れた効果を奏する。
As described above, according to the present invention,
The presence of the polyethylene microporous membrane with a high melting point can prevent the separator from rupturing, and the presence of the polyethylene microporous membrane with a low melting point can shut down the current at low temperature, and also enhances the interfacial strength between the microporous membranes. Therefore, the microporous films are less likely to be peeled from each other, and the battery is easily manufactured, which is an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水系二次電池を模式的に示す断面図
である。
FIG. 1 is a sectional view schematically showing a non-aqueous secondary battery of the present invention.

【図2】本発明電池A1における、外部短絡時の経過時
間と電池温度の変化及び電流値との関係を示すグラフで
ある。
FIG. 2 is a graph showing the relationship between the elapsed time at the time of an external short circuit, the change in battery temperature, and the current value in battery A1 of the present invention.

【図3】本発明電池A2における、外部短絡時の経過時
間と電池温度の変化及び電流値との関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between the elapsed time at the time of an external short circuit, the change in battery temperature, and the current value in battery A2 of the present invention.

【図4】比較電池X1における、外部短絡時の経過時間
と電池温度の変化及び電流値との関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the elapsed time at the time of an external short circuit, the change in battery temperature, and the current value in the comparative battery X1.

【図5】比較電池X2における、外部短絡時の経過時間
と電池温度の変化及び電流値との関係を示すグラフであ
る。
FIG. 5 is a graph showing the relationship between the elapsed time at the time of an external short circuit, the change in battery temperature, and the current value in the comparative battery X2.

【図6】比較電池X3における、外部短絡時の経過時間
と電池温度の変化及び電流値との関係を示すグラフであ
る。
FIG. 6 is a graph showing the relationship between the elapsed time at the time of an external short circuit, the change in battery temperature, and the current value in comparative battery X3.

【図7】本発明電池A2を130℃の雰囲気中で保持し
たときの、経過時間と、雰囲気温度、電池温度及び電池
電圧との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the elapsed time and the ambient temperature, the battery temperature, and the battery voltage when the present invention battery A2 was held in an atmosphere of 130 ° C.

【図8】本発明電池A2を150℃の雰囲気中で保持し
たときの、経過時間と、雰囲気温度、電池温度及び電池
電圧との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the elapsed time and the ambient temperature, the battery temperature, and the battery voltage when the present invention battery A2 was held in an atmosphere of 150 ° C.

【図9】比較電池X1を150℃の雰囲気中で保持した
ときの、経過時間と、雰囲気温度、電池温度及び電池電
圧との関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the elapsed time and the ambient temperature, the battery temperature, and the battery voltage when the comparative battery X1 was held in the atmosphere at 150 ° C.

【図10】本発明電池A1を170℃の雰囲気中で保持
したときの、経過時間と、雰囲気温度、電池温度及び電
池電圧との関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the elapsed time and the ambient temperature, the battery temperature, and the battery voltage when the battery A1 of the invention was held in an atmosphere at 170 ° C.

【図11】本発明電池A2を170℃の雰囲気中で保持
したときの、経過時間と、雰囲気温度、電池温度及び電
池電圧との関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the elapsed time and the ambient temperature, the battery temperature, and the battery voltage when the present invention battery A2 was held in an atmosphere of 170 ° C.

【符号の説明】 1:正極 2:負極 3:セパレータ[Explanation of symbols] 1: Positive electrode 2: Negative electrode 3: Separator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合酸化物から成る正極
と、金属リチウム又はリチウムイオンを吸蔵、放出し得
る物質を負極材料とする負極と、セパレータと、有機電
解液とを備えた非水系二次電池において、 前記セパレータは、ポリエチレン微多孔膜が複数枚積層
された多層構造を成し、且つ、少なくとも一つのポリエ
チレン微多孔膜は、他のポリエチレン微多孔膜と融点が
異なることを特徴とする非水系二次電池。
1. A non-aqueous secondary battery comprising a positive electrode composed of a lithium-containing composite oxide, a negative electrode using a substance capable of occluding and releasing metallic lithium or lithium ions as a negative electrode material, a separator, and an organic electrolytic solution. In the above, the separator has a multilayer structure in which a plurality of polyethylene microporous membranes are laminated, and at least one polyethylene microporous membrane has a melting point different from that of other polyethylene microporous membranes. Secondary battery.
【請求項2】 前記セパレータは前記ポリエチレン微多
孔膜の三層膜から成り、且つ、中央部のポリエチレン微
多孔膜は、このポリエチレン微多孔膜を挟む外側のポリ
エチレン微多孔膜よりも融点が低いことを特徴とする請
求項1記載の非水系二次電池。
2. The separator is composed of a three-layer film of the polyethylene microporous film, and the polyethylene microporous film at the center has a lower melting point than the polyethylene microporous film on the outside sandwiching the polyethylene microporous film. The non-aqueous secondary battery according to claim 1.
【請求項3】 前記中央部のポリエチレン微多孔膜の融
点が140℃以上200℃以下で、前記外側のポリエチ
レン微多孔膜の融点が100℃以上140℃未満である
ことを特徴とする請求項2記載の非水系二次電池。
3. The melting point of the polyethylene microporous membrane in the central portion is 140 ° C. or more and 200 ° C. or less, and the melting point of the outer polyethylene microporous membrane is 100 ° C. or more and less than 140 ° C. The non-aqueous secondary battery described.
JP8109096A 1996-04-30 1996-04-30 Nonaqueous secondary battery Pending JPH09298054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8109096A JPH09298054A (en) 1996-04-30 1996-04-30 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8109096A JPH09298054A (en) 1996-04-30 1996-04-30 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH09298054A true JPH09298054A (en) 1997-11-18

Family

ID=14501491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8109096A Pending JPH09298054A (en) 1996-04-30 1996-04-30 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH09298054A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185812A (en) * 1997-12-18 1999-07-09 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
US6309777B1 (en) 1998-03-20 2001-10-30 Nec Corporation Explosion-resistant large capacitive lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185812A (en) * 1997-12-18 1999-07-09 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
US6309777B1 (en) 1998-03-20 2001-10-30 Nec Corporation Explosion-resistant large capacitive lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JPH09259857A (en) Nonaqueous electrolyte secondary battery
CN100440588C (en) Lithium ion secondary cell
EP2393143B1 (en) Electrochemical cell with two types of separators
US20060078787A1 (en) Nonaqueous electrolyte secondary battery
KR100587438B1 (en) Nonaqueous Secondary Battery and Method of Manufacturing Thereof
JP4367951B2 (en) Non-aqueous secondary battery
US6051341A (en) Organic electrolyte battery
JP5003117B2 (en) Batteries and battery units
JPH11345630A (en) Lithium secondary battery
KR100305101B1 (en) Explosion-proof secondary battery
KR20080092281A (en) Nonaqueous electrolyte secondary battery
KR20130004153A (en) Electrode assembly for secondary battery and lithium secondary battery comprising the same
JP2007533099A (en) Electrochemical element having electrode lead with built-in protective element
JPH11102711A (en) Lithium ion secondary battery
JP4382557B2 (en) Non-aqueous secondary battery
JP2002056835A (en) Sealed secondary battery
KR100735486B1 (en) Electrochemical cell with two different separator
KR100611940B1 (en) Electrochemical cell having an improved safety
JP2000067847A (en) Secondary battery and assembled battery
JP5011928B2 (en) battery
JPH10112323A (en) Battery
JP2000133236A (en) Separator for nonaqueous electrolyte secondary battery
JP2002025620A (en) Nonaqueous electrolyte secondary battery
JPH09298054A (en) Nonaqueous secondary battery
JP2006100051A (en) Nonaqueous secondary battery and manufacturing method of the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080502

FPAY Renewal fee payment

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090502

FPAY Renewal fee payment

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090502

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110502

FPAY Renewal fee payment

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120502

FPAY Renewal fee payment

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120502

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10