JPH09297309A - Production of liquid crystal oriented structure - Google Patents

Production of liquid crystal oriented structure

Info

Publication number
JPH09297309A
JPH09297309A JP11070496A JP11070496A JPH09297309A JP H09297309 A JPH09297309 A JP H09297309A JP 11070496 A JP11070496 A JP 11070496A JP 11070496 A JP11070496 A JP 11070496A JP H09297309 A JPH09297309 A JP H09297309A
Authority
JP
Japan
Prior art keywords
liquid crystal
irradiation
substrate
alignment
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11070496A
Other languages
Japanese (ja)
Inventor
Toru Hashimoto
徹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP11070496A priority Critical patent/JPH09297309A/en
Publication of JPH09297309A publication Critical patent/JPH09297309A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process which eliminates the need for a rubbing treatment to be the cause for product defects, such as display defects and element destruction, and more rapidly and easily produces a liquid crystal oriented structure having pretilts. SOLUTION: A substrate 1 formed with a photosensitive high-polymer film 2 which induces the nature to orient liquid crystal molecules in an intra-surface direction parallel with a polarization direction 4 when the film absorbs polarized light having the wavelength within a prescribed wavelength region on its surface is first prepd. Next, the photosensitive high-polymer film 2 of the substrate 1 is irradiated with one kind of the polarized light having the wavelength within the prescribed wavelength region with diagonal incidence and by inclining the polarization direction 4 from the direction perpendicular to the incident surface, by which the light is absorbed in the photosensitive high-polymer film 2 and the oriented structure having the pretilts is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ラビングが不要
で、プレチルトを有する液晶配向構造の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a liquid crystal alignment structure having a pretilt which does not require rubbing.

【0002】[0002]

【従来の技術】液晶表示ディスプレイ等に使用される液
晶表示装置は、液晶の特定な分子配列を電界等の外部か
らの作用によって別の異なる分子配列に状態変化させ
て、その間の光学的特性の変化を視覚的な変化として表
示に利用している。液晶分子をある特定の配列状態にす
るために液晶をはさむガラス基板の表面には配向処理を
行うのが普通である。
2. Description of the Related Art A liquid crystal display device used for a liquid crystal display or the like changes a specific molecular arrangement of liquid crystal to another different molecular arrangement by an external action such as an electric field and changes the optical characteristics between them. The change is used as a visual change for display. Generally, an alignment treatment is performed on the surface of a glass substrate holding liquid crystal in order to arrange liquid crystal molecules in a specific alignment state.

【0003】従来の配向処理として、液晶をはさむガラ
ス基板を綿布のようなもので一方向に擦るいわゆるラビ
ング法が採用されている。ラビング処理の場合、ガラス
基板を綿布のようなもので擦る際に静電気が発生する。
この静電気により、基板の配向膜の絶縁破壊や配向不良
をもたらしたり、あるいは配向膜下の電極に損傷を与え
るような場合がある。これは液晶表示装置の性能を低下
させることになる。
As a conventional alignment treatment, a so-called rubbing method has been adopted in which a glass substrate sandwiching a liquid crystal is unidirectionally rubbed with something like cotton cloth. In the case of rubbing treatment, static electricity is generated when the glass substrate is rubbed with something like cotton cloth.
This static electricity may cause dielectric breakdown of the alignment film of the substrate, defective alignment, or damage to the electrodes below the alignment film. This reduces the performance of the liquid crystal display device.

【0004】また、ラビングにより発生する微小なゴミ
が静電気により基板に付着して、このゴミが液晶セルの
ギャップ不良、黒点もしくは白点といった表示不良の原
因となることもある。
In addition, minute dust generated by rubbing may adhere to the substrate due to static electricity, and this dust may cause a display defect such as a gap defect of a liquid crystal cell or a black dot or a white dot.

【0005】このようなラビング処理にまつわる問題を
解決するために、ラビング処理をせずに配向処理を行う
方法が提案されている。例えば光偏光記憶膜を用いた配
向処理方法が検討されている。
In order to solve the problem associated with such rubbing treatment, a method of carrying out an alignment treatment without rubbing treatment has been proposed. For example, an alignment treatment method using an optical polarization memory film has been studied.

【0006】光偏光記憶膜を用いた配向処理方法とは、
基板面に光偏光記憶膜を形成した後、偏光光を光偏光記
憶膜に照射することにより所望の液晶配向を形成するも
のである。偏光光が照射された光偏光記憶膜に、照射光
の偏光方向に応じた液晶分子に対する配向を付与するこ
とができる。
The alignment treatment method using the optical polarization storage film is
After forming the optical polarization storage film on the substrate surface, the liquid crystal alignment is formed by irradiating the optical polarization storage film with polarized light. It is possible to impart orientation to the liquid crystal molecules according to the polarization direction of the irradiation light to the optical polarization storage film irradiated with the polarized light.

【0007】ところで、液晶セルに電圧を印加して液晶
分子を所定方向に配列させる際に、すべての液晶分子が
一様に決まった方向から傾き始めるような方向性を与え
ることが望まれる。通常は、液晶分子が基板面に対して
予め所定の角度だけ傾くようにラビングで配向処理をし
ている。すなわち、液晶セルに電圧が印加されていない
時の基板界面の液晶分子の長軸方向が基板面に対してあ
る角度を形成するように液晶分子の一端を持ち上げてい
る。この状態をプレチルトと言い、基板面に対する液晶
分子の長軸方向の角度をプレチルト角度と称する。
By the way, when a voltage is applied to the liquid crystal cell to arrange the liquid crystal molecules in a predetermined direction, it is desired to give a directionality in which all the liquid crystal molecules start to tilt uniformly from a fixed direction. Usually, the alignment treatment is performed by rubbing so that the liquid crystal molecules are inclined in advance by a predetermined angle with respect to the substrate surface. That is, one end of the liquid crystal molecule is raised so that the long axis direction of the liquid crystal molecule at the substrate interface when a voltage is not applied to the liquid crystal cell forms an angle with the substrate surface. This state is called pretilt, and the angle of the liquid crystal molecules in the major axis direction with respect to the substrate surface is called pretilt angle.

【0008】プレチルトを有さない液晶分子は、電圧印
加時の立ち上がりの向きが一様に定まらず、印加電圧の
状態や、位置によって液晶分子の傾きが逆になってしま
うことがある。立ち上がりの向きの異なる液晶分子群の
境界が、表示画面上に線欠陥として現れることもある。
The liquid crystal molecules having no pretilt do not have a uniform rising direction when a voltage is applied, and the tilt of the liquid crystal molecules may be reversed depending on the state and position of the applied voltage. Boundaries between groups of liquid crystal molecules having different rising directions may appear as line defects on the display screen.

【0009】特に、印加電圧がしきい値電圧付近では無
数の上記欠陥が発生し、時間の経過または印加電圧の変
化につれて欠陥位置が動きまわるために、欠陥の存在が
目視で認識されやすい。また同時に、光散乱の発生や、
コントラストの低下も生じるために液晶表示素子として
著しく表示品質を低下させることになる。
In particular, innumerable defects described above are generated near the threshold voltage of the applied voltage, and the defect position moves around with the passage of time or changes in the applied voltage, so that the existence of the defect is easily visually recognized. At the same time, the occurrence of light scattering,
Since the contrast is also deteriorated, the display quality is remarkably deteriorated as a liquid crystal display element.

【0010】[0010]

【発明が解決しようとする課題】先に述べたような従来
提案されている光偏光記憶膜を用いた配向処理方法で
は、液晶分子に付与される配向方向は、主に基板面内方
向の配向であり、液晶表示素子において重要なプレチル
トまでは付与されない。
In the previously proposed alignment treatment method using the optical polarization memory film as described above, the alignment direction imparted to the liquid crystal molecules is mainly in the in-plane direction of the substrate. Therefore, the pretilt which is important in the liquid crystal display device is not provided.

【0011】本願出願人と同一人による特願平7−11
1851号の明細書には、感光性の高分子光偏光記憶膜
に紫外線領域の偏光光を照射することによってラビング
無しに配向処理をする方法が提案されている。
Japanese Patent Application No. 7-11 filed by the applicant of the present application
The specification of 1851 proposes a method in which a photosensitive polymer optical polarization storage film is irradiated with polarized light in the ultraviolet region to perform alignment treatment without rubbing.

【0012】特願平7−111851号の明細書に開示
の方法では照射偏光光の偏光方向に対して直角の方向に
配向処理がなされる。この方法では、プレチルト角を配
向膜に付与するために、紫外線偏光光を異なる方向から
2回に分けて光偏光記憶膜に照射しなければならない。
In the method disclosed in the specification of Japanese Patent Application No. 7-111851, the alignment treatment is performed in the direction perpendicular to the polarization direction of the polarized light for irradiation. In this method, in order to impart a pretilt angle to the alignment film, it is necessary to irradiate the polarized light storage film with ultraviolet polarized light in two different directions.

【0013】たとえば、最初の偏光光の照射では、偏光
光を基板の法線方向から光偏光記憶膜に照射することに
より、基板面と平行な方向で、偏光方向に対して直角の
方向の配向を与える。そして次の2回目の照射では、偏
光光を基板面に対して斜めの方向から光偏光記憶膜に照
射することによりプレチルト配向を与えている。この方
法では2回の照射処理をしないとプレチルトを有する所
望の方向の配向処理はできない。
For example, in the first irradiation of polarized light, the polarized light is irradiated to the optical polarization storage film from the normal direction of the substrate, so that the orientation in the direction parallel to the substrate surface and the direction perpendicular to the polarization direction is obtained. give. Then, in the next second irradiation, the pretilt alignment is given by irradiating the optical polarization storage film with polarized light from a direction oblique to the substrate surface. In this method, the alignment treatment in a desired direction having a pretilt cannot be performed unless the irradiation treatment is performed twice.

【0014】ところが、このような2回の照射工程を必
要とする方法では、どうしても照射時間が長くなり、し
かも1回目と2回目の照射では照射方向が異なるため
に、照射装置の再セッティングにかかる時間などで液晶
セルの基板製造工程のタクト(基板1枚当たりに要する
処理時間)が上げられないという問題がある。また、照
射装置の設計および操作が非常に複雑で面倒になり、当
然に製造コストも高くなるという問題があった。
However, in such a method that requires two irradiation steps, the irradiation time is inevitably long, and the irradiation directions are different between the first irradiation and the second irradiation, so that the irradiation device must be reset. There is a problem that the tact (processing time required for one substrate) of the liquid crystal cell substrate manufacturing process cannot be increased due to time and the like. Further, there is a problem that the design and operation of the irradiation device are very complicated and cumbersome, and the manufacturing cost is naturally high.

【0015】本発明の目的は、表示不良や素子破壊とい
った製品不良の原因となるラビング処理を不要とすると
ともに、プレチルトを有する液晶配向構造をより短時間
で簡単に製造する方法を提供することである。
An object of the present invention is to provide a method for easily manufacturing a liquid crystal alignment structure having a pretilt in a shorter time while eliminating a rubbing process which causes a product defect such as a display defect or an element destruction. is there.

【0016】[0016]

【課題を解決するための手段】本発明の液晶配向構造の
製造方法は、所定波長領域内の波長を有し、偏光した光
を吸収すると、偏光方向平行な面内方向に液晶分子を配
向させる性質を生じる感光性高分子膜を表面に形成した
基板を準備する工程と、前記所定波長領域内の波長を有
する1種類の偏光光を斜め入射かつ偏光方向を入射面に
垂直な方向から傾けて前記基板の感光性高分子膜に照射
し、前記感光性高分子膜に吸収させてプレチルトを有す
る配向構造を作成する光吸収工程とを有する液晶配向構
造の製造方法が提供される。
The method for producing a liquid crystal alignment structure according to the present invention has a wavelength within a predetermined wavelength region and when polarized light is absorbed, liquid crystal molecules are aligned in an in-plane direction parallel to the polarization direction. A step of preparing a substrate on the surface of which a photosensitive polymer film that gives rise to a property is formed, and one type of polarized light having a wavelength within the predetermined wavelength range is obliquely incident and the polarization direction is inclined from a direction perpendicular to the incident surface. A method of manufacturing a liquid crystal alignment structure, comprising: a light absorption step of irradiating the photosensitive polymer film on the substrate and absorbing the light by the photosensitive polymer film to form an alignment structure having a pretilt.

【0017】[0017]

【発明の実施の形態】本願発明の発明者が実験した結
果、図2に示されるような種々のポリイミド薄膜に該膜
の法線方向から偏光した紫外線光を照射すると、その膜
に配向処理が施され、液晶が均一に配向することが確認
された。そして、その配向方向は、照射する紫外光の波
長および偏光方向に依存していた。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of experiments conducted by the inventor of the present invention, when various polyimide thin films as shown in FIG. 2 are irradiated with ultraviolet light polarized in the normal direction of the film, the film undergoes an alignment treatment. It was confirmed that the liquid crystal was uniformly aligned. Then, the orientation direction depends on the wavelength and the polarization direction of the ultraviolet light to be irradiated.

【0018】実験の結果をさらに詳しく述べると以下の
通りである。 照射光(偏光)の波長λ=230〜260nmの照
射では、偏光方向に対して平行に液晶が配向した。 照射光(偏光)の波長λ=300〜340nmの照
射では、偏光方向に対して直角に液晶が配向した。 照射光(偏光)の波長λ=260〜300nmの照
射では、液晶の配向方向は照射量(照度×時間)に依存
し、照射量の少ない初めの内は偏光方向に対して平行に
配向し、照射量が増えるに従い配向方向が少しずつ変化
してゆき、最終的に十分な照射量では偏光方向に対し直
角に配向するようになった。 照射光の波長=340nm以上の照射では、配向処
理は施されないことがわかった。
The results of the experiment will be described in more detail below. When the irradiation light (polarized light) had a wavelength λ of 230 to 260 nm, the liquid crystal was aligned parallel to the polarization direction. When the irradiation light (polarized light) had a wavelength λ of 300 to 340 nm, the liquid crystal was aligned at right angles to the polarization direction. When the irradiation light (polarized light) has a wavelength of λ = 260 to 300 nm, the orientation direction of the liquid crystal depends on the irradiation amount (illuminance × time), and in the beginning of the case where the irradiation amount is small, the liquid crystal molecules are aligned parallel to the polarization direction. The orientation direction changed little by little as the irradiation amount increased, and finally, the orientation became perpendicular to the polarization direction at a sufficient irradiation amount. It was found that the alignment treatment was not performed by the irradiation of the irradiation light having a wavelength of 340 nm or more.

【0019】上記の現象は、との現象が同時に進
行するためであり、の現象との現象の反応効率(速
度)を比べた結果、の現象の方が効率が良い(反応速
度が速い)ため、照射初めは偏光方向に平行に配向し、
光照射量の増加とともに配向方向が変化するものと考え
られる。
The phenomenon described above is because the phenomena of and proceed at the same time, and as a result of comparing the reaction efficiency (speed) between the phenomenon of and, the phenomenon of is more efficient (the reaction speed is faster). , At the beginning of irradiation, it is oriented parallel to the polarization direction,
It is considered that the orientation direction changes as the light irradiation amount increases.

【0020】このの現象を利用して、基板に対して斜
めの方向から偏光紫外光を1回だけ照射すると、偏光方
向と平行な方向に配向すると同時に液晶の配向にプレチ
ルトが付与されたことを確認できた。
By utilizing this phenomenon, when the substrate is irradiated with polarized ultraviolet light only once from an oblique direction, it is aligned in a direction parallel to the polarization direction and at the same time a pretilt is imparted to the alignment of the liquid crystal. It could be confirmed.

【0021】さらに、このとの現象を供に利用する
ことで、基板の微小領域毎に配向方向が90度ずれるよ
うな配向処理を施してマルチドメイン構造を得ることも
可能である。その場合には、光波長を変えるためのバン
ドパスフィルタを交換するだけで照射装置のセッテイン
グを変更することなく、簡単に配向方向の変更が可能で
ある。
Further, by utilizing this phenomenon together, it is possible to obtain a multi-domain structure by performing an alignment treatment such that the alignment direction is deviated by 90 degrees for each minute region of the substrate. In that case, the alignment direction can be easily changed by changing the bandpass filter for changing the light wavelength without changing the setting of the irradiation device.

【0022】図1を参照して本発明による液晶配向構造
の製造方法を説明する。図1に示すように、ポリイミド
薄膜からなる感光性高分子膜2を表面に形成した基板1
を用意する。基板1の面に平行な互いに直交する方向を
x方向およびy方向とし、基板1の面に垂直な方向をz
方向とする。基板1の面に対して斜めθの照射角度で4
の矢印で示す偏光方向を持つ偏光光3が照射され感光性
高分子膜2に吸収される。それにより感光膜は矢印5で
示す方向にプレチルト角pを持った配向構造が与えられ
る。なお、偏光方向4と配向方向5とは共にxz平面内
に有る。
A method of manufacturing a liquid crystal alignment structure according to the present invention will be described with reference to FIG. As shown in FIG. 1, a substrate 1 having a photosensitive polymer film 2 made of a polyimide thin film formed on the surface thereof.
Prepare The directions parallel to the surface of the substrate 1 and orthogonal to each other are the x direction and the y direction, and the direction perpendicular to the surface of the substrate 1 is z.
Direction. 4 at an angle of irradiation θ with respect to the surface of the substrate 1
The polarized light 3 having the polarization direction indicated by the arrow is irradiated and absorbed by the photosensitive polymer film 2. As a result, the photosensitive film is provided with an alignment structure having a pretilt angle p in the direction indicated by arrow 5. The polarization direction 4 and the alignment direction 5 are both in the xz plane.

【0023】次に、以上の方法を利用して実際にプレチ
ルトを持つ配向構造を製作した例を以下に説明する。 (実施例1)図3に示した分子構造のポリイミド溶液
(PI−Aと称する。)をスピンコート法により透明電
極が形成されたガラス基板上に塗布し、それを焼成し、
約100nmの厚さのポリイミド薄膜を形成した。
Next, an example of actually manufacturing an alignment structure having a pretilt using the above method will be described below. Example 1 A polyimide solution (referred to as PI-A) having the molecular structure shown in FIG. 3 was applied on a glass substrate having a transparent electrode formed thereon by a spin coating method, followed by firing.
A polyimide thin film having a thickness of about 100 nm was formed.

【0024】この基板に波長λ=230〜260nmの
偏光紫外光を色々異なる照射方向の条件で照射した基板
を作製した。偏光光の照度は0.5mW/cm2 (オー
ク社製モデルUV−MO2−UV25にて測定)であ
り、照射時間を0から最長1200秒までの間で変えた
基板を作成した。そしてそれら照射時間の異なる基板の
液晶配向性をそれぞれ評価した。
Substrates were produced by irradiating this substrate with polarized ultraviolet light having a wavelength λ = 230 to 260 nm under various irradiation directions. The illuminance of the polarized light was 0.5 mW / cm 2 (measured by model UV-MO2-UV25 manufactured by Oak Co., Ltd.), and the substrate was prepared by changing the irradiation time from 0 to a maximum of 1200 seconds. Then, the liquid crystal alignment of the substrates having different irradiation times was evaluated.

【0025】その結果、z軸方向(θ=90°)からの
照射では、照射時間が600秒(照射量300mJ)以
上でほぼラビング法と同程度の均一できれいな配向状態
が得られ、その配向方向は基板面内方向に関して照射紫
外光の偏光方向に対して平行であった。
As a result, in the irradiation from the z-axis direction (θ = 90 °), when the irradiation time is 600 seconds or more (irradiation amount of 300 mJ), a uniform and clean alignment state almost equal to that of the rubbing method is obtained, and the alignment is performed. The direction was parallel to the polarization direction of the irradiation ultraviolet light with respect to the in-plane direction of the substrate.

【0026】また、光照射時に加熱処理を行うと反応効
率の向上が見られた。光照射時の基板温度を150°C
としたときは、照射時間300秒(照射量150mJ)
以上で、上記の例の結果と同等な配向状態が得られた。
Further, when the heat treatment was carried out at the time of light irradiation, the reaction efficiency was improved. Substrate temperature during light irradiation is 150 ° C
And the irradiation time is 300 seconds (irradiation amount 150 mJ)
As described above, an alignment state equivalent to the result of the above example was obtained.

【0027】さらに、図1に示すように、基板1に対し
て斜めの方向から偏光紫外光を照射した場合では、照射
角度θを30°、45°、60°の3条件で各々の角度
の条件において、照射時間を変えて配向処理を行った。
Further, as shown in FIG. 1, when polarized ultraviolet light is irradiated onto the substrate 1 from an oblique direction, the irradiation angle θ is set under three conditions of 30 °, 45 ° and 60 °. Under the conditions, the alignment treatment was performed by changing the irradiation time.

【0028】その結果、照射角θが30°の場合には1
200秒以上の照射時間で、照射角が45°の場合は9
00秒以上の照射時間で、照射角が60°の場合は70
0秒以上の照射時間で、それぞれ良好な配向状態を示し
た。この結果から、一定の良好な配向状態を得るために
必要な照射時間は、斜め方向から照射した場合、法線方
向から照射した場合(θ=90°)の照射時間の約1/
sinθ倍となっていることになり、その場合ポリイミ
ド薄膜が受ける照射効果が同等になることが判る。
As a result, when the irradiation angle θ is 30 °, 1
9 for irradiation time of 200 seconds or more and irradiation angle of 45 °
If the irradiation time is 00 seconds or more and the irradiation angle is 60 °, 70
When the irradiation time was 0 seconds or more, a good alignment state was exhibited. From this result, the irradiation time required to obtain a certain good alignment state is about 1 / time of the irradiation time in the case of obliquely irradiating or in the direction of normal (θ = 90 °).
It means that it becomes sin θ times, and in that case, the irradiation effect received by the polyimide thin film becomes equal.

【0029】この実施例の基板のプレチルト角pをクリ
スタルローテーション法により測定したところ、照射角
θ=30°の場合はp=0.49°であり、照射角θ=
45°の場合はp=0.22°であり、照射角θ=60
°の場合はp=0.14°であり、偏光紫外光の照射角
θとプレチルト角pとは互いに相関があることが判っ
た。
When the pretilt angle p of the substrate of this example was measured by the crystal rotation method, when the irradiation angle θ = 30 °, it was p = 0.49 °, and the irradiation angle θ =
In the case of 45 °, p = 0.22 ° and the irradiation angle θ = 60
In the case of °, p = 0.14 °, and it was found that the irradiation angle θ of the polarized ultraviolet light and the pretilt angle p are correlated with each other.

【0030】さらに垂直入射で波長λ=300〜340
nmの偏光紫外光を照射した場合には、照射時間が90
0秒以上でほぼラビング法の場合と同等な均一な配向が
得られた。その配向方向は基板面内方向に関して照射紫
外光の偏光方向に対して直角であった。但し、この場合
プレチルトは付与されなかった。
Further, at normal incidence, the wavelength λ = 300 to 340
When irradiated with polarized ultraviolet light of nm, the irradiation time is 90
At 0 seconds or more, a uniform orientation similar to that of the rubbing method was obtained. The orientation direction was perpendicular to the polarization direction of the irradiation ultraviolet light with respect to the in-plane direction of the substrate. However, in this case, no pretilt was applied.

【0031】なお、照射光の波長λが340nm以上の
場合には、十分な時間照射しても液晶の配向は実現しな
かった。 (実施例2)図4に示す分子構造のポリイミド溶液(P
I−Bと称する。)を使用して、波長λ=230〜26
0nmで実施例1の場合とまったく同様な条件で配向構
造の製造実験を行った。
When the wavelength λ of the irradiation light was 340 nm or more, the liquid crystal was not aligned even after irradiation for a sufficient time. Example 2 A polyimide solution having a molecular structure shown in FIG. 4 (P
IB. ), The wavelength λ = 230-26
An experiment for manufacturing an oriented structure was conducted under 0 nm at exactly the same conditions as in Example 1.

【0032】PI−AとPI−Bとではポリイミドのジ
アミン部分の構造が異なっている。PI−Aは極性が大
きく、PI−Bは極性が小さい。また、酸無水化物部分
の構造はどちらも同じである。
PI-A and PI-B differ in the structure of the diamine portion of the polyimide. PI-A has a large polarity, and PI-B has a small polarity. Both structures of the acid anhydride part are the same.

【0033】PI−Bでの実験の結果、全ての場合につ
いて照射量に対する配向性の変化はPI−Aの場合とほ
ぼ同等であった。しかし、配向状態の程度については、
PI−BはPI−Aに対して明確な差があり、偏光顕微
鏡で観察すると、少しざらついた様な配向状態を示し、
PI−Aの配向状態よりも劣るものであった。
As a result of the experiment with PI-B, the change of the orientation with respect to the dose was almost the same as that of PI-A in all cases. However, regarding the degree of orientation,
PI-B has a clear difference from PI-A, and when observed with a polarizing microscope, it shows a slightly rough alignment state,
It was inferior to the orientation state of PI-A.

【0034】しかし、PI−Bの場合もPI−Aの場合
と程度の差こそあるものの、照射量がほぼ同じで最良な
配向状態となることから、この光照射法(照射光波長λ
=230〜260nm)による配向処理過程では、ポリ
イミド材料の酸無水化物部分の構造が特に重要であり、
ジアミン部分の構造にはあまり依存しないものと推測さ
れる。
However, in the case of PI-B, although there is a degree of difference from the case of PI-A, since the irradiation amount is almost the same and the best alignment state is obtained, this light irradiation method (irradiation light wavelength λ
= 230-260 nm), the structure of the acid anhydride part of the polyimide material is particularly important in the alignment treatment process,
It is presumed that it does not depend so much on the structure of the diamine moiety.

【0035】また、ジアミン部分の構造は配向状態の程
度に差を与え、ポリイミドの極性を大きくするようなジ
アミンを採用した時、液晶の配向状態はより良好なもの
となると推測できる。
Further, the structure of the diamine portion gives a difference in the degree of the alignment state, and it can be presumed that when a diamine that increases the polarity of the polyimide is used, the alignment state of the liquid crystal becomes better.

【0036】(実施例3)図5に示す分子構造のポリイ
ミド溶液(PI−Cと称する。)を使用して、波長λ=
230〜260nmで実施例1あるいは2の場合とまっ
たく同様な条件で配向構造の製造実験を行った。
Example 3 Using a polyimide solution (referred to as PI-C) having the molecular structure shown in FIG. 5, the wavelength λ =
An experiment for manufacturing an oriented structure was conducted under the same conditions as in Example 1 or 2 at 230 to 260 nm.

【0037】その結果、最良な配向状態に達するのに必
要な照射量には他の実施例との差は見られるが、照射量
の増加に伴い配向状態が良好になっていく過程は他の実
施例と同様な傾向を示した。
As a result, although there is a difference in the dose required to reach the best alignment state from the other examples, there is another process in which the alignment state becomes better as the dose increases. A tendency similar to that of the example was shown.

【0038】実施例3では最良な配向状態は照射時間が
1000秒以上で達成され、その時の配向状態はPI−
Aの場合とほぼ同程度であった。以上の結果から、感光
性高分子膜として、互いに異なる構造をした酸無水化物
部分からなるポリイミドを用いた場合、偏光紫外光の照
射時間に違いがあるものの、おしなべて同様な配向効果
を得られることが判る。
In Example 3, the best alignment state was achieved when the irradiation time was 1000 seconds or more, and the alignment state at that time was PI-.
It was almost the same as in the case of A. From the above results, as the photosensitive polymer film, when using a polyimide composed of acid anhydride moieties having different structures, although there is a difference in the irradiation time of polarized ultraviolet light, it is possible to obtain the same alignment effect across the whole I understand.

【0039】照射偏光光の波長を選択することにより基
板面内方向に関して照射光の偏光方向に対して平行な方
向にも直角な方向にも液晶を配向制御できる。偏光方向
と平行な配向を形成する場合、基板面に対して斜め方向
から入射面法線に対して傾いた偏光方向で偏光光を照射
すると1回(1種類)の偏光光の照射によってプレチル
ト付配向が実現できる。
By selecting the wavelength of the irradiation polarized light, it is possible to control the alignment of the liquid crystal in the direction parallel to the polarization direction of the irradiation light with respect to the in-plane direction of the substrate. When forming an orientation parallel to the polarization direction, if the polarized light is irradiated in a polarization direction that is oblique to the substrate surface and that is tilted with respect to the normal to the incident surface, it will be pre-tilted by irradiation of one (1 type) polarized light. Orientation can be realized.

【0040】照射波長の選択による配向方向の制御を利
用すると、基板の微小領域毎に配向方向が90度ずれる
ような配向構造を形成することもできる。その結果、マ
ルチドメイン構造を得ることもできる。
By utilizing the control of the alignment direction by selecting the irradiation wavelength, it is possible to form an alignment structure in which the alignment direction is deviated by 90 degrees for each minute region of the substrate. As a result, a multi-domain structure can be obtained.

【0041】その場合には、光波長を変えるためのバン
ドパスフィルタ(図示せず。)を図1の偏光光3の光路
中に配置する。バンドパスフィルタの選択で波長λ=2
30〜260nmでの照射では、偏光方向に対して平行
に液晶が配向し、かつプレチルトが付与できる。波長λ
=300〜340nmの照射では、偏光方向に対して直
角に液晶が配向する。これを基板面の微小領域毎にバン
ドパスフィルタを切替えながら照射すると図6(A)に
示すような隣接するドメイン10に形成される液晶分子
の配向方向t1〜t4の向きが順次方位角で90度異な
る液晶配向構造を形成することができる。
In that case, a bandpass filter (not shown) for changing the light wavelength is arranged in the optical path of the polarized light 3 in FIG. Wavelength λ = 2 by selecting bandpass filter
Irradiation at 30 to 260 nm can align the liquid crystal in parallel with the polarization direction and impart a pretilt. Wavelength λ
= 300 to 340 nm, the liquid crystal is aligned at right angles to the polarization direction. When this is irradiated while switching the bandpass filter for each minute area on the substrate surface, the orientation directions t1 to t4 of the liquid crystal molecules formed in the adjacent domains 10 as shown in FIG. Different liquid crystal alignment structures can be formed.

【0042】なお、チェッカーボード状の窓領域を有す
るマスクを介して偏光を入射すれば、図6(A)の配向
構造を2回の紫外線照射で形成することもできる。図6
(A)の構造の場合、微小領域10の半数にはプレチル
トを付与することが難しい。全微小領域にプレチルトを
付与するには、偏光方向と平行に配向する波長の光を2
つ以上の方向から感光性高分子膜に入射すればよい。上
述のマスクを用いた紫外線照射を利用することもでき
る。
If polarized light is incident through a mask having a checkerboard-shaped window region, the alignment structure shown in FIG. 6A can be formed by irradiating ultraviolet rays twice. FIG.
In the case of the structure (A), it is difficult to give a pretilt to half of the minute regions 10. To give a pretilt to the entire minute area, 2 wavelengths of light oriented parallel to the polarization direction are used.
The light may enter the photosensitive polymer film from one or more directions. Ultraviolet irradiation using the above mask can also be used.

【0043】図6(B)は、4方向からの紫外線照射を
行う場合に、実現可能な配向パターンの例を示す。配向
方向t11、t12、t13、t14は総てプレチルト
を有し、基板面内方向に関して順次90度回転してい
る。紫外線照射方向の変更は光学系の回転で行っても基
板の回転で行ってもよい。
FIG. 6B shows an example of an alignment pattern that can be realized when ultraviolet rays are irradiated from four directions. The orientation directions t11, t12, t13, and t14 all have a pretilt, and they are sequentially rotated 90 degrees in the in-plane direction of the substrate. The ultraviolet irradiation direction may be changed by rotating the optical system or the substrate.

【0044】以上説明した配向構造の製造方法が適用で
きるものとしては、液晶表示素子に限らず、光学位相差
板や光学補償フィルムなどがある。以上、実施例に沿っ
て本発明を説明したが、本発明はこれらに制限されるも
のではない。例えば、種々の変更、改良、組み合わせ等
が可能なことは当業者に自明であろう。
The method of manufacturing the alignment structure described above can be applied to not only liquid crystal display elements but also optical retardation films and optical compensation films. Although the present invention has been described with reference to the embodiments, the present invention is not limited to these embodiments. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0045】[0045]

【発明の効果】以上述べたように、本発明によれば、ラ
ビングを行うことなくプレチルトを付与することができ
るためにラビングにまつわる表示不良や素子破壊等の発
生が抑制される。さらには、照射偏光光の波長を適当に
選択することにより照射光の偏光方向に対して平行な方
向にも直角な方向にも液晶を配向制御できる。さらに、
波長を選択した上で基板面に対して斜め方向から1回の
偏光光の照射によってプレチルト配向が実現できるの
で、プレチルトを有する液晶配向構造をより短時間で簡
単に製造できコストの低減をもたらす。
As described above, according to the present invention, the pretilt can be imparted without rubbing, so that the occurrence of display defects and element destruction associated with rubbing can be suppressed. Furthermore, by appropriately selecting the wavelength of the polarized light for irradiation, the liquid crystal can be controlled to be aligned in a direction parallel to or perpendicular to the polarization direction of the irradiated light. further,
Since the pretilt alignment can be realized by irradiating the substrate surface with the polarized light once from the oblique direction after selecting the wavelength, it is possible to easily manufacture the liquid crystal alignment structure having the pretilt in a shorter time and reduce the cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による配向構造製造方法における光照射
条件を示す概略斜視図である。
FIG. 1 is a schematic perspective view showing light irradiation conditions in a method for manufacturing an alignment structure according to the present invention.

【図2】本発明による配向構造製造方法に使用できる種
々のポリイミドの分子構造を示す図である。
FIG. 2 is a diagram showing molecular structures of various polyimides that can be used in the method for producing an oriented structure according to the present invention.

【図3】実施例で用いるポリイミドの分子構造を示す図
である。
FIG. 3 is a diagram showing a molecular structure of polyimide used in Examples.

【図4】別の実施例で用いるポリイミドの分子構造を示
す図である。
FIG. 4 is a diagram showing a molecular structure of a polyimide used in another example.

【図5】さらに別の実施例で用いるポリイミドの分子構
造を示す図である。
FIG. 5 is a diagram showing a molecular structure of a polyimide used in yet another example.

【図6】実施例の方法を使用して基板上に形成したマル
チドメインの形成例を示す概略斜視図である。
FIG. 6 is a schematic perspective view showing an example of forming multi-domains formed on a substrate by using the method of the embodiment.

【符号の説明】[Explanation of symbols]

1 基板 2 感光性高分子膜 3 偏光光照射方向 4 偏光方向 5 プレチルト配向方向 10 ドメイン 1 substrate 2 photosensitive polymer film 3 polarized light irradiation direction 4 polarized light direction 5 pretilt alignment direction 10 domain

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定波長領域内の波長を有し、偏光した
光を吸収すると、偏光方向平行な面内方向に液晶分子を
配向させる性質を生じる感光性高分子膜を表面に形成し
た基板を準備する工程と、 前記所定波長領域内の波長を有する1種類の偏光光を斜
め入射かつ偏光方向を入射面に垂直な方向から傾けて前
記基板の感光性高分子膜に照射し、前記感光性高分子膜
に吸収させてプレチルトを有する配向構造を作成する光
吸収工程とを有する液晶配向構造の製造方法。
1. A substrate having a photosensitive polymer film formed on its surface, which has a property of aligning liquid crystal molecules in an in-plane direction parallel to the polarization direction when absorbing polarized light having a wavelength within a predetermined wavelength range. The step of preparing, and irradiating the photosensitive polymer film of the substrate with one kind of polarized light having a wavelength within the predetermined wavelength range obliquely incident and tilting the polarization direction from a direction perpendicular to the incident surface, A method for producing a liquid crystal alignment structure, comprising a light absorption step of forming an alignment structure having a pretilt by absorbing it in a polymer film.
【請求項2】 前記感光性高分子膜がポリイミドである
請求項1記載の液晶配向構造の製造方法。
2. The method for producing a liquid crystal alignment structure according to claim 1, wherein the photosensitive polymer film is polyimide.
【請求項3】 前記偏光光の波長が230nmから26
0nmの範囲である請求項1または2に記載の液晶配向
構造の製造方法。
3. The wavelength of the polarized light is from 230 nm to 26 nm.
The method for producing a liquid crystal alignment structure according to claim 1, wherein the range is 0 nm.
【請求項4】 さらに、波長が300から340nmの
範囲である偏光光を照射する工程を有する請求項1〜3
のいずれかに記載の液晶配向構造の製造方法。
4. The method according to claim 1, further comprising the step of irradiating polarized light having a wavelength in the range of 300 to 340 nm.
A method for producing a liquid crystal alignment structure according to any one of 1.
【請求項5】 さらに、前記偏光光の照射時に前記基板
を加熱する工程を有する請求項1〜4のいずれかに記載
の液晶配向構造の製造方法。
5. The method for producing a liquid crystal alignment structure according to claim 1, further comprising the step of heating the substrate when the polarized light is irradiated.
JP11070496A 1996-05-01 1996-05-01 Production of liquid crystal oriented structure Withdrawn JPH09297309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11070496A JPH09297309A (en) 1996-05-01 1996-05-01 Production of liquid crystal oriented structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11070496A JPH09297309A (en) 1996-05-01 1996-05-01 Production of liquid crystal oriented structure

Publications (1)

Publication Number Publication Date
JPH09297309A true JPH09297309A (en) 1997-11-18

Family

ID=14542348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11070496A Withdrawn JPH09297309A (en) 1996-05-01 1996-05-01 Production of liquid crystal oriented structure

Country Status (1)

Country Link
JP (1) JPH09297309A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480812B1 (en) * 1999-05-18 2005-04-06 엘지.필립스 엘시디 주식회사 Method of manufacturing an alignment layer of liquid crystal display device
KR100462383B1 (en) * 1998-05-08 2005-04-06 비오이 하이디스 테크놀로지 주식회사 Liquid Crystal Display Device and Liquid Crystal Alignment Method
WO2010137402A1 (en) * 2009-05-29 2010-12-02 シャープ株式会社 Optical alignment processing method, mask for optical alignment processing and method for manufacturing an aligned film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462383B1 (en) * 1998-05-08 2005-04-06 비오이 하이디스 테크놀로지 주식회사 Liquid Crystal Display Device and Liquid Crystal Alignment Method
KR100480812B1 (en) * 1999-05-18 2005-04-06 엘지.필립스 엘시디 주식회사 Method of manufacturing an alignment layer of liquid crystal display device
WO2010137402A1 (en) * 2009-05-29 2010-12-02 シャープ株式会社 Optical alignment processing method, mask for optical alignment processing and method for manufacturing an aligned film

Similar Documents

Publication Publication Date Title
JP2872628B2 (en) Manufacturing method of liquid crystal display element
US5576862A (en) Positive orientations of liquid crystal molecules in a multi-domain liquid crystal display cell
US5853818A (en) Method for manufacturing multi-domain liquid crystal cell
EP0742471B1 (en) Arrangement for rubbingless orientation of liquid crystals with tilt
US7016113B2 (en) Large scale polarizer and polarizer system employing it
EP0632311B1 (en) Method of orienting liquid crystal molecules in a multi-domain liquid crystal display cell
JP2996897B2 (en) Liquid crystal alignment control method and apparatus, and liquid crystal display device having alignment film formed by the method
JPH06222366A (en) Liquid crystal display device and its production
JP3054076B2 (en) Manufacturing method of liquid crystal display element
JP3107534B2 (en) Liquid crystal display device and method of manufacturing the same
JPH09297309A (en) Production of liquid crystal oriented structure
JPS6327815A (en) Manufacture of liquid crystal element
JP2000187221A (en) Production of liquid crystal element and production apparatus thereof
US5626995A (en) Method for manufacturing liquid crystal displays
JP2005115321A (en) Method for manufacturing liquid crystal display
JP2000171676A (en) Polarizing device using large area polarizing plate
KR100201571B1 (en) The method of manufacturing ecb mode liquid crystal cell
JP3026786B2 (en) Liquid crystal display device and method of manufacturing the same
JPH1195224A (en) Production of liquid crystal display element
JPH09318939A (en) Liquid crystal display element and its manufacture
JPH06337420A (en) Manufacture of liquid crystal display device
KR0163616B1 (en) Liquid crystal display element and its production
JPH08304829A (en) Liquid crystal display element and its production
JPH10115824A (en) Liquid crystal display panel substrate and its production
JPH04124611A (en) Optical modulating element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701