JPH09296706A - High-efficient power generation system - Google Patents

High-efficient power generation system

Info

Publication number
JPH09296706A
JPH09296706A JP14640596A JP14640596A JPH09296706A JP H09296706 A JPH09296706 A JP H09296706A JP 14640596 A JP14640596 A JP 14640596A JP 14640596 A JP14640596 A JP 14640596A JP H09296706 A JPH09296706 A JP H09296706A
Authority
JP
Japan
Prior art keywords
working fluid
concentration
concentration working
liquid
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14640596A
Other languages
Japanese (ja)
Inventor
Yoshihide Nakamura
吉秀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14640596A priority Critical patent/JPH09296706A/en
Publication of JPH09296706A publication Critical patent/JPH09296706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To substantially null thermal energy to be disposed of to the outside system by fully improving thermal efficiency. SOLUTION: A power generation system has processes to generate, from a medium-concentration ammonia working fluid (liquid) composed of condensed exhaust steam emitted from a turbine, a high-concentration ammonia working fluid (liquid) (which requires energy for raising the energy level for its generation), and a low-concentration ammonia working fluid (liquid). The thermal energy of the turbine exhaust steam is recovered through the absorption of its heat by the vaporization of the high-concentration ammonia working fluid, and the steam out of the high-concentration ammonia working fluid is absorbed and condensed into the low-concentration ammonia working fluid (liquid) to obtain the medium-concentration ammonia working fluid. The thermal energy generated at the time is employed to heat (vaporize) a working fluid used in the turbine and to raise the energy level in generating the high-concentration ammonia working fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力発生用、動力発生
用システムで作動流体にアンモニアと水との混合物を用
いる動力発生システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation system which uses a mixture of ammonia and water as a working fluid in a power generation system and a power generation system.

【0002】[0002]

【従来の技術】アンモニアと水の混合物を作動流体とす
るカリーナサイクルが知られている。
2. Description of the Related Art A carina cycle using a mixture of ammonia and water as a working fluid is known.

【0003】[0003]

【発明が解決しようとする問題点】現時点では、カリー
ナサイクルを用いたガスタービンコンバインドサイクル
(最高作動温度は500℃程度)の熱効率の優位度は2
〜3ポイント(全対比4〜6%)程度で、多くはなかっ
た。
[Problems to be Solved by the Invention] At present, the superiority of the thermal efficiency of the gas turbine combined cycle (the maximum operating temperature is about 500 ° C.) using the Carina cycle is 2
Approximately 3 points (4 to 6% of the total), not many.

【0004】作動温度が低くなると、優位度は上記の値
よりは良くなるが、ガスタービンコンバインドサイクル
の廃ガス回収側の最高作動温度は、熱効率を向上させる
ために高くする傾向にあり、優位度は小さくなる傾向に
ある。
When the operating temperature is lower, the superiority is better than the above value, but the maximum operating temperature on the waste gas recovery side of the gas turbine combined cycle tends to be high in order to improve the thermal efficiency. Tends to be smaller.

【0005】そこで本出願は、作動流体にアンモニアと
水の混合物を用いるが、カリーナサイクルとは全く異な
る方法で、熱効率を大幅に改善することを目的とする。
Therefore, the present application uses a mixture of ammonia and water as a working fluid, but it is an object of the present invention to significantly improve thermal efficiency in a completely different method from the Carina cycle.

【0006】[0006]

【作用】図1は、本出願による第1種動力発生サイクル
のブロック図である。この図1の左側で動力発生・熱エ
ネルギー回収プロセス側の熱とエネルギーの流れを示し
ている。なおポンプ,弁などは省略している。
1 is a block diagram of a first type power generation cycle according to the present application. The left side of FIG. 1 shows the flow of heat and energy on the power generation / heat energy recovery process side. Pumps and valves are omitted.

【0007】タービン1を出た高濃度作動流体(主に気
体)は、中間濃度作動流体(液体)とあわせて熱交換器
2に送られ、ここで高濃度作動流体(ここで液体から気
体に変わる)に熱を渡し中間濃度となり凝縮する。凝縮
した中間濃度作動流体は分離プロセス4に送る。
The high-concentration working fluid (mainly gas) discharged from the turbine 1 is sent to the heat exchanger 2 together with the intermediate-concentration working fluid (liquid), where the high-concentration working fluid (here, from liquid to gas). Heat) to give an intermediate concentration and condense. The condensed intermediate working fluid is sent to the separation process 4.

【0008】本明細書では高濃度作動流体とは、アンモ
ニア濃度が特に高い作動流体のことを言い、また低濃度
作動流体とは、アンモニア濃度が特に低い作動流体のこ
とを言う。そして中間濃度作動流体とは、アンモニア濃
度が、上記2状態の間にある状態のことを言う。
In the present specification, the high-concentration working fluid refers to a working fluid having a particularly high ammonia concentration, and the low-concentration working fluid refers to a working fluid having a particularly low ammonia concentration. The intermediate-concentration working fluid means a state in which the ammonia concentration is between the above two states.

【0009】熱交換器2で熱エネルギーを回収した高濃
度作動流体(気体)は、熱交換器3で低濃度作動流体に
吸収される。この時に吸収熱と凝縮熱を発生し、タービ
ン1に送る高濃度作動流体を加熱・蒸発する。
The high-concentration working fluid (gas) whose heat energy is recovered by the heat exchanger 2 is absorbed by the low-concentration working fluid by the heat exchanger 3. At this time, heat of absorption and heat of condensation are generated to heat and evaporate the high-concentration working fluid sent to the turbine 1.

【0010】低濃度作動流体はアンモニアの濃度が低い
ほど加熱温度を高めることができるので好ましい。そし
て高濃度作動流体のアンモニア濃度は高いほどタービン
に入る蒸気の圧力を高めることができるので好ましく、
さらにアンモニア濃度は高いことは熱交換器3での発熱
・凝縮時の圧力を高めることができ、これはその際の温
度上昇に直結するので、高濃度作動流体のアンモニア濃
度は高いほど好ましい。これに関しては図7に参考図と
して、「飽和溶液のエンタルピー−濃度線図(下部:溶
液側,上部:蒸気側)」を添付する。
The low-concentration working fluid is preferable because the lower the concentration of ammonia, the higher the heating temperature can be. The higher the concentration of ammonia in the high-concentration working fluid, the higher the pressure of the steam entering the turbine, which is preferable.
Further, a high ammonia concentration can increase the pressure at the time of heat generation / condensation in the heat exchanger 3, and this directly leads to a temperature rise at that time. Therefore, the higher the ammonia concentration of the high-concentration working fluid, the more preferable. In this regard, as a reference diagram, FIG. 7 is attached with “enthalpy-concentration diagram of saturated solution (lower part: solution side, upper part: vapor side)”.

【0011】図1ではタービン1に送る作動流体を加熱
する熱エネルギーが、一見不足するように感じる。しか
し高濃度作動流体のエネルギー水準が高く、低濃度作動
流体と混合した後の中濃度作動流体のエネルギー水準が
低いので、このエネルギー水準差により発熱エネルギー
が大きくなり、熱エネルギーは逆に余る傾向が強い。余
る場合は外系にエネルギーを排出し、一方不足する場合
は追加加熱することができる。これに関しては前記同様
図7を理解の参考として使用できる。
In FIG. 1, it seems that the thermal energy for heating the working fluid sent to the turbine 1 is apparently insufficient. However, since the high-concentration working fluid has a high energy level and the medium-concentration working fluid has a low energy level after mixing with the low-concentration working fluid, this difference in energy level increases the heat generation energy, and conversely the heat energy tends to remain. strong. When there is a surplus, energy can be discharged to the external system, while when there is a shortage, additional heating can be performed. In this regard, FIG. 7 can be used as a reference for understanding as described above.

【0012】分離プロセス4では、戻ってきた中間濃度
作動流体から高濃度作動流体を分離・生成する。つぎに
これの残液である中間濃度作動流体を加熱して、低濃度
作動流体を生成する。この生成した2種類の作動流体を
動力発生・熱エネルギー回収プロセス側に送る。
In the separation process 4, a high concentration working fluid is separated and produced from the returned intermediate concentration working fluid. Next, the intermediate-concentration working fluid, which is the residual liquid, is heated to generate a low-concentration working fluid. The generated two kinds of working fluids are sent to the power generation / thermal energy recovery process side.

【0013】上記で生成した高濃度作動流体(液体)
は、もとの中間濃度作動流体より温度が同じでもエネル
ギー水準が高い。そこでこのためのエネルギーとして外
部からの熱エネルギーを充てている。
Highly concentrated working fluid (liquid) produced above
Has a higher energy level than the original working fluid at the same temperature. Therefore, heat energy from the outside is used as energy for this.

【0014】図5は、本出願による第2種動力発生サイ
クルのブロック図である。この図5の左側では動力発生
・熱エネルギー回収プロセス側の熱とエネルギーの流れ
を示している。なおポンプ,弁などは省略している。
FIG. 5 is a block diagram of a second type power generation cycle according to the present application. The left side of FIG. 5 shows the flow of heat and energy on the power generation / heat energy recovery process side. Pumps and valves are omitted.

【0015】タービン61を出た中間濃度作動流体(主
に気体)は、熱交換器62で作動流体の一部が凝縮し、
一方残りの作動流体は分離・加熱システム64からの中
間濃度作動流体と合わされて熱交換器63で凝縮する。
この凝縮した中間濃度作動流体も分離・加熱システム6
4に送る。タービン61を出た蒸気が熱交換器62,同
63で凝縮する凝縮温度を比較すると、熱交換器62で
の温度の方が高い。また、図1の第1種動力発生サイク
ルのブロック図と比較すると、図5のタービンの作動流
体(中間濃度)に含まれる水分が多いので凝縮温度範囲
(蒸発点〜凝縮点間温度とも言う)はより広い。したが
って、複数段で熱エネルギーを回収する。
The intermediate-concentration working fluid (mainly gas) that has exited from the turbine 61 is partially condensed in the heat exchanger 62,
On the other hand, the remaining working fluid is combined with the intermediate concentration working fluid from the separation / heating system 64 and condensed in the heat exchanger 63.
This condensed intermediate-concentration working fluid is also separated and heated by the system 6.
Send to 4. Comparing the condensation temperatures at which the steam exiting the turbine 61 is condensed in the heat exchangers 62 and 63, the temperature in the heat exchanger 62 is higher. Further, as compared with the block diagram of the first type power generation cycle of FIG. 1, since the working fluid (intermediate concentration) of the turbine of FIG. 5 contains a large amount of water, the condensation temperature range (also referred to as the temperature between the evaporation point and the condensation point) Is wider. Therefore, heat energy is recovered in multiple stages.

【0016】熱交換器62,同63で熱エネルギーを回
収した高濃度作動流体(気体)は、分離・加熱システム
64内で低濃度作動流体に吸収される。この時に吸収熱
と凝縮熱を発生し、作動流体の分離・加熱に供する。こ
の場合の温度を高めるには、低濃度作動流体はアンモニ
アの濃度が低いほど好ましく、そして高濃度作動流体
(気体)のアンモニア濃度も高いほど好ましいのは、図
1のシステムと同様である。
The high-concentration working fluid (gas) whose heat energy is recovered by the heat exchangers 62 and 63 is absorbed by the low-concentration working fluid in the separation / heating system 64. At this time, heat of absorption and heat of condensation are generated, and used for separating and heating the working fluid. In order to increase the temperature in this case, it is similar to the system of FIG. 1 that the low concentration working fluid preferably has a low ammonia concentration and the high concentration working fluid (gas) also has a high ammonia concentration.

【0017】分離・加熱プロセス64では、戻ってきた
中間濃度作動流体は加熱されて高濃度作動流体を分離す
る。つぎにこれの残液である中間濃度作動流体を加熱し
て、低濃度作動流体を生成し、さらに別に中間濃度作動
流体を加熱してタービンに送る作動流体を生成する。そ
して、タービンに送る作動流体をさらに加熱(過熱)す
るには外部からの熱エネルギーを充てる。
In the separation and heating process 64, the returned intermediate concentration working fluid is heated to separate the high concentration working fluid. Next, the intermediate-concentration working fluid, which is the residual liquid, is heated to generate a low-concentration working fluid, and further the intermediate-concentration working fluid is heated to generate a working fluid to be sent to the turbine. Then, in order to further heat (overheat) the working fluid to be sent to the turbine, heat energy from the outside is applied.

【0018】上記で生成した高濃度作動流体(液体)
は、もとの中間濃度作動流体より温度が同じでもエネル
ギー水準が高い。このためのエネルギーとしては主に前
記したところの内部の熱エネルギーを充てる。
Highly concentrated working fluid (liquid) generated above
Has a higher energy level than the original working fluid at the same temperature. As the energy for this, the internal thermal energy described above is mainly used.

【0019】上記の第1種動力発生サイクル(図1〜図
4)と第2種動力発生サイクル(図5,図6)を比較す
れば、作動温度は、第2種動力発生サイクルの方が高温
に向き、そして作動流体の単位当たり流量に対する出力
も第2種動力発生サイクルの方が高い。用途として見る
と、第2種動力発生サイクルはボトミングサイクルやべ
ース(基礎)サイクルに向き、第1種動力発生サイクル
はボトミングサイクルや低温(常温以上)熱を回収する
サイクルに向く。またこの2種類のサイクルはは、共通
部分があり組み合わせることもできる。
Comparing the first type power generation cycle (FIGS. 1 to 4) with the second type power generation cycle (FIGS. 5 and 6), the operating temperature of the second type power generation cycle is higher. The output per unit flow rate of the working fluid, which is high temperature, is higher in the second power generation cycle. In terms of applications, the type 2 power generation cycle is suitable for the bottoming cycle and the base (basic) cycle, and the type 1 power generation cycle is suitable for the bottoming cycle and the cycle for recovering low temperature (above room temperature) heat. The two types of cycles have a common part and can be combined.

【実施例】【Example】

【0020】図2、図3、図4は図1に関して説明した
第1種動力発生サイクルの実施例であり、一方図6は図
5に関して説明した第2種動力発生サイクルの実施例で
ある。
FIGS. 2, 3 and 4 show an embodiment of the type 1 power generation cycle described with reference to FIG. 1, while FIG. 6 shows an example of the type 2 power generation cycle described with reference to FIG.

【0021】図2は本出願の実施例である。2点鎖線の
左側は、動力発生及び熱エネルギー回収プロセス側であ
り、その線の右側は、作動流体を高濃度作動流体(液
体)と低濃度作動流体(液体)とに分ける分離プロセス
側である。
FIG. 2 is an embodiment of the present application. The left side of the two-dot chain line is the power generation and thermal energy recovery process side, and the right side of the line is the separation process side that divides the working fluid into a high concentration working fluid (liquid) and a low concentration working fluid (liquid). .

【0022】タービン11を出た高濃度作動流体(主に
気体)は、調整弁20(以下、調整弁とは圧力低下及び
流量を調整するものとする)からの中間濃度作動流体
(液体)とあわせて熱交換器12に送られ、ここで調整
弁21からの高濃度作動流体(ここで液体から気体に変
わる)に熱を渡し凝縮する。凝縮して中間濃度になった
作動流体はポンプ18に送る。
The high-concentration working fluid (mainly gas) exiting from the turbine 11 is used as an intermediate-concentration working fluid (liquid) from the regulating valve 20 (hereinafter, the regulating valve regulates the pressure drop and the flow rate). It is also sent to the heat exchanger 12, where heat is transferred to the high-concentration working fluid (here, changed from liquid to gas) from the regulating valve 21 to be condensed. The working fluid condensed to an intermediate concentration is sent to the pump 18.

【0023】熱交換器12で熱エネルギーを回収した高
濃度作動流体(気体)は、熱交換器13で低濃度作動流
体に吸収される。この時の温度は、熱交換器12での温
度よりもずっと高い。この時の吸収熱・凝縮熱でタービ
ン11に送る作動流体を加熱する。この加熱で作動流体
は液体から気体になる。タービン11に送る高濃度作動
流体には少量の水分が含まれており、これにより蒸発開
始から蒸発終了まで温度差(数10℃)。それにより熱
交換器13で蒸発しない分は回収して元へ戻すか、外部
熱より加熱することもできる。
The high-concentration working fluid (gas) whose heat energy is recovered by the heat exchanger 12 is absorbed by the low-concentration working fluid by the heat exchanger 13. The temperature at this time is much higher than the temperature in the heat exchanger 12. The working fluid sent to the turbine 11 is heated by the absorption heat and the condensation heat at this time. This heating changes the working fluid from liquid to gas. The high-concentration working fluid sent to the turbine 11 contains a small amount of water, which causes a temperature difference (several tens of degrees Celsius) from the start of evaporation to the end of evaporation. As a result, the portion that does not evaporate in the heat exchanger 13 can be recovered and returned to the original state, or can be heated by external heat.

【0024】ポンプ18で送る中間濃度作動流体は、熱
交換器14,同15をへて分離器16で高濃度作動流体
(気体)と中間濃度作動流体(液体)とに分離される。
この高濃度作動流体は熱交換器14,凝縮器26をへて
液化し、熱交換器12,同13に送られる。
The intermediate-concentration working fluid sent by the pump 18 is separated into a high-concentration working fluid (gas) and an intermediate-concentration working fluid (liquid) by the separator 16 through the heat exchangers 14 and 15.
The high-concentration working fluid is liquefied through the heat exchanger 14 and the condenser 26 and is sent to the heat exchangers 12 and 13.

【0025】分離器16で分離された中間濃度作動流体
(液体)は、分離器17に送られる。分離器17では中
間濃度作動流体(気体)と低濃度作動流体(液体)とに
分離される。この低濃度作動流体は熱交換器15、調整
弁23をへて熱交換器13に送られる。一方この中間濃
度作動流体(気体)は熱交換器15,同14,凝縮器2
5を経て液化し、分離器16側にリサイクルされる。ま
た、この中間濃度作動流体は濃度が高めなので、調整弁
21をへて熱交換器12に流れる経路に混合して使用す
ることもできる。
The intermediate working fluid (liquid) separated by the separator 16 is sent to the separator 17. The separator 17 separates the intermediate-concentration working fluid (gas) and the low-concentration working fluid (liquid). This low-concentration working fluid is sent to the heat exchanger 13 via the heat exchanger 15 and the regulating valve 23. On the other hand, this intermediate concentration working fluid (gas) is used for the heat exchangers 15, 14, and the condenser 2.
It is liquefied via 5 and recycled to the separator 16 side. Further, since this intermediate concentration working fluid has a high concentration, it can be used by mixing it in the path flowing to the heat exchanger 12 through the adjusting valve 21.

【0026】図3は本出願の実施例である。2点鎖線の
左側は、動力発生及び熱エネルギー回収プロセス側であ
り、その線の右側は、作動流体を高濃度作動流体(液
体)と低濃度作動流体(液体)とに分ける分離プロセス
側である。
FIG. 3 is an example of the present application. The left side of the two-dot chain line is the power generation and thermal energy recovery process side, and the right side of the line is the separation process side that divides the working fluid into a high concentration working fluid (liquid) and a low concentration working fluid (liquid). .

【0027】図2の実施例との主な相違点は、1)ター
ビンに供給する蒸気を加熱(過熱)することができるこ
と、2)タービン排気から回収した熱エネルギーの一部
を、分離プロセス側に送って、分離プロセスのエネルギ
ーとして用いることである。
The main differences from the embodiment of FIG. 2 are that 1) the steam supplied to the turbine can be heated (superheated), and 2) part of the thermal energy recovered from the turbine exhaust is separated from the separation process side. To use as energy for the separation process.

【0028】低濃度作動流体と高濃度作動流体の混合
は、エネルギー水準が低い状態に移行するので大きな熱
エネルギーを発生する。したがって分離プロセスのエネ
ルギーに回すこともできる。
The mixture of the low-concentration working fluid and the high-concentration working fluid produces a large amount of heat energy because the energy level shifts to a low state. It can therefore also be devoted to the energy of the separation process.

【0029】タ−ビン31を出た高濃度作動流体(主に
気体)は、調整弁44からの中間濃度作動流体(液体)
とあわせて熱交換器32に送られ、ここで調整弁45か
らの高濃度作動流体(ここで液体から気体に変わる)に
熱を渡し凝縮する。凝縮して中間濃度になった作動流体
はポンプ41で分離プロセス側に送る。
The high-concentration working fluid (mainly gas) exiting the turbine 31 is an intermediate-concentration working fluid (liquid) from the adjusting valve 44.
In addition, the heat is transferred to the heat exchanger 32, where heat is transferred to the high-concentration working fluid (which is changed from liquid to gas) from the regulating valve 45 to be condensed. The working fluid condensed to an intermediate concentration is sent to the separation process side by the pump 41.

【0030】熱交換器32で熱エネルギーを回収した高
濃度作動流体(気体)は、熱交換器33と熱交換器36
で低濃度作動流体に吸収される。この時の温度は、熱交
換器32での温度よりもずっと高い。熱交換器33で加
熱された高濃度作動流体は、蒸気となり、熱交換器35
で過熱(過熱)されてタービン31に入る。
The high-concentration working fluid (gas) whose heat energy has been recovered by the heat exchanger 32 is used as the heat exchanger 33 and the heat exchanger 36.
Is absorbed by the low-concentration working fluid. The temperature at this time is much higher than the temperature in the heat exchanger 32. The high-concentration working fluid heated by the heat exchanger 33 becomes vapor, and the heat exchanger 35
It is overheated (heated) and enters the turbine 31.

【0031】ポンプ41で分離プロセス側に送られた中
間濃度作動流体は、熱交換器35,ポンプ43,熱交換
器36を経て分離器39で高濃度作動流体(気体)と中
間濃度作動流体(液体)とに分離される。この高濃度作
動流体は熱交換器36,同37を経て液化し、熱交換器
32,同33に送られる。
The intermediate-concentration working fluid sent to the separation process side by the pump 41 passes through the heat exchanger 35, the pump 43, and the heat exchanger 36, and the separator 39 passes through the high-concentration working fluid (gas) and the intermediate-concentration working fluid ( Liquid) and separated. The high-concentration working fluid is liquefied through the heat exchangers 36 and 37 and sent to the heat exchangers 32 and 33.

【0032】分離器39で分離された中間濃度作動流体
(液体)は、熱交換器38で加熱されて分離器40に送
られる。分離器40では中間濃度作動流体(気体)と低
濃度作動流体(液体)とに分離される。この低濃度作動
流体は熱交換器38を経て熱交換器33,同36に送ら
れる。一方この中間濃度作動流体は熱交換器38,同3
6.同37をへて液化し、分離器39側にリサイクルさ
れる。なお熱エネルギーが余剰となって、熱交換器37
で凝縮が完了しないプロセスでは、熱交換器37と熱交
換器36の間に凝縮器を入れて外部に熱エネルギーを放
出して凝縮することができる。
The intermediate concentration working fluid (liquid) separated by the separator 39 is heated by the heat exchanger 38 and sent to the separator 40. The separator 40 separates the intermediate concentration working fluid (gas) and the low concentration working fluid (liquid). This low-concentration working fluid is sent to the heat exchangers 33 and 36 via the heat exchanger 38. On the other hand, this intermediate concentration working fluid is used in the heat exchangers 38 and 3
6. The same 37 is liquefied and is recycled to the separator 39 side. It should be noted that the heat energy becomes excessive and the heat exchanger 37
In the process in which the condensation is not completed in step 1, a condenser may be inserted between the heat exchanger 37 and the heat exchanger 36 to release heat energy to the outside for condensation.

【0033】図3では、外部に捨てる経路は記載際して
いないが、図2のように凝縮器を必要に応じて設置し
て、熱エネルギーを外部に放出して凝縮を完了すること
もできる。
In FIG. 3, a route for discarding to the outside is not shown, but as shown in FIG. 2, a condenser may be installed as necessary to release thermal energy to the outside to complete the condensation. .

【0034】熱交換器34,同35,同36,同38で
は、外系から熱エネルギーを受けて作動流体を加熱する
ことができる。条件によっては全ての熱交換器が外系か
ら熱エネルギーを受ける場合もあり、また1つの熱交換
器だけで熱エネルギーを受ける場合もある。そして熱交
換器36からヒートポンプ作用で,熱交換器38に熱エ
ネルギーを移すこともできる。
The heat exchangers 34, 35, 36, 38 can heat the working fluid by receiving heat energy from the external system. Depending on the conditions, all the heat exchangers may receive heat energy from the external system, or only one heat exchanger may receive heat energy. Then, the heat energy can be transferred from the heat exchanger 36 to the heat exchanger 38 by a heat pump action.

【0035】図4は本出願の実施例である。2点鎖線の
右側は図3と同じであり、そこは省略している。2点鎖
線の左側の図3との相違は、タービンへの入り口が2段
になっていることである。タービンへの入り口を2段と
することで、熱効率を上げることができる。
FIG. 4 is an example of the present application. The right side of the chain double-dashed line is the same as in FIG. 3, and is omitted here. The difference from FIG. 3 on the left side of the chain double-dashed line is that the inlet to the turbine has two stages. By making the entrance to the turbine two stages, the thermal efficiency can be increased.

【0036】タービン51を出た高濃度作動流体(主に
気体)は、調整弁58からの中間濃度作動流体(液体)
とあわせて熱交換器52に送られ、ここで調整弁59か
らの高濃度作動流体(ここで液体から気体に変わる)に
熱を渡し凝縮する。凝縮して中間濃度になった作動流体
はポンプ57で分離プロセス側に送る。
The high-concentration working fluid (mainly gas) exiting from the turbine 51 is an intermediate-concentration working fluid (liquid) from the adjusting valve 58.
In addition, the heat is sent to the heat exchanger 52, where heat is transferred to the high-concentration working fluid (here, changed from liquid to gas) from the regulating valve 59 to be condensed. The working fluid condensed to an intermediate concentration is sent to the separation process side by the pump 57.

【0037】熱交換器52で熱エネルギーを回収した高
濃度作動流体(気体)は、熱交換器53で調整弁60を
へて入る低濃度作動流体に吸収される。この時の温度
は、熱交換器32での温度よりもずっと高い。熱交換器
53ではこの熱でタービンに送る高濃度作動流体を加熱
して蒸気にする。ポンプ56で送られた高濃度作動流体
はタービン51の高圧側から入り、残りの高濃度作動流
体はタービン51の中間圧側から入る。そしてこれらの
高濃度作動流体蒸気は熱交換器54でさらに加熱(過
熱)されてからタービン51に入れる。
The high-concentration working fluid (gas) from which the heat energy has been recovered by the heat exchanger 52 is absorbed by the low-concentration working fluid entering the regulating valve 60 by the heat exchanger 53. The temperature at this time is much higher than the temperature in the heat exchanger 32. In the heat exchanger 53, this heat heats the high-concentration working fluid sent to the turbine to convert it into steam. The high concentration working fluid sent by the pump 56 enters from the high pressure side of the turbine 51, and the remaining high concentration working fluid enters from the intermediate pressure side of the turbine 51. Then, these high-concentration working fluid vapors are further heated (superheated) by the heat exchanger 54 and then introduced into the turbine 51.

【0038】図6は本出願の第2種動力発生サイクルの
実施例である。2点鎖線の左側は、動力発生及び熱エネ
ルギー回収プロセス側であり、その線の右側は、作動流
体を高濃度作動流体(液体)と低濃度作動流体(液体)
とに分けることと高濃度作動流体を加熱する分離・加熱
プロセス側である。
FIG. 6 shows an example of the second type power generation cycle of the present application. The left side of the chain double-dashed line is the power generation and thermal energy recovery process side, and the right side of the line is the working fluid of high concentration working fluid (liquid) and low concentration working fluid (liquid).
And the separation / heating process side for heating the high-concentration working fluid.

【0039】タービン71を出た中間濃度作動流体(主
に気体)は、熱交換器72で一部が凝縮して熱エネルギ
ーを高濃度作動流体(ここで液体から気体になる)に渡
し、そして調整弁88からの中間濃度作動流体(液体)
とあわせて熱交換器73に送られ、ここで調整弁89か
らの高濃度作動流体(ここで液体から気体に変わる)に
熱を渡し凝縮する。凝縮した中間濃度作動流体はポンプ
82で分離・加熱プロセス側に送る。
The intermediate-concentration working fluid (mainly gas) exiting from the turbine 71 is partially condensed in the heat exchanger 72 to transfer heat energy to the high-concentration working fluid (where liquid becomes gas), and Intermediate concentration working fluid (liquid) from the adjusting valve 88
In addition, the heat is sent to the heat exchanger 73, where heat is transferred to the high-concentration working fluid (here, changed from liquid to gas) from the regulating valve 89 to be condensed. The condensed intermediate concentration working fluid is sent to the separation / heating process side by the pump 82.

【0040】熱交換器72で熱エネルギーを回収した高
濃度作動流体(気体)は、熱交換器77で低濃度作動流
体に吸収される。この時の温度は、熱交換器72での温
度よりもずっと高い。また、熱交換器73で熱エネルギ
ーを回収した高濃度作動流体(気体)は、熱交換器75
で低濃度作動流体に吸収される。この時の温度は、熱交
換器73での温度よりもずっと高い。そして同じ凝縮で
も熱交換器72での凝縮温度の方が熱交換器73での凝
縮温度より高い。これはタービンの作動流体(中間濃
度)に水分が含まれるので凝縮温度範囲(蒸発点〜凝縮
点間とも言う)が広くなるからである。したがって、複
数段で熱エネルギーを回収する。
The high-concentration working fluid (gas) whose heat energy is recovered by the heat exchanger 72 is absorbed by the low-concentration working fluid by the heat exchanger 77. The temperature at this time is much higher than the temperature in the heat exchanger 72. Further, the high-concentration working fluid (gas) whose heat energy is recovered by the heat exchanger 73 is the heat exchanger 75.
Is absorbed by the low-concentration working fluid. The temperature at this time is much higher than the temperature in the heat exchanger 73. Then, even with the same condensation, the condensation temperature in the heat exchanger 72 is higher than the condensation temperature in the heat exchanger 73. This is because the working fluid (intermediate concentration) of the turbine contains water, so that the condensation temperature range (also referred to as the evaporation point to the condensation point) is widened. Therefore, heat energy is recovered in multiple stages.

【0041】ポンプ82で分離・加熱プロセス側に送ら
れた中間濃度作動流体の一部は、熱交換器74,ポンプ
84,熱交換器75を経て分離器79で高濃度作動流体
(気体)と中間濃度作動流体(液体)とに分離される。
この高濃度作動流体は熱交換器75,熱交換器76を経
て液化し、熱交換器73,同72に送られる。
A part of the intermediate-concentration working fluid sent to the separation / heating process side by the pump 82 passes through the heat exchanger 74, the pump 84, the heat exchanger 75, and is separated into a high-concentration working fluid (gas) by the separator 79. It is separated into an intermediate concentration working fluid (liquid).
The high-concentration working fluid is liquefied via the heat exchanger 75 and the heat exchanger 76 and sent to the heat exchangers 73 and 72.

【0042】分離器79で分離された中間濃度作動流体
(液体)は、熱交換器77で加熱され分離器81に送ら
れる。分離器81では中間濃度作動流体(気体)と低濃
度作動流体(液体)とに分離される。この低濃度作動流
体は、高濃度作動流体吸収用として熱交換器77、同7
5に送られる。一方この中間濃度作動流体は熱交換器7
7,同75をへて液化し、分離器79側にリサイクルさ
れる。
The intermediate concentration working fluid (liquid) separated by the separator 79 is heated by the heat exchanger 77 and sent to the separator 81. The separator 81 separates the intermediate-concentration working fluid (gas) and the low-concentration working fluid (liquid). The low-concentration working fluid is absorbed by the heat exchangers 77,
Sent to 5. On the other hand, this intermediate concentration working fluid is used in the heat exchanger 7
7 and 75 are liquefied and recycled to the separator 79 side.

【0043】ポンプ82で分離・加熱プロセス側に送ら
れた中間濃度作動流体の残部は、熱交換器74,ポンプ
85,熱交換器75,熱交換器77を経て分離器80で
中間濃度作動流体(気体)と中間濃度作動流体(液体)
とに分離される。中間濃度作動流体は(気体)は、熱交
換器で過熱(40kg/cm,400℃)されてター
ビン71に送らる。一方低濃度作動流体は調整弁93を
へて分離器81側にリサイクルされる。
The rest of the intermediate-concentration working fluid sent to the separation / heating process side by the pump 82 is passed through the heat exchanger 74, the pump 85, the heat exchanger 75, and the heat exchanger 77, and the intermediate-concentration working fluid is separated by the separator 80. (Gas) and intermediate concentration working fluid (liquid)
And separated. The intermediate concentration working fluid (gas) is superheated (40 kg / cm 2 , 400 ° C.) in the heat exchanger and sent to the turbine 71. On the other hand, the low-concentration working fluid is recycled to the separator 81 side through the adjusting valve 93.

【0044】なお熱エネルギーが余剰となって、熱交換
器76で凝縮が完了しないプロセスでは、熱交換器76
と熱交換器75の間に凝縮器を入れて外部に熱エネルギ
ーを放出して凝縮を完了することができる。
In the process in which the heat energy becomes excessive and the condensation is not completed in the heat exchanger 76, the heat exchanger 76
A condenser may be inserted between the heat exchanger 75 and the heat exchanger 75 to release heat energy to the outside to complete the condensation.

【0045】図6では、外部に捨てる経路は記載際して
いないが、図2のように凝縮器を必要に応じて設置し
て、熱エネルギーを外部に出すこともできる。
In FIG. 6, a route for discarding to the outside is not shown, but as shown in FIG. 2, a condenser can be installed as necessary to output heat energy to the outside.

【0046】熱交換器74,同78では、外系から熱エ
ネルギーを受けて作動流体を加熱することができる。さ
らに熱交換器74からヒートポンプ作用で,熱交換器7
5に熱エネルギーを移すこともできる。
In the heat exchangers 74 and 78, the working fluid can be heated by receiving heat energy from the external system. Further, the heat exchanger 74 heats up the heat exchanger 7 by the action of the heat pump.
It is also possible to transfer heat energy to 5.

【0047】この出願の発明では高濃度作動流体のアン
モニア濃度は、高ければ高いほど、また、低濃度作動流
体のアンモニア濃度は、低ければ低いほど、分離温度や
加熱温度を上げることができるので好ましい。
In the invention of this application, the higher the concentration of ammonia in the high-concentration working fluid, and the lower the concentration of ammonia in the low-concentration working fluid, the higher the separation temperature and the heating temperature, which are preferable. .

【0048】[0048]

【発明の効果】本発明は、熱エネルギーから動力を発生
するシステムにおいて、タービン排出蒸気から熱エネル
ギーを回収して作動流体の加熱に使用するので熱効率を
大幅に改善できる。実質的に捨てる熱エネルギーを無く
することまでが可能である。また、外系の低温熱エネル
ギーを吸収して加熱エネルギーとして利用することも可
能である。
INDUSTRIAL APPLICABILITY According to the present invention, in a system for generating power from thermal energy, thermal energy is recovered from turbine exhaust steam and used for heating a working fluid, so that thermal efficiency can be greatly improved. It is even possible to eliminate the heat energy that is essentially wasted. It is also possible to absorb the low-temperature heat energy of the external system and use it as heating energy.

【0049】[0049]

【図面の簡単な説明】[Brief description of drawings]

【図1】本出願による第1種動力発生サイクルのブロッ
ク図である。
FIG. 1 is a block diagram of a first type power generation cycle according to the present application.

【図2】本発明の実施例である。FIG. 2 is an embodiment of the present invention.

【図3】本発明の実施例である。FIG. 3 is an example of the present invention.

【図4】本発明の実施例である。FIG. 4 is an embodiment of the present invention.

【図5】本出願による第2種動力発生サイクルのブロッ
ク図である。
FIG. 5 is a block diagram of a second type power generation cycle according to the present application.

【図6】本発明の実施例である。FIG. 6 is an example of the present invention.

【図7】飽和溶液のエンタルピー−濃度線図FIG. 7 Enthalpy-concentration diagram of saturated solution

【符号の説明】[Explanation of symbols]

1,11,31,51,61,71 タービン 2,3,12〜15,32〜38,52〜54,62,
63,72〜78 熱交換器 16,17,39,40,79〜81 分離器 18,19,41〜43,55〜57,82〜87 ポ
ンプ 20〜23,44〜49,58〜59,88〜93 調
整弁 24〜26 凝縮器 4 分離システム 64 分離・加熱システム
1, 11, 31, 51, 61, 71 Turbine 2, 3, 12-15, 32-38, 52-54, 62,
63, 72-78 Heat exchanger 16, 17, 39, 40, 79-81 Separator 18, 19, 41-43, 55-57, 82-87 Pump 20-23, 44-49, 58-59, 88 ~ 93 Regulator valve 24 ~ 26 Condenser 4 Separation system 64 Separation / heating system

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】作動流体がアンモニアと水とからなる高効
率動力発生システムにおいて、中間濃度(以下、濃度と
はアンモニアに関して言う)の作動流体から高濃度作動
流体を気体状態で分離して液体とする部分を有し、中間
濃度作動流体から低濃度作動流体を液体状態で分離する
部分を有し、タービン排出蒸気の熱エネルギーを上記高
濃度作動流体(液体)が吸収し、この高濃度作動流体
は、上記低濃度作動流体に吸収されて熱エネルギーを出
し、この熱エネルギーでタービンに入る高濃度アンモニ
ア作動流体を蒸発させることを特徴とする高効率動力発
生システム。
1. A high-efficiency power generation system in which a working fluid comprises ammonia and water, wherein a working fluid having an intermediate concentration (hereinafter referred to as "concentration" refers to ammonia) is separated into a liquid by separating the highly concentrated working fluid in a gas state. Has a portion that separates the low-concentration working fluid from the intermediate-concentration working fluid in a liquid state, and the high-concentration working fluid (liquid) absorbs the thermal energy of the turbine exhaust steam. Is a high-efficiency power generation system characterized by being absorbed by the low-concentration working fluid to generate thermal energy, and using this thermal energy to vaporize the high-concentration ammonia working fluid entering the turbine.
【請求項2】作動流体がアンモニアと水とからなる高効
率動力発生システムにおいて、中間濃度作動流体から高
濃度作動流体を気体状態で分離して液体とする部分を有
し、中間濃度作動流体から低濃度作動流体を液体状態で
分離する部分を有し、タービン排出蒸気の熱エネルギー
を上記高濃度作動流体(液体)が吸収し、この高濃度作
動流体は、上記低濃度作動流体に吸収されて熱エネルギ
ーを出し、この熱エネルギーで、1)タービンに入る高
濃度作動流体を蒸発させ、さらに2)高濃度作動流体を
分離するエネルギーに供することを特徴とする高効率動
力発生システム。
2. A high-efficiency power generation system in which a working fluid is composed of ammonia and water, has a portion for separating a high-concentration working fluid from a medium-concentration working fluid in a gaseous state into a liquid, and The high-concentration working fluid (liquid) has a portion that separates the low-concentration working fluid in a liquid state, and the high-concentration working fluid (liquid) absorbs the thermal energy of the turbine exhaust steam, and the high-concentration working fluid is absorbed by the low-concentration working fluid. A high-efficiency power generation system, characterized in that heat energy is generated, and 1) the concentrated working fluid that enters the turbine is evaporated by this thermal energy, and 2) that the concentrated working fluid is separated.
【請求項3】作動流体がアンモニアと水とからなる高効
率動力発生システムにおいて、中間濃度作動流体から高
濃度作動流体を気体状態で分離して液体とする部分を有
し、中間濃度作動流体から低濃度作動流体を液体状態で
分離する部分を有し、タービンへは中間濃度作動流体
(蒸気)を供し、タービン排出蒸気の熱エネルギーを上
記高濃度作動流体(液体)が複数段で吸収し、この高濃
度作動流体は、上記低濃度作動流体に吸収されて熱エネ
ルギーを出し、この熱エネルギーで、1)前記高濃度作
動流体を分離するエネルギーに供し、2)前記低濃度作
動流体を分離するエネルギーに供し、さらに3)タービ
ンに入る作動流体の少なくとも一部を蒸発させることを
特徴とする高熱効率動力発生システム。
3. A high-efficiency power generation system in which the working fluid comprises ammonia and water, which has a portion for separating the high-concentration working fluid from the intermediate-concentration working fluid in a gaseous state into a liquid, It has a portion that separates the low-concentration working fluid in a liquid state, supplies an intermediate-concentration working fluid (steam) to the turbine, and the high-concentration working fluid (liquid) absorbs the thermal energy of the turbine exhaust steam in multiple stages, The high-concentration working fluid is absorbed by the low-concentration working fluid to generate thermal energy, which is used for 1) energy for separating the high-concentration working fluid, and 2) for separating the low-concentration working fluid. A high thermal efficiency power generation system which is provided with energy and further 3) vaporizes at least a part of a working fluid entering a turbine.
【請求項4】タービンに入る作動流体を、外系からの熱
エネルギーで過熱することを特徴とする請求項1〜3記
載の高熱効率動力発生システム。
4. The high thermal efficiency power generation system according to claim 1, wherein the working fluid entering the turbine is superheated by thermal energy from an external system.
【請求項5】中間濃度作動流体から高濃度作動流体を気
体状態で分離する際の温度が、中間濃度作動流体から低
濃度作動流体を液体状態で分離する際の温度より低いこ
とを特徴とする請求項1〜4記載の高効率動力発生シス
テム。
5. The temperature for separating the high-concentration working fluid from the intermediate-concentration working fluid in the gas state is lower than the temperature for separating the low-concentration working fluid from the intermediate-concentration working fluid in the liquid state. The high efficiency power generation system according to claim 1.
【請求項6】中間濃度作動流体から低濃度作動流体を液
体状態で分離する際に元になる中間濃度作動流体が、高
濃度作動流体を気体状態で分離した残液からなることを
特徴とする請求項1〜5記載の高効率動力発生システ
ム。
6. The intermediate-concentration working fluid, which is the basis for separating the low-concentration working fluid from the intermediate-concentration working fluid in a liquid state, is a residual liquid obtained by separating the high-concentration working fluid in a gaseous state. The high efficiency power generation system according to claim 1.
JP14640596A 1996-05-02 1996-05-02 High-efficient power generation system Pending JPH09296706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14640596A JPH09296706A (en) 1996-05-02 1996-05-02 High-efficient power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14640596A JPH09296706A (en) 1996-05-02 1996-05-02 High-efficient power generation system

Publications (1)

Publication Number Publication Date
JPH09296706A true JPH09296706A (en) 1997-11-18

Family

ID=15406963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14640596A Pending JPH09296706A (en) 1996-05-02 1996-05-02 High-efficient power generation system

Country Status (1)

Country Link
JP (1) JPH09296706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588021A (en) * 2010-03-02 2012-07-18 丁雪强 Power generating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588021A (en) * 2010-03-02 2012-07-18 丁雪强 Power generating system
CN102588021B (en) * 2010-03-02 2014-07-23 朱海燕 Power generating system

Similar Documents

Publication Publication Date Title
JP4891369B2 (en) Power generation equipment using geothermal fluid
KR910004380B1 (en) Method and apparatus for implementing a therhodyanmic cycle with intercooling
JP2634918B2 (en) Thermodynamic cycle execution method and apparatus
KR940002718B1 (en) Direct fired power cycle
US6694740B2 (en) Method and system for a thermodynamic process for producing usable energy
KR101398312B1 (en) Method and device for converting thermal energy of a low temperature heat source into mechanical energy
JP3391515B2 (en) Apparatus and method for obtaining power from high pressure geothermal fluid
CN1993536B (en) Method and device for carrying out a thermodynamic cyclic process
TW449642B (en) Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures
JP4668189B2 (en) Method for improving efficiency of gas turbine equipment and gas turbine equipment
US20100263380A1 (en) Cascaded organic rankine cycle (orc) system using waste heat from a reciprocating engine
JP4388067B2 (en) Method and apparatus for performing a thermodynamic cycle
JPH11324711A (en) Method for cooling ambient air entering gas turbine
JPH0454810B2 (en)
JP2008101521A (en) Power generation system by exhaust heat
CN102859147B (en) Remove the gas-entrained method in association circulating power generation system
US4896496A (en) Single pressure steam bottoming cycle for gas turbines combined cycle
JPH09203304A (en) Compound power generating system using waste as fuel
JP2003278598A (en) Exhaust heat recovery method and device for vehicle using rankine cycle
US7523613B2 (en) Process and device for utilizing waste heat
KR101917430B1 (en) Power generating apparatus
JP4588425B2 (en) Absorption heat pump
JPH09296706A (en) High-efficient power generation system
JPH08105304A (en) Double current cycle plant
JP2016531263A (en) Heat recovery and improvement method and compressor for use in the method