JPH09296054A - Molded object of additive-containing thermoplastic resin and its production - Google Patents

Molded object of additive-containing thermoplastic resin and its production

Info

Publication number
JPH09296054A
JPH09296054A JP8131201A JP13120196A JPH09296054A JP H09296054 A JPH09296054 A JP H09296054A JP 8131201 A JP8131201 A JP 8131201A JP 13120196 A JP13120196 A JP 13120196A JP H09296054 A JPH09296054 A JP H09296054A
Authority
JP
Japan
Prior art keywords
additive
group
thermoplastic resin
ester
side chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8131201A
Other languages
Japanese (ja)
Other versions
JP3590194B2 (en
Inventor
Yoichiro Makimura
洋一郎 牧村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP13120196A priority Critical patent/JP3590194B2/en
Publication of JPH09296054A publication Critical patent/JPH09296054A/en
Application granted granted Critical
Publication of JP3590194B2 publication Critical patent/JP3590194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molded object of an additive-containing thermoplastic resin which is advantageous in that it is free from the volatilization of the additive contained therein over the course of time, and also the transparency thereof is almost never lowered; and a method for producing the molded object. SOLUTION: This molded object comprises a thermoplastic resin having ester groups or carboxy groups in side chains thereof and, incorporated therein, an additive having a functional group selected from the group consisting of an amino group, a hydroxyl group, a carboxy group and an ester group, wherein the additive is bonded with a side chain of the polymer molecule of the thermoplastic resin through an ester bonding formed by transesterification reaction between them. This molded object of an additive- containing thermoplastic resin is produced by a method comprising compounding the additive with the thermoplastic resin, to thereby effect the transesterification reaction of the additive with a side chain of the polymer molecule, prior to subjecting the thermoplastic resin to heating, melting and molding into a predetermined shape. When an additive having two functional groups is transesterificated with the side chain, there is obtained a molded object comprising a polymer molecule being three- dimensionally cross-linked through the additive, which is improved in physical properties such as heat resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種の添加剤を揮
散、消失しないように含有させた熱可塑性樹脂成形体
と、その製造方法に関する。
TECHNICAL FIELD The present invention relates to a thermoplastic resin molded product containing various additives so as not to volatilize and disappear, and a method for producing the same.

【0002】[0002]

【従来の技術】熱可塑性樹脂で成形される外装用建材な
どの成形体は、耐候性や耐汚染性等を向上させるために
紫外線吸収剤や防汚剤等の添加剤を含有させることが多
い。そのなかでも、アクリル系樹脂製の外装用建材は、
透明性及び耐候性が比較的良好で、各種の採光性を必要
とする用途、例えば屋根材、外壁材、天窓、防音板等に
使用されている。
2. Description of the Related Art Molded articles such as exterior building materials molded from thermoplastic resins often contain additives such as ultraviolet absorbers and antifouling agents in order to improve weather resistance and stain resistance. . Among them, the exterior building materials made of acrylic resin are
It has relatively good transparency and weather resistance, and is used for applications requiring various lighting properties such as roofing materials, outer wall materials, skylights, and soundproofing boards.

【0003】[0003]

【発明が解決しようとする課題】しかし、これまでの添
加剤含有熱可塑性樹脂成形体は、添加剤を物理的に混合
して分散させたものであるため、添加剤が経時的に揮
散、消失し、耐候性や耐汚染性等を長期間維持すること
ができないという問題があった。
However, since the conventional additive-containing thermoplastic resin moldings are those in which the additives are physically mixed and dispersed, the additives volatilize and disappear over time. However, there is a problem that weather resistance and stain resistance cannot be maintained for a long time.

【0004】また、添加剤を物理的に混合、分散させる
と、熱可塑性樹脂本来の優れた耐熱性や機械的強度が低
下する恐れがあり、アクリル系樹脂においては透明性も
大巾に損なわれる恐れがあった。
Further, when the additives are physically mixed and dispersed, the excellent heat resistance and mechanical strength inherent in the thermoplastic resin may be deteriorated, and the transparency of the acrylic resin is greatly impaired. I was afraid.

【0005】本発明は上記事情に鑑みてなされたもの
で、添加剤の経時的な揮散がなく、透明性の低下も殆ど
生じない添加剤含有熱可塑性樹脂成形体と、その製造方
法を提供することを主たる目的とする。そして、望まし
い実施形態では、更に成形体の耐熱性、耐汚染性、耐候
性等の向上と、添加剤の反応率の向上を図ろうとするも
のである。
The present invention has been made in view of the above circumstances, and provides an additive-containing thermoplastic resin molded product in which the additive does not evaporate with time and transparency is hardly deteriorated, and a method for producing the same. The main purpose is that. And, in a desirable embodiment, it is intended to further improve the heat resistance, the stain resistance, the weather resistance and the like of the molded body and the reaction rate of the additive.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明の請求項1に係る添加剤含有熱可塑性樹脂成
形体は、ポリマー分子の側鎖にエステル基又はカルボキ
シル基を有する熱可塑性樹脂の成形体中に、アミノ基、
水酸基、カルボキシル基、エステル基のいずれかの官能
基を有する添加剤が含有され、該添加剤が熱可塑性樹脂
のポリマー分子の側鎖とエステル交換反応してエステル
結合していることを特徴とし、請求項2の成形体は、熱
可塑性樹脂がアクリル系樹脂であることを特徴とし、請
求項3の成形体は、添加剤が二官能であり、熱可塑性樹
脂のポリマ−分子が、その側鎖にエステル結合した二官
能の添加剤によって、三次元架橋されていることを特徴
とし、請求項4の成形体は、添加剤が、アミノ基、水酸
基、カルボキシル基、エステル基のいずれかの官能基を
有するポリジメチルシロキサンであって、熱可塑性樹脂
100重量部に対し0.1〜5重量部の割合で含有され
ていることを特徴とし、請求項5の成形体は、添加剤
が、アミノ基、2つ以上の水酸基、カルボキシル基、エ
ステル基のいずれかの官能基を有する2−ヒドロキシベ
ンゾフェノン誘導体もしくは2−ヒドロキシフェニルベ
ンゾトリアゾール誘導体であって、熱可塑性樹脂100
重量部に対し0.01〜5重量部の割合で含有されてい
ることを特徴とする。
To achieve the above object, the additive-containing thermoplastic resin molding according to claim 1 of the present invention comprises a thermoplastic resin having an ester group or a carboxyl group in the side chain of a polymer molecule. In the molded body of, amino group,
Hydroxyl group, carboxyl group, containing an additive having any functional group of the ester group, characterized in that the additive is transesterified with the side chain of the polymer molecule of the thermoplastic resin to form an ester bond, The molded body according to claim 2 is characterized in that the thermoplastic resin is an acrylic resin, and the molded body according to claim 3 is such that the additive is bifunctional and the polymer molecule of the thermoplastic resin has side chains thereof. A three-dimensionally cross-linked by a bifunctional additive ester-bonded to, the molded article according to claim 4, wherein the additive is a functional group of any one of an amino group, a hydroxyl group, a carboxyl group and an ester group. A polydimethylsiloxane having a content of 0.1 to 5 parts by weight based on 100 parts by weight of the thermoplastic resin. Two Hydroxyl group of the above carboxyl group, a 2-hydroxybenzophenone derivative or 2-hydroxyphenyl-benzotriazole derivatives having any one functional group of the ester group, the thermoplastic resin 100
It is characterized in that the content is 0.01 to 5 parts by weight with respect to parts by weight.

【0007】そして、本発明の請求項6に係る製造方法
は、ポリマー分子の側鎖にエステル基又はカルボキシル
基を有する熱可塑性樹脂を加熱溶融して所定の形状に成
形する前に、アミノ基、水酸基、カルボキシル基、エス
テル基のいずれかの官能基を有する添加剤を熱可塑性樹
脂に配合し、加熱溶融状態の熱可塑性樹脂のポリマー分
子の側鎖と添加剤をエステル交換反応させることを特徴
とし、請求項7の製造方法は、添加剤が二官能であるこ
とを特徴とするものである。
Further, in the production method according to claim 6 of the present invention, before the thermoplastic resin having the ester group or the carboxyl group in the side chain of the polymer molecule is melted by heating and molded into a predetermined shape, an amino group, Hydroxyl group, carboxyl group, an additive having any functional group of an ester group is blended with a thermoplastic resin, characterized in that the side chain of the polymer molecule of the thermoplastic resin in a heat-melted state and the additive transesterification reaction The manufacturing method according to claim 7 is characterized in that the additive is bifunctional.

【0008】本発明の成形体を構成する熱可塑性樹脂
は、そのポリマー分子の側鎖にエステル基又はカルボキ
シル基を有するため、本発明の製造方法のように熱可塑
性樹脂を加熱溶融して所定の形状に成形する前に、アミ
ノ基、水酸基、カルボキシル基、エステル基のいずれか
の官能基を有する添加剤を、加熱溶融状態の熱可塑性樹
脂に配合すると、添加剤とポリマー分子の側鎖がエステ
ル交換反応を起こし、添加剤がポリマー分子の側鎖にエ
ステル結合して固定化される。このように添加剤が固定
化された熱可塑性樹脂で成形した本発明の成形体は、添
加剤が経時的に揮散、消失することがないので、長期間
に亘って添加剤の効能を維持することができる。
Since the thermoplastic resin constituting the molded article of the present invention has an ester group or a carboxyl group in the side chain of its polymer molecule, the thermoplastic resin is heated and melted in the same manner as in the production method of the present invention to give a predetermined amount. Before molding into a shape, if an additive having a functional group of amino group, hydroxyl group, carboxyl group, or ester group is blended with a thermoplastic resin in a heat-melted state, the side chain of the additive and the polymer molecule becomes an ester. An exchange reaction occurs, and the additive is immobilized by ester bond to the side chain of the polymer molecule. The molded article of the present invention molded with the thermoplastic resin in which the additive is immobilized in this way maintains the effect of the additive for a long period of time because the additive does not volatilize and disappear over time. be able to.

【0009】また、添加剤をポリマー分子の側鎖にエス
テル結合させると、添加剤が分子レベルで細かく分散し
た状態となるため、添加剤の分散粒子と熱可塑性樹脂の
光屈折率が異なっていても、透過光の屈折、散乱が減少
する。従って、添加剤による成形体の透明性の低下は極
く僅かであり、従来の成形体のように物理的に分散させ
た添加剤が二次凝集して熱可塑性樹脂本来の透明性を大
幅に損なう欠点を解消することができる。この効果は、
アクリル系樹脂に添加剤をエステル結合させた場合に顕
著に発揮される。
Further, when the additive is ester-bonded to the side chain of the polymer molecule, the additive becomes finely dispersed at the molecular level, so that the dispersed particles of the additive and the thermoplastic resin have different optical refractive indexes. Also, refraction and scattering of transmitted light are reduced. Therefore, the decrease in the transparency of the molded product due to the additive is extremely slight, and the additive physically dispersed as in the conventional molded product is secondarily aggregated to significantly increase the original transparency of the thermoplastic resin. It is possible to eliminate the demerit. This effect is
It is remarkably exhibited when an additive is ester-bonded to the acrylic resin.

【0010】更に、請求項3の成形体のように、熱可塑
性樹脂のポリマー分子が、その側鎖にエステル結合した
二官能の添加剤によって三次元架橋されていると、この
架橋によって成形体の物性、殊に耐熱性が顕著に向上
し、後述の実験データに示すように、熱可塑性単独の成
形体に比べて、ガラス転移点(Tg)が20℃程度上昇
する。
Further, when the polymer molecule of the thermoplastic resin is three-dimensionally cross-linked by a bifunctional additive having an ester bond to its side chain as in the molded article of claim 3, the cross-linking of the molded article is caused by this cross-linking. The physical properties, in particular the heat resistance, are remarkably improved, and as shown in the experimental data described later, the glass transition point (Tg) is increased by about 20 ° C. as compared with a molded product made of thermoplastic alone.

【0011】そして、請求項4の成形体のように、添加
剤として、アミノ基、水酸基、カルボキシル基、エステ
ル基のいずれかの官能基を有するポリジメチルシロキサ
ンが熱可塑性樹脂100重量部に対し0.1〜5重量部
の割合で含有されてエステル結合しているものは、上記
のポリジメチルシロキサンが溌水性を有するシリコン系
化合物であるため、長期に亘って良好な耐汚染性を保持
することができ、また、請求項5の成形体のように、添
加剤として同様の官能基を有する2−ヒドロキシベンゾ
フェノン誘導体もしくは2−ヒドロキシフェニルベンゾ
トリアゾール誘導体の化合物が0.01〜5重量部の割
合で含有されてエステル結合しているものは、これらの
化合物が紫外線吸収能を有するため、長期に亘って良好
な耐候性を保持することができる。
Further, as in the molded article according to claim 4, as an additive, polydimethylsiloxane having a functional group of any of amino group, hydroxyl group, carboxyl group and ester group is added to 100 parts by weight of the thermoplastic resin. Since the above polydimethylsiloxane is a silicon compound having water repellency, it is necessary to maintain good stain resistance for a long period of time because the polydimethylsiloxane is contained in a proportion of 1 to 5 parts by weight and has an ester bond. Further, as in the molded article of claim 5, the compound of the 2-hydroxybenzophenone derivative or the 2-hydroxyphenylbenzotriazole derivative having the same functional group as an additive is added in an amount of 0.01 to 5 parts by weight. Those contained and ester-bonded have good weather resistance over a long period of time because these compounds have ultraviolet absorption ability. It is possible.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の具
体的な実施形態を詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

【0013】図1は本発明の製造方法の一実施形態を示
す概略説明図で、添加剤を含有したアクリル系樹脂の板
状成形体(添加剤含有アクリル系樹脂板)を連続押出成
形する場合を例示したものである。
FIG. 1 is a schematic explanatory view showing one embodiment of the production method of the present invention, in the case of continuously extruding a plate-shaped molded product of an acrylic resin containing an additive (acrylic resin plate containing an additive). Is an example.

【0014】図1において、1は溶融押出成形機、1a
は成形機の後部に設けた樹脂投入用ホッパー、1bは成
形機の中間部に設けた添加剤投入用ホッパー、1cは成
形機に内装したスクリュー、1dは成形機の先端に設け
た成形用の金型、1eは成形の中間部に設けた二酸化炭
素吹込み口、2は上下一対の冷却ロール、3は搬送ベル
ト、4は切断機である。
In FIG. 1, 1 is a melt extrusion molding machine, 1a
Is a resin injection hopper provided at the rear of the molding machine, 1b is an additive injection hopper provided in the middle of the molding machine, 1c is a screw inside the molding machine, 1d is a molding machine provided at the tip of the molding machine. A die 1e is a carbon dioxide blowing port provided in an intermediate portion of molding, 2 is a pair of upper and lower cooling rolls, 3 is a conveyor belt, and 4 is a cutting machine.

【0015】この実施形態では、予備加熱で乾燥させた
原料のアクリル系樹脂5を成形機後部のホッパー1aか
ら成形機1の内部へ投入し、アクリル系樹脂5を溶融温
度以上(但し分解温度以下)に加熱して溶融させながら
スクリュー1cで混練する。そして、アミノ基、水酸
基、カルボキシル基、エステル基のいずれかの官能基を
有する添加剤6を成形機中間部のホッパー1bから投入
し、二酸化炭素吹込み口1eより二酸化炭素を吹込みな
がら、加熱溶融状態のアクリル系樹脂5と添加剤6をス
クリュー1cで均一に混練してエステル交換反応させた
後、先端の金型1dから板状に押出成形して、この板状
成形体50を上下一対の冷却ロール2,2で冷却しなが
ら引取り、搬送用ベルト3で切断機4へ搬送して所定の
長さに切断する。
In this embodiment, the raw material acrylic resin 5 dried by preheating is charged into the molding machine 1 from the hopper 1a at the rear of the molding machine, and the acrylic resin 5 is melted at a temperature above the melting temperature (but below the decomposition temperature). ) And kneading with the screw 1c while melting. Then, the additive 6 having any functional group of amino group, hydroxyl group, carboxyl group and ester group is charged from the hopper 1b in the middle part of the molding machine and heated while blowing carbon dioxide from the carbon dioxide blowing port 1e. The acrylic resin 5 and the additive 6 in a molten state are uniformly kneaded by a screw 1c to cause a transesterification reaction, and then extruded into a plate shape from a die 1d at the tip, and the plate-shaped molded body 50 is vertically paired. It is taken up while being cooled by the cooling rolls 2 and 2, and is conveyed to the cutting machine 4 by the conveyor belt 3 and cut into a predetermined length.

【0016】原料のアクリル系樹脂5は、そのポリマー
分子が下記の[化1]の構造式で示されるものであっ
て、具体的には、側鎖にカルボキシル基を有するポリア
クリル酸もしくはポリメタクリル酸や、側鎖にメチルエ
ステル基、エチルエステル基、プロピルエステル基のい
ずれかを有するポリアクリル酸アルキルエステルもしく
はポリメタクリル酸アルキルエステルが使用される。
The raw material acrylic resin 5 has a polymer molecule represented by the following structural formula [Chemical Formula 1], and specifically, polyacrylic acid or polymethacrylic acid having a carboxyl group in its side chain. An acid or a polyacrylic acid alkyl ester or a polymethacrylic acid alkyl ester having a methyl ester group, an ethyl ester group or a propyl ester group in the side chain is used.

【化1】 Embedded image

【0017】このようなアクリル系樹脂5は、側鎖のカ
ルボキシル基やエステル基が官能性を有するため、上記
のように成形機1の内部で溶融温度以上、分解温度以下
の温度に加熱して溶融状態とし、アミノ基、水酸基、カ
ルボキシル基、エステル基のいずれかの官能基を有する
添加剤6と混練すると、ポリマ−分子の側鎖と添加剤が
エステル交換反応し、添加剤がポリマ−分子の側鎖にエ
ステル結合して固定化される。その場合、塩化鉄、酢酸
コバルト、トリメチルアミンなどのエステル交換用触媒
を、アクリル系樹脂100重量部に対し0.001〜
0.5重量部程度の割合で配合すると、エステル交換反
応が促進される。
Since the side chain carboxyl group and ester group of the acrylic resin 5 are functional, the acrylic resin 5 is heated in the molding machine 1 to a temperature above the melting temperature and below the decomposition temperature as described above. When in a molten state and kneaded with the additive 6 having any functional group of amino group, hydroxyl group, carboxyl group and ester group, the side chain of the polymer molecule and the additive undergo transesterification reaction, and the additive is polymer molecule. It is immobilized by ester bond to the side chain of. In that case, a transesterification catalyst such as iron chloride, cobalt acetate, or trimethylamine is added to 0.001 to 100 parts by weight of the acrylic resin.
When it is mixed in a proportion of about 0.5 part by weight, the transesterification reaction is promoted.

【0018】特に、本実施形態のように二酸化炭素を成
形機1の内部へ吹込んでエステル交換反応を二酸化炭素
雰囲気下で行う場合は、二酸化炭素の可塑化効果と溶媒
効果によってエステル交換反応が著しく促進され、その
反応率が大幅に向上する。前者の可塑化効果は、二酸化
炭素が熱可塑性樹脂の可塑剤的な作用をして樹脂の溶融
粘度を減少させるため、ポリマー分子の側鎖のエステル
基又はカルボキシル基と添加剤の官能基の接触する機会
が多くなってエステル交換反応が促進されると考えられ
るものであり、後者の溶媒効果は、ポリマー分子側鎖の
エステル基又はカルボキシル基の−COO−と二酸化炭
素が同一の元素構成であるため、炭酸ガスがエステル基
又はカルボキシル基の周囲に集まって溶媒的な作用を
し、エステル基又はカルボキシル基が反応しやすい状態
になってエステル交換反応が促進されると考えられるも
のである。
In particular, when carbon dioxide is blown into the molding machine 1 to carry out the transesterification reaction in a carbon dioxide atmosphere as in the present embodiment, the transesterification reaction is remarkable due to the plasticizing effect of carbon dioxide and the solvent effect. It is promoted and its reaction rate is greatly improved. The former plasticizing effect is that carbon dioxide acts as a plasticizer of the thermoplastic resin and reduces the melt viscosity of the resin, so that the ester group or carboxyl group of the side chain of the polymer molecule contacts the functional group of the additive. It is considered that the transesterification reaction is promoted by increasing the number of opportunities to do so, and the latter solvent effect is that carbon dioxide and -COO- of the ester group or carboxyl group of the polymer molecule side chain have the same elemental constitution. Therefore, it is considered that the carbon dioxide gas gathers around the ester group or the carboxyl group and acts as a solvent to facilitate the reaction of the ester group or the carboxyl group to promote the transesterification reaction.

【0019】上記の実施形態では、原料樹脂としてアク
リル系樹脂を用いているが、側鎖にエステル基又はカル
ボキシル基を有する熱可塑性樹脂であれば、アクリル系
以外の樹脂を用いてもよく、例えばマレイン化したポリ
エチレンやマレイン化したポリスチレンを用いても同様
に添加剤がエステル結合して固定化される。
In the above embodiment, an acrylic resin is used as the raw material resin, but a thermoplastic resin other than acrylic resin may be used as long as it is a thermoplastic resin having an ester group or a carboxyl group in the side chain. Even when maleated polyethylene or maleated polystyrene is used, the additive is similarly ester-bonded and immobilized.

【0020】前記のように添加剤が固定化されたアクリ
ル系樹脂を押出成形して得られる成形体50は、添加剤
が経時的に揮散、消失することがないので、長期間に亘
って添加剤の効能を維持することができる。しかも、添
加剤はエステル結合により分子レベルで細かく分散して
おり、物理的に分散させた場合のように添加剤の粒子が
二次凝集することもないので、添加剤の分散粒子とアク
リル系樹脂の光屈折率が異なっていても、透過光の屈
折、散乱により成形体50の透明性が低下することは殆
どなく、成形体50はアクリル系樹脂単独の成形体とあ
まり変わらない良好な透明性を保持できる。
The molded product 50 obtained by extrusion-molding the acrylic resin having the additives fixed therein as described above is added over a long period of time because the additives do not volatilize and disappear over time. The efficacy of the agent can be maintained. Moreover, the additive is finely dispersed at the molecular level by an ester bond, and the particles of the additive do not secondarily aggregate as in the case of being physically dispersed. Therefore, the dispersed particles of the additive and the acrylic resin Even if the light refraction index is different, the transparency of the molded body 50 hardly decreases due to refraction and scattering of transmitted light, and the molded body 50 has good transparency which is not so different from that of the acrylic resin alone. Can hold.

【0021】添加剤6は、分子末端又は分子中にアミノ
基、水酸基、カルボキシル基、エステル基のいずれかの
官能基を有し、アクリル系樹脂のポリマー分子の側鎖と
エステル交換反応し得るものであれば全て使用可能であ
り、目的とするアクリル系樹脂成形体に要求される効能
を付与できるものを種々選択して使用すればよい。そし
て、添加剤6の含有量についても、その効能が充分発揮
されるように適宜決定すればよい。
The additive 6 has a functional group of an amino group, a hydroxyl group, a carboxyl group, or an ester group at the molecular end or in the molecule and is capable of transesterification with the side chain of the polymer molecule of the acrylic resin. All of them can be used, and it is possible to select and use various ones which can impart the desired effect to the desired acrylic resin molded body. Then, the content of the additive 6 may be appropriately determined so that the effect is sufficiently exhibited.

【0022】例えば、アクリル系樹脂成形体に耐汚染性
が要求される場合は、添加剤6として、下記の[化2]
の構造式で示される分子両末端にアミノ基を有するポリ
ジメチルシロキサン、下記の[化3]の構造式で示され
る分子中にアミノ基を有するポリジメチルシロキサン、
下記の[化4]の構造式で示される分子片末端にカルボ
キシル基を有するポリジメチルシロキサン、下記の[化
5]の構造式で示される分子両末端に水酸基を有するポ
リジメチルシロキサン、下記の[化6]の構造式で示さ
れる分子両端にエステル基を有するポリジメチルシロキ
サンなどのシリコン系化合物が防汚剤として好適に使用
でき、また、分子両端に水酸基を有しているフッ素化ビ
スフェノールA[2,2−ビス−(4−ヒドロキシフェ
ニル)−ヘキサフルオロプロパン]などのフッ素系化合
物も防汚剤として好適に使用できる。
For example, when the acrylic resin molded body is required to have stain resistance, the additive 6 is represented by the following [Chemical formula 2].
A polydimethylsiloxane having an amino group at both ends of the molecule represented by the structural formula, a polydimethylsiloxane having an amino group in the molecule represented by the structural formula of [Chemical Formula 3] below,
Polydimethylsiloxane having a carboxyl group at one end of the molecule represented by the structural formula of [Chemical Formula 4], polydimethylsiloxane having a hydroxyl group at both ends of the molecule represented by the structural formula of [Chemical Formula 5] below, A silicon compound such as polydimethylsiloxane having an ester group at both ends of the molecule represented by the structural formula [6] can be preferably used as an antifouling agent, and fluorinated bisphenol A [having a hydroxyl group at both ends of the molecule] Fluorine compounds such as 2,2-bis- (4-hydroxyphenyl) -hexafluoropropane] can also be suitably used as the antifouling agent.

【化2】 Embedded image

【化3】 Embedded image

【化4】 Embedded image

【化5】 Embedded image

【化6】 [Chemical 6]

【0023】これらのシリコン系又はフッ素系の防汚剤
は、アクリル系樹脂100重量部に対し0.1〜5重量
部の割合で配合してポリマー分子の側鎖にエステル結合
させると、アクリル樹脂成形体に良好な溌水性を付与し
て優れた耐汚染性を長期間保持させることができる。
尚、場合によっては、官能基をもたない下記の[化7]
の構造式で示されるポリジメチルシロキサンや、フルオ
ロカーボン等を上記の防汚剤と併用してもよい。
These silicon-based or fluorine-based antifouling agents are blended at a ratio of 0.1 to 5 parts by weight with respect to 100 parts by weight of the acrylic resin to form an ester bond to the side chain of the polymer molecule. It is possible to impart a good water repellent property to the molded article and maintain excellent stain resistance for a long period of time.
In some cases, the following [Chemical Formula 7] having no functional group
The polydimethylsiloxane represented by the structural formula (1), fluorocarbon, or the like may be used in combination with the antifouling agent.

【化7】 Embedded image

【0024】また、アクリル系樹脂成形体に耐候性が要
求される場合は、添加剤6として、分子末端にカルボキ
シル基を有する2−(2′−ヒドロキシ−5′−カルボ
キシフェニル)ベンゾトリアゾール、2−ヒドロキシベ
ンゾフェノン−4−オキシ酢酸、或は、分子末端に2つ
以上の水酸基を有する2−ヒドロキシ−4−(2′−ヒ
ドロキシエトキシ)ベンゾフェノン、2,2′,4,
4′,6,6′−ヘキサヒドロキシベンゾフェノン、2
−(2′,4′−ジヒドロキシフェニル)ベンゾトリア
ゾール、2−ヒドロキシ−4−(2′−ヒドロキシエト
キシ)ベンゾトリアゾール、2−ヒドロキシ−5−
(2′−ヒドロキシエチル)ベンゾトリアゾール、或
は、分子末端にアミノ基を有する2−(2′−ヒドロキ
シ−3′−アミノ−5′−t−ブチル)ベンゾトリアゾ
ール、或は、分子中にエステル基を有する2−ヒドロキ
シ−4−(2′−メタクリロイルオキシエトキシ)ベン
ゾフェノン、2,4−ジ−t−ブチルフェニル−
(3′,5′−ジ−t−ブチル−4′−ヒドロキシ)ベ
ンゾフェノン、2−ヒドロキシベンゾフェノン−4−オ
キシ酢酸メチル、2−(2′−アクリロイルオキシ−
5′−メチル)ベンゾトリアゾールなどの、2−ヒドロ
キシベンゾトリアゾール誘導体又は2−ヒドロキシフェ
ニルベンゾフェノン誘導体の紫外線吸収剤が好適に使用
される。
When the acrylic resin molded body is required to have weather resistance, 2- (2'-hydroxy-5'-carboxyphenyl) benzotriazole having a carboxyl group at the molecular end is used as the additive 6. -Hydroxybenzophenone-4-oxyacetic acid, or 2-hydroxy-4- (2'-hydroxyethoxy) benzophenone having two or more hydroxyl groups at the molecular end, 2,2 ', 4
4 ', 6,6'-hexahydroxybenzophenone, 2
-(2 ', 4'-dihydroxyphenyl) benzotriazole, 2-hydroxy-4- (2'-hydroxyethoxy) benzotriazole, 2-hydroxy-5
(2'-hydroxyethyl) benzotriazole, or 2- (2'-hydroxy-3'-amino-5'-t-butyl) benzotriazole having an amino group at the molecular terminal, or an ester in the molecule 2-hydroxy-4- (2'-methacryloyloxyethoxy) benzophenone having a group, 2,4-di-t-butylphenyl-
(3 ', 5'-di-t-butyl-4'-hydroxy) benzophenone, methyl 2-hydroxybenzophenone-4-oxyacetate, 2- (2'-acryloyloxy-
An ultraviolet absorber of a 2-hydroxybenzotriazole derivative or a 2-hydroxyphenylbenzophenone derivative such as 5'-methyl) benzotriazole is preferably used.

【0025】これらの紫外線吸収剤は、アクリル系樹脂
100重量部に対し0.01〜5重量部の割合で配合し
てポリマー分子の側鎖にエステル結合させると、紫外線
による成形体の劣化を抑制して優れた耐候性を長期間保
持させることができる。
When these UV absorbers are blended in an amount of 0.01 to 5 parts by weight with respect to 100 parts by weight of the acrylic resin to form an ester bond to the side chain of the polymer molecule, deterioration of the molded product due to ultraviolet rays is suppressed. Therefore, excellent weather resistance can be maintained for a long period of time.

【0026】その他、アクリル系樹脂成形体に要求され
る効能に応じて、テトラブロモビスフェノール等の難燃
剤、チオジフェノール等の耐放射線剤、N,N−ジフェ
ニル−p−フェニレンジアミン等の抗酸化剤、トリブチ
ル錫ラウレート等の抗菌剤、テトラフェニルジプロピレ
ングリコールジホスファイト等の帯電防止剤、ジオクチ
ルフタレートやドデカノール等の可塑剤など、各種添加
剤が使用可能である。
In addition, flame retardants such as tetrabromobisphenol, radiation-resistant agents such as thiodiphenol, and antioxidants such as N, N-diphenyl-p-phenylenediamine depending on the effect required for the acrylic resin molded article. Various additives such as agents, antibacterial agents such as tributyltin laurate, antistatic agents such as tetraphenyldipropylene glycol diphosphite, plasticizers such as dioctyl phthalate and dodecanol can be used.

【0027】以上の添加剤のうち、分子両端に官能基を
有する二官能の添加剤を用いると、アクリル系樹脂のポ
リマー分子が、その側鎖にエステル結合した二官能の添
加剤によって三次元架橋された構造となるため、アクリ
ル系樹脂成形体50の物性、殊に耐熱性が顕著に向上す
る。例えば、アクリル系樹脂5としてポリメタクリル酸
メチル(PMMA:ポリメチルメタクリレート)を使用
し、添加剤6として分子両端にアミノ基を有する前記
[化2]のポリジメチルシロキサン(PDMS)を使用
して、成形機の内部で両者をエステル交換反応させる
と、下記の[化8]に示すように、隣接するPMMAの
ポリマー分子の側鎖にPDMSの分子両端がそれぞれエ
ステル結合して架橋するため、このようにエステル結合
した多くのPDMSによって各ポリマー分子が三次元架
橋された構造となり、後述の実施例のデータに示すよう
に、得られる成形体のガラス転移点がPMMA単独の非
架橋の成形体よりも20℃程度上昇して、耐熱性が大幅
に向上する。但し、配合された二官能のPDMSはその
全てが三次元架橋に寄与するわけではなく、一部のPD
MSは分子一端のみがポリマー分子の側鎖にエステル結
合して非架橋の状態となり、また未反応のPDMSはフ
リーの状態で成形体中に含まれることになる。
When a bifunctional additive having functional groups at both ends of the molecule is used among the above additives, the polymer molecule of the acrylic resin is three-dimensionally crosslinked by the bifunctional additive having an ester bond to its side chain. Due to this structure, the physical properties of the acrylic resin molded body 50, particularly the heat resistance, are significantly improved. For example, polymethylmethacrylate (PMMA: polymethylmethacrylate) is used as the acrylic resin 5, and polydimethylsiloxane (PDMS) of [Chemical Formula 2] having amino groups at both ends of the molecule is used as the additive 6, When both are transesterified inside the molding machine, as shown in the following [Chemical formula 8], both ends of PDMS molecules are crosslinked by ester bonds to the side chains of the adjacent PMMA polymer molecules. Each polymer molecule has a three-dimensionally crosslinked structure by many PDMS ester-bonded to, and the glass transition point of the obtained molded product is higher than that of the non-crosslinked molded product of PMMA alone, as shown in the data of the Examples below. The temperature rises by about 20 ° C and the heat resistance is greatly improved. However, not all of the compounded bifunctional PDMS contributes to three-dimensional crosslinking, and some PDMS
In MS, only one end of the molecule is ester-bonded to the side chain of the polymer molecule to be in a non-crosslinked state, and unreacted PDMS is contained in the molded body in a free state.

【化8】 Embedded image

【0028】エステル交換の反応速度は、アクリル系樹
脂の種類や添加剤の種類によって多少異なるが、通常1
〜15分程度で反応がほぼ終了する。従って、この実施
形態のように成形機1の内部でエステル交換反応を行わ
せて押出成形する場合は、添加剤6を成形機1に投入し
てアクリル系樹脂5と1〜15分程度混練したのち金型
1dから押出されるように、添加剤投入用ホッパー1b
の位置やスクリュー設計、その他の押出条件を設定し
て、エステル交換反応を充分に行わせることが重要であ
る。成形機1としては、2本のスクリュー1cによって
均一な混練を行える二軸押出成形機が好適に使用され
る。
The reaction rate of transesterification varies somewhat depending on the type of acrylic resin and the type of additive, but is usually 1
The reaction is almost completed in about 15 minutes. Therefore, when the transesterification reaction is performed inside the molding machine 1 as in this embodiment for extrusion molding, the additive 6 is charged into the molding machine 1 and kneaded with the acrylic resin 5 for about 1 to 15 minutes. Additive-filling hopper 1b so as to be extruded from the mold 1d later
It is important to set the position, screw design, and other extrusion conditions so that the transesterification reaction is carried out sufficiently. As the molding machine 1, a twin-screw extruder capable of performing uniform kneading with two screws 1c is suitably used.

【0029】この実施形態では、アクリル系樹脂5と添
加剤6をホッパー1a,1bから個別に成形機1に投入
しているが、例えばホッパー1aから両者を一緒に投入
してもよいし、ホッパー1bから両者を混合したものを
適量ずつ投入してもよく、このように投入方法は適宜選
択することができる。また、この実施形態では、添加剤
をエステル結合させた溶融アクリル系樹脂を金型1dか
ら単層で押出して板状の成形体50を製造しているが、
金型1d等を変更してシート、フィルム、異形品など、
種々の形状の成形体を製造できることは勿論であり、更
に、共押出成形機等を用いて、添加剤をエステル結合さ
せた溶融アクリル系樹脂を上層とし、該上層より添加剤
が少ないか又は全く含まない溶融アクリル系樹脂或は他
の樹脂を上下二層もしくは三層に共押出成形して、添加
剤を含むアクリル系樹脂層を表面に積層した二層ないし
三層構造の板状成形体を製造することも勿論可能であ
る。また、射出成形の場合でも、溶融アクリル系樹脂を
射出成形機の金型内部へ射出する前に添加剤を混合して
エステル交換反応させれば、同様に添加剤の揮散がない
透明性の良好な成形品を得ることができる。
In this embodiment, the acrylic resin 5 and the additive 6 are individually charged into the molding machine 1 from the hoppers 1a and 1b. However, for example, both may be charged together from the hopper 1a or the hopper 1a. A mixture of both from 1b may be added in an appropriate amount, and thus the addition method can be appropriately selected. In addition, in this embodiment, the molten acrylic resin to which the additive is ester-bonded is extruded in a single layer from the mold 1d to manufacture the plate-shaped molded body 50.
By changing the mold 1d etc., sheets, films, odd-shaped products, etc.
Needless to say, molded articles of various shapes can be produced, and further, using a coextrusion molding machine or the like, a molten acrylic resin in which an additive is ester-bonded is used as an upper layer, and the additive is less than or completely absent from the upper layer. A two- or three-layered plate-shaped molded product in which an acrylic resin layer containing an additive is laminated on the surface by co-extruding a molten acrylic resin or another resin not containing it into upper and lower two or three layers. Of course, it is possible to manufacture. Even in the case of injection molding, if the additive is mixed and the transesterification reaction is performed before the molten acrylic resin is injected into the mold of the injection molding machine, the transparency of the additive does not evaporate as well. It is possible to obtain various molded products.

【0030】[0030]

【実施例】次に、本発明の更に具体的な実施例と比較例
を説明する。
Next, more specific examples and comparative examples of the present invention will be described.

【0031】[実施例1]熱可塑性樹脂としてアクリル
系樹脂であるポリメチルメタクリレート(PMMA)を
100重量部、添加剤として分子両端にアミノ基を有す
るポリジメチルシロキサン(H2N−PDMS−NH2
を2.00重量部、触媒として塩化鉄を0.001重量
部の割合で混合し、この混合物を二軸押出成形機に投入
して232℃で5分間溶融混練を行い、エステル交換反
応させた後、成形機の金型から板状に押出成形して成形
体を得た。そして、この成形体を切削して溶剤(ジクロ
ロメタン)に溶解した後、ジメチルエーテルで沈殿させ
て未反応のH2N−PDMS−NH2を除去し、この沈殿
物を再度ジクロロメタンに溶解して、これをキャスティ
ングすることにより、厚さ70μmの試験用フィルムを
作製した。
[Example 1] 100 parts by weight of polymethylmethacrylate (PMMA) which is an acrylic resin as a thermoplastic resin, and polydimethylsiloxane (H 2 N-PDMS-NH 2) having amino groups at both ends of a molecule as an additive. )
Was mixed in an amount of 2.00 parts by weight and iron chloride as a catalyst in a ratio of 0.001 parts by weight, and the mixture was put into a twin-screw extruder and melt-kneaded at 232 ° C. for 5 minutes to carry out a transesterification reaction. Then, it was extrusion-molded into a plate shape from a mold of a molding machine to obtain a molded body. Then, after dissolved in a solvent (dichloromethane) to cut the molded body, was precipitated with diethyl ether to H 2 N-PDMS-NH 2 to remove unreacted, dissolved in dichloromethane precipitate again, this Was cast to prepare a test film having a thickness of 70 μm.

【0032】この試験用フィルムについて、H2N−P
DMS−NH2のエステル交換反応の反応率を以下の方
法で求めたところ、後記の[表1]に示すように、エス
テル交換反応したH2N−PDMS−NH2の量は0.4
2重量部であり、反応率は21.0%であった。
About this test film, H 2 N--P
When the reaction rate of the transesterification reaction of DMS-NH 2 was determined by the following method, the amount of H 2 N-PDMS-NH 2 that had undergone the transesterification reaction was 0.4 as shown in [Table 1] below.
It was 2 parts by weight, and the reaction rate was 21.0%.

【0033】(エステル交換反応の反応率の試験方法)
試験用フィルムを溶解した重クロロホルム溶液の 1HN
MRスペクトルを測定し、Si−CH3のプロトンの強
度からエステル交換反応したH2N−PDMS−NH_2
の量を計算し、下記の[数1]の式より反応率を求め
る。
(Test Method for Reaction Rate of Transesterification Reaction)
1 HN of heavy chloroform solution with test film dissolved
The MR spectrum was measured, H by ester exchange reaction from the intensity of protons of the Si-CH 3 2 N-PDMS -NH _ 2
Is calculated, and the reaction rate is calculated from the following formula [Equation 1].

【数1】 [Equation 1]

【0034】次に、この試験用フィルムについて、55
0nmの光の透過率、ガラス転移温度(Tg)を測定し
たところ、後記の[表1]に示すように光透過率は88
%、ガラス転移温度は102℃であった。
Next, regarding this test film, 55
When the transmittance of 0 nm light and the glass transition temperature (Tg) were measured, the light transmittance was 88 as shown in [Table 1] below.
%, The glass transition temperature was 102 ° C.

【0035】更に、上記の試験用フィルムを室温で事務
用インクのブルーブラックインクに浸漬し、2週間浸漬
後の550nmの光透過率を測定したところ、後記の
[表1]に示すように光透過率は70%であった。
Further, the above test film was dipped in a blue-black ink, which is an office ink, at room temperature, and the light transmittance at 550 nm after the dipping for 2 weeks was measured. As a result, as shown in Table 1 below, The transmittance was 70%.

【0036】[実施例2]二軸押出成形機に二酸化炭素
を吹込み、PMMAとH2N−PDMS−NH2のエステ
ル交換反応を二酸化炭素雰囲気中で行った以外は実施例
1と同様にして、厚さ70μmの試験用フィルムを作製
した。
Example 2 The same as Example 1 except that carbon dioxide was blown into the twin-screw extruder and the transesterification reaction between PMMA and H 2 N-PDMS-NH 2 was carried out in a carbon dioxide atmosphere. A test film having a thickness of 70 μm was produced.

【0037】この試験用フィルムについて、実施例1と
同様にして、エステル交換反応したH2N−PDMS−
NH2の量、反応率、光透過率、ガラス転移温度を測定
し、更に実施例1と同様の耐汚染性試験を行った。その
結果を後記の[表1]に示す。
This test film was subjected to transesterification reaction in the same manner as in Example 1, H 2 N-PDMS-.
The amount of NH 2 , the reaction rate, the light transmittance, and the glass transition temperature were measured, and the same stain resistance test as in Example 1 was performed. The results are shown in [Table 1] below.

【0038】[比較例1]実施例1で使用したPMMA
をジクロロメタンに溶解し、これをキャスティングする
ことにより、H2N−PDMS−NH2を含まない厚さ7
0μmのフィルムを作製した。
Comparative Example 1 PMMA used in Example 1
Was dissolved in dichloromethane and cast to give a thickness 7 without H 2 N-PDMS-NH 2.
A 0 μm film was made.

【0039】このフィルムについて、実施例1と同様
に、光透過率、ガラス転移温度を測定し、更に実施例1
と同様の耐汚染性試験を行った。その結果を後記の[表
1]に示す。
With respect to this film, the light transmittance and the glass transition temperature were measured in the same manner as in Example 1, and further, Example 1
The same stain resistance test was performed. The results are shown in [Table 1] below.

【0040】[比較例2]実施例1で使用したPMMA
100重量部とH2N−PDMS−NH20.42重量部
との混合物をジクロロメタンに溶解し、これをキャステ
ィングすることにより、H2N−PDMS−NH2を物理
的に分散させた厚さ70μmのフィルムを作製した。
[Comparative Example 2] PMMA used in Example 1
A thickness of physically dispersed H 2 N-PDMS-NH 2 was obtained by dissolving a mixture of 100 parts by weight and 0.42 part by weight of H 2 N-PDMS-NH 2 in dichloromethane, and casting the mixture. A 70 μm film was prepared.

【0041】このフィルムについて、実施例1と同様
に、光透過率、ガラス転移温度を測定し、更に実施例1
と同様の耐汚染性試験を行った。その結果を後記の[表
1]に示す。
With respect to this film, the light transmittance and the glass transition temperature were measured in the same manner as in Example 1, and further, Example 1
The same stain resistance test was performed. The results are shown in [Table 1] below.

【0042】[比較例3]実施例1で使用したPMMA
100重量部とH2N−PDMS−NH21.04重量部
との混合物をジクロロメタンに溶解し、これをキャステ
ィングすることにより、H2N−PDMS−NH2を物理
的に分散させた厚さ70μmのフィルムを作製した。
[Comparative Example 3] PMMA used in Example 1
A mixture of 100 parts by weight and 1.04 parts by weight of H 2 N-PDMS-NH 2 was dissolved in dichloromethane, and the mixture was cast to obtain a thickness at which H 2 N-PDMS-NH 2 was physically dispersed. A 70 μm film was prepared.

【0043】このフィルムについて、実施例1と同様
に、光透過率、ガラス転移温度を測定し、更に実施例1
と同様の耐汚染性試験を行った。その結果を下記の[表
1]に示す。
With respect to this film, the light transmittance and the glass transition temperature were measured in the same manner as in Example 1, and further, Example 1
The same stain resistance test was performed. The results are shown in [Table 1] below.

【表1】 [Table 1]

【0044】この表1から、H2N−PDMS−NH2
含まないPMMA単独の比較例1のフィルムは、光透過
率が90%と高く、優れた透明性を有しているが、耐汚
染性試験における2週間浸漬後の光透過率が50%と大
幅に低下し、耐汚染性に劣っていることが判る。また、
ガラス転移温度も90℃であり、耐熱性が充分とは言え
ないものである。
From Table 1, it can be seen that the film of Comparative Example 1 containing only PMMA containing no H 2 N-PDMS-NH 2 has a high light transmittance of 90% and excellent transparency. It can be seen that the light transmittance after immersion for 2 weeks in the stain resistance test was significantly reduced to 50%, and the stain resistance was poor. Also,
The glass transition temperature is also 90 ° C., and it cannot be said that the heat resistance is sufficient.

【0045】一方、実施例1のフィルムは、H2N−P
DMS−NH2がPMMAの側鎖にエステル結合して分
子レベルで細かく分散しているため、光透過率が88%
と高く、PMMA単独の比較例1のフィルムの光透過率
(90%)に比べて僅か2%低下しているだけであり、
良好な透明性を有することが判る。そして、この実施例
1のフィルムは、耐汚染性試験における2週間浸漬後の
光透過率が70%であり、インク汚染による光透過率の
大幅な低下が見られず、良好な耐汚染性を有することが
判る。また、この実施例1のフィルムは、エステル結合
したH2N−PDMS−NH2によってポリマー分子が三
次元架橋されているため、そのガラス転移温度が比較例
1のPMMA単独フィルムのガラス転移温度(90℃)
より高い102℃になっており、耐熱性が向上している
ことが判る。
On the other hand, the film of Example 1 was H 2 N--P
Since DMS-NH 2 is ester-bonded to the side chain of PMMA and finely dispersed at the molecular level, the light transmittance is 88%.
Which is only 2% lower than the light transmittance (90%) of the film of Comparative Example 1 containing PMMA alone.
It can be seen that it has good transparency. The film of Example 1 had a light transmittance of 70% after being immersed for 2 weeks in the stain resistance test, and did not show a significant decrease in the light transmittance due to ink stain. You know that you have. Further, in the film of this Example 1, the polymer molecules are three-dimensionally crosslinked by the ester-bonded H 2 N-PDMS-NH 2 , so that the glass transition temperature of the film is the glass transition temperature of the PMMA single film of Comparative Example 1 ( 90 ° C)
The higher temperature is 102 ° C., which shows that the heat resistance is improved.

【0046】これに対し、H2N−PDMS−NH2を物
理的に分散させた比較例2のフィルムは、H2N−PD
MS−NH2の含有量が実施例1のフィルムと同じ0.
42重量部であるにもかかわらず、光透過率が45%と
大幅に低下しており、透明性に劣ることが判る。これ
は、分散したH2N−PDMS−NH2の粒子が二次凝集
することによって、透過光の屈折、散乱が大きくなるた
めである。また、このフィルムはガラス転移温度が91
℃で実施例1のフィルムより低く、耐熱性の向上が殆ど
みられないものであり、耐汚染性試験における2週間浸
漬後の光透過率も28%とかなり大幅に低下し、耐汚染
性があまり良くないものであることが判る。
On the other hand, the film of Comparative Example 2 in which H 2 N-PDMS-NH 2 was physically dispersed was H 2 N-PD.
The content of MS-NH 2 is the same as that of the film of Example 1.
Despite 42 parts by weight, the light transmittance is significantly reduced to 45%, which shows that the transparency is poor. This is because secondary particles of dispersed H 2 N-PDMS-NH 2 aggregate to increase refraction and scattering of transmitted light. This film also has a glass transition temperature of 91.
It was lower than that of the film of Example 1 at 0 ° C., and the heat resistance was hardly improved, and the light transmittance after soaking for 2 weeks in the stain resistance test was significantly reduced to 28%, and the stain resistance was improved. It turns out that it's not very good.

【0047】更に、実施例2のフィルムは、二酸化炭素
雰囲気中でエステル交換反応させたものであるため、そ
の反応率が51.9%と顕著に向上して、実施例1のフ
ィルムの反応率の約2.5倍になり、1.04重量部の
2N−PDMS−NH2がエステル結合して含有されて
いる。このように実施例2のフィルムは、H2N−PD
MS−NH2の含有量が多いにもかかわらず、その光透
過率が実施例1のフィルムの光透過率と殆ど変わらない
87%であり、良好な透明性を有している。これは、H
2N−PDMS−NH2がエステル結合により分子レベル
で細かく分散して固定化され、二次凝集することがない
からである。そして、この実施例2のフィルムのように
多量のH2N−PDMS−NH2がエステル結合したもの
は、架橋密度が高くなるため耐熱性が顕著に向上し、ガ
ラス転移温度が110℃まで上昇している。しかも、多
量のH2N−PDMS−NH2によってフィルムの溌水性
が強くなるため、耐汚染性試験における2週間浸漬後の
光透過率が82%と殆ど低下せず、耐汚染性に優れてい
ることが判る。
Furthermore, since the film of Example 2 was transesterified in a carbon dioxide atmosphere, its reaction rate was remarkably improved to 51.9%, and the reaction rate of the film of Example 1 was improved. About 2.5 times, and 1.04 parts by weight of H 2 N-PDMS-NH 2 is contained as an ester bond. Thus, the film of Example 2 had H 2 N-PD
Despite the content of MS-NH 2 is large, the light transmittance of 87% for almost the same light transmittance of the film of Example 1 has a good transparency. This is H
This is because 2 N-PDMS-NH 2 is finely dispersed and immobilized at the molecular level by an ester bond and is not secondary aggregated. And, in the case where a large amount of H 2 N-PDMS-NH 2 is ester-bonded like the film of Example 2, the cross-linking density becomes high, the heat resistance is remarkably improved, and the glass transition temperature rises to 110 ° C. are doing. Moreover, since a large amount of H 2 N-PDMS-NH 2 strengthens the water repellency of the film, the light transmittance after immersion for 2 weeks in the stain resistance test hardly decreases to 82%, and the stain resistance is excellent. It is understood that there is.

【0048】これに対し、実施例2のフィルムと同量の
2N−PDMS−NH2を物理的に分散させた比較例3
のフィルムは、光透過率が32%と極端に低下し、透明
性が悪いことが判る。そして、このフィルムはガラス転
移温度が90℃で実施例1のフィルムより低く、耐熱性
の向上がみられないものであり、耐汚染性試験における
2週間浸漬後の光透過率も20%とかなり低下し、H2
N−PDMS−NH2の含有量が多い割りには耐汚染性
があまり良くないものであることが判る。
On the other hand, Comparative Example 3 in which the same amount of H 2 N-PDMS-NH 2 as in the film of Example 2 was physically dispersed.
It can be seen that the film of No. 2 has an extremely low light transmittance of 32% and has poor transparency. The film had a glass transition temperature of 90 ° C., which was lower than that of the film of Example 1, and showed no improvement in heat resistance. The light transmittance after immersion for 2 weeks in the stain resistance test was 20%, which is considerably high. reduced, H 2
It can be seen that the stain resistance is not so good despite the large content of N-PDMS-NH 2 .

【0049】[実施例3]二軸押出成形機に二酸化炭素
を吹込み、PMMAとH2N−PDMS−NH2のエステ
ル交換反応を二酸化炭素雰囲気中で行った以外は実施例
1と同様にして成形体を得た。そして、この成形体を切
削して溶剤(ジクロロメタン)に溶解し、これをキャス
ティングすることによって、1.04重量部のH2N−
PDMS−NH2がエステル結合し、0.96重量部の
2N−PDMS−NH2が未反応のまま含有された厚さ
110μmの試験用フィルムを作製した。
Example 3 The same as Example 1 except that carbon dioxide was blown into the twin-screw extruder and the transesterification reaction of PMMA and H 2 N-PDMS-NH 2 was carried out in a carbon dioxide atmosphere. To obtain a molded body. Then, the molded body was cut, dissolved in a solvent (dichloromethane), and cast to obtain 1.04 parts by weight of H 2 N-.
A 110 μm-thick test film was produced in which PDMS-NH 2 was ester-bonded and 0.96 parts by weight of H 2 N-PDMS-NH 2 was contained unreacted.

【0050】そして、この試験用フィルムについて、加
熱前の光透過率(550nm)、90℃で30分間加熱
した後の光透過率、90℃で1時間加熱した後の光透過
率をそれぞれ測定した。その結果を後記の[表2]に示
す。
With respect to this test film, the light transmittance before heating (550 nm), the light transmittance after heating at 90 ° C. for 30 minutes, and the light transmittance after heating at 90 ° C. for 1 hour were measured. . The results are shown in [Table 2] below.

【0051】[比較例4]比較例1と同様にして、H2
N−PDMS−NH2を含まないPMMA単独の厚さ1
10μmのフィルムを作製し、実施例3と同様に、加熱
前、90℃で30分加熱後、90℃で1時間加熱後の光
透過率を測定した。その結果を後記の[表2]に示す。
[Comparative Example 4] In the same manner as in Comparative Example 1, H 2
Thickness of PMMA alone without N-PDMS-NH 2 1
A film having a thickness of 10 μm was prepared, and in the same manner as in Example 3, the light transmittance was measured before heating at 90 ° C. for 30 minutes and at 90 ° C. for 1 hour. The results are shown in [Table 2] below.

【0052】[比較例5]H2N−PDMS−NH2の配
合量を2.00重量部に変更した以外は比較例2と同様
にして、H2N−PDMS−NH2を物理的に分散させた
厚さ110μmのフィルムを作製し、実施例3と同様
に、加熱前、90℃で30分加熱後、90℃で1時間加
熱後の光透過率を測定した。その結果を下記の[表2]
に示す。
Comparative Example 5 H 2 N-PDMS-NH 2 was physically prepared in the same manner as in Comparative Example 2 except that the compounding amount of H 2 N-PDMS-NH 2 was changed to 2.00 parts by weight. A dispersed film having a thickness of 110 μm was produced, and in the same manner as in Example 3, the light transmittance was measured before heating at 90 ° C. for 30 minutes and after heating at 90 ° C. for 1 hour. The results are shown in [Table 2] below.
Shown in

【表2】 [Table 2]

【0053】この表2から、実施例3のフィルムは、H
2N−PDMS−NH2を2.00重量部と多量に含有し
ているにもかかわらず、PMMA単独の比較例4のフィ
ルムと殆ど変わらない83.7%の光透過率を有してお
り、透明性が良好であることが判る。これは、2.00
重量部のH2N−PDMS−NH2のうち、1.04重量
部のH2N−PDMS−NH2がエステル結合して分子レ
ベルで細かく分散しているため、これに影響されて未反
応のH2N−PDMS−NH2も同様に細かく分散したた
めと考えられる。これに対し、実施例3のフィルムと同
量の2.00重量部のH2N−PDMS−NH2を物理的
に分散させた比較例5のフィルムは、光透過率が3.8
7%であり、透明性がほぼ失われてしまうことが判る。
From this Table 2, the film of Example 3 has H
Despite having a large amount of 2 N-PDMS-NH 2 of 2.00 parts by weight, it has a light transmittance of 83.7% which is almost the same as the film of Comparative Example 4 containing PMMA alone. It can be seen that the transparency is good. This is 2.00
Among the parts by weight of H 2 N-PDMS-NH 2 , 1.04 parts by weight of H 2 N-PDMS-NH 2 are ester-bonded and finely dispersed at the molecular level. It is considered that H 2 N-PDMS-NH 2 of No. 2 was also finely dispersed. On the other hand, the film of Comparative Example 5 in which 2.00 parts by weight of H 2 N-PDMS-NH 2 in the same amount as the film of Example 3 was physically dispersed had a light transmittance of 3.8.
It is 7%, which means that the transparency is almost lost.

【0054】また、実施例3のフィルムと比較例4のフ
ィルムは、加熱前の光透過率がそれぞれ83.7%と8
5.0%であったものが、90℃で30分加熱した後に
はそれぞれ77.7%と80.0%に低下したが、加熱
前後の光透過率の低下の割合はほぼ同程度である。この
ことから、実施例3の光透過率の低下はアクリル樹脂自
体の低下であり、H2N−PDMS−NH2の影響ではな
いことが判る。さらに、比較例5のフィルムは加熱前後
の光透過率の低下の割合が大きく、物理的に分散させた
2N−PDMS−NH2では、これが大きく影響するこ
とがわかる。このことより、実施例3のH2N−PDM
S−NH2の分散状態は、加熱によっても分子レベルで
分散していて変わっていないことがわかる。
The films of Example 3 and Comparative Example 4 had light transmittances of 83.7% and 8 before heating, respectively.
The value of 5.0% decreased to 77.7% and 80.0% after heating at 90 ° C. for 30 minutes, respectively, but the reduction rate of the light transmittance before and after heating was almost the same. . Therefore, the decrease in the light transmittance of the Example 3 is a decrease in the acrylic resin itself, it can be seen that not the influence of H 2 N-PDMS-NH 2 . Further, the film of Comparative Example 5 has a large rate of decrease in light transmittance before and after heating, and it can be seen that this is greatly affected by physically dispersed H 2 N-PDMS-NH 2 . From this, the H 2 N-PDM of Example 3 was obtained.
It can be seen that the dispersed state of S-NH 2 is not changed even by heating because it is dispersed at the molecular level.

【0055】[実施例4]添加剤を分子片末端に水酸基
を有するポリジメチルシロキサン(HO−PDMS)に
変更した以外は実施例2と同様にして、厚さ70μmの
試験用フィルムを作製した。
Example 4 A test film having a thickness of 70 μm was produced in the same manner as in Example 2 except that the additive was changed to polydimethylsiloxane (HO-PDMS) having a hydroxyl group at the terminal of the molecular piece.

【0056】このフィルムについて、実施例1と同様
に、光透過率、ガラス転移温度を測定し、更に実施例1
と同様の耐汚染性試験を行った。その結果を下記の[表
3]に示す。
With respect to this film, the light transmittance and the glass transition temperature were measured in the same manner as in Example 1, and further, Example 1
The same stain resistance test was performed. The results are shown in Table 3 below.

【表3】 [Table 3]

【0057】この表3を見ると、HO−PDMSは反応
量が少なく、0.80重量%しか反応していない。これ
は、HO−PDMSが1官能であり、2官能のH2N−
PDMS−NH2より反応する機会が少ないためである
こと、及び、−NH2と−OHとの反応性の差異による
ものである。このことから、一官能の添加剤より二官能
の添加剤が好ましいことがわかる。更に、ガラス転移温
度も90℃とPMMAとほぼ同じ温度であり、三次元架
橋していないことがわかる。
Looking at this Table 3, HO-PDMS has a small reaction amount, and only 0.80% by weight is reacted. This is because HO-PDMS is monofunctional and bifunctional H 2 N-.
This is because there are less chances of reaction than PDMS-NH 2 and due to the difference in reactivity between —NH 2 and —OH. From this, it is understood that the bifunctional additive is preferable to the monofunctional additive. Further, the glass transition temperature is 90 ° C., which is almost the same temperature as PMMA, and it is understood that three-dimensional crosslinking is not carried out.

【0058】[0058]

【発明の効果】以上の説明から明らかなように、本発明
の添加剤含有熱可塑性樹脂成形体は、添加剤が分子レベ
ルで細かく分散して熱可塑性樹脂のポリマー分子の側鎖
にエステル結合して固定化されるため、熱可塑性樹脂本
来の優れた性質と殆ど変わらない程度の良好な性質を有
し、熱可塑性樹脂がアクリル系樹脂の場合には、その優
れた透明性を実質的に低下させる心配がなく、しかも、
エステル結合した添加剤は経時的に揮散することがない
ので、長期間に亘って添加剤の効能を保持することがで
き、特にポリマー分子がその側鎖にエステル結合した二
官能の添加剤によって三次元架橋されている成形体は、
耐熱性も向上するといった顕著な効果を奏する。
As is clear from the above description, in the additive-containing thermoplastic resin molded product of the present invention, the additive is finely dispersed at the molecular level to form an ester bond with the side chain of the polymer molecule of the thermoplastic resin. Since it is immobilized on the surface, it has good properties that are almost the same as the original excellent properties of the thermoplastic resin. When the thermoplastic resin is an acrylic resin, its excellent transparency is substantially reduced. There is no need to worry,
Since the ester-bonded additive does not volatilize with time, the effect of the additive can be retained for a long period of time, and especially, the bifunctional additive in which the polymer molecule is ester-bonded to the side chain of the additive causes tertiary The original cross-linked molded body is
It has a remarkable effect of improving heat resistance.

【0059】また、本発明の製造方法は、従来汎用の各
種成形機を使用し、溶融成形前に添加剤を加えて加熱溶
融状態の熱可塑性樹脂とエステル交換反応させる工程を
付加するだけで実施できるものであるから、特別な成形
機や装置等を新たに設置する必要がなく経済的であり、
従来と同様に効率良く成形品を量産できるといった効果
を奏する。
Further, the production method of the present invention is carried out by using a conventional general-purpose molding machine and simply adding a step of adding an additive to the thermoplastic resin in a heated and melted state before the melt-molding to perform an ester exchange reaction. Because it is possible, it is economical without the need to install special molding machines and equipment newly,
As in the conventional case, it is possible to efficiently mass-produce molded products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法の一実施形態を示す概略説明
図である。
FIG. 1 is a schematic explanatory view showing one embodiment of a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 押出成形機 1e 二酸化炭素吹込み口 5 アクリル系樹脂 6 添加剤 50 添加剤含有アクリル系樹脂成形体 1 Extrusion Molding Machine 1e Carbon Dioxide Blow Port 5 Acrylic Resin 6 Additive 50 Additive-Containing Acrylic Resin Molded Product

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ポリマー分子の側鎖にエステル基又はカル
ボキシル基を有する熱可塑性樹脂の成形体中に、アミノ
基、水酸基、カルボキシル基、エステル基のいずれかの
官能基を有する添加剤が含有され、該添加剤が熱可塑性
樹脂のポリマー分子の側鎖とエステル交換反応してエス
テル結合していることを特徴とする添加剤含有熱可塑性
樹脂成形体。
1. A thermoplastic resin molded product having an ester group or a carboxyl group in the side chain of a polymer molecule contains an additive having a functional group of any of an amino group, a hydroxyl group, a carboxyl group and an ester group. An additive-containing thermoplastic resin molded article, wherein the additive is transesterified with a side chain of a polymer molecule of the thermoplastic resin to form an ester bond.
【請求項2】熱可塑性樹脂がアクリル系樹脂であること
を特徴とする請求項1に記載の成形体。
2. The molded article according to claim 1, wherein the thermoplastic resin is an acrylic resin.
【請求項3】添加剤が二官能であり、熱可塑性樹脂のポ
リマー分子が、その側鎖にエステル結合した二官能の添
加剤によって、三次元架橋されていることを特徴とする
請求項1又は請求項2に記載の成形体。
3. The additive is bifunctional, and the polymer molecule of the thermoplastic resin is three-dimensionally cross-linked by the bifunctional additive having an ester bond to its side chain. The molded product according to claim 2.
【請求項4】添加剤が、アミノ基、水酸基、カルボキシ
ル基、エステル基のいずれかの官能基を有するポリジメ
チルシロキサンであって、熱可塑性樹脂100重量部に
対し0.1〜5重量部の割合で含有されていることを特
徴とする請求項1ないし請求項3のいずれかに記載の成
形体。
4. The additive is polydimethylsiloxane having a functional group of amino group, hydroxyl group, carboxyl group or ester group, and is added in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the thermoplastic resin. The molded product according to any one of claims 1 to 3, which is contained in a ratio.
【請求項5】添加剤が、アミノ基、2つ以上の水酸基、
カルボキシル基、エステル基のいずれかの官能基を有す
る2−ヒドロキシベンゾフェノン誘導体もしくは2−ヒ
ドロキシフェニルベンゾトリアゾール誘導体であって、
熱可塑性樹脂100重量部に対し0.01〜5重量部の
割合で含有されていることを特徴とする請求項1ないし
請求項3のいずれかに記載の成形体。
5. The additive is an amino group, two or more hydroxyl groups,
A 2-hydroxybenzophenone derivative or a 2-hydroxyphenylbenzotriazole derivative having a functional group of any of a carboxyl group and an ester group,
The molded product according to any one of claims 1 to 3, which is contained in a proportion of 0.01 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
【請求項6】ポリマー分子の側鎖にエステル基又はカル
ボキシル基を有する熱可塑性樹脂を加熱溶融して所定の
形状に成形する前に、アミノ基、水酸基、カルボキシル
基、エステル基のいずれかの官能基を有する添加剤を熱
可塑性樹脂に配合し、加熱溶融状態の熱可塑性樹脂のポ
リマー分子の側鎖と添加剤をエステル交換反応させるこ
とを特徴とする添加剤含有熱可塑性樹脂成形体の製造方
法。
6. A thermoplastic resin having an ester group or a carboxyl group on the side chain of a polymer molecule is heated and melted before being molded into a predetermined shape, and a functional group of any of an amino group, a hydroxyl group, a carboxyl group and an ester group. A method for producing an additive-containing thermoplastic resin molded article, which comprises adding an additive having a group to a thermoplastic resin, and subjecting the additive to a side chain of a polymer molecule of the thermoplastic resin in a heat-melted state and the additive for transesterification reaction. .
【請求項7】添加剤が二官能であることを特徴とする請
求項6に記載の製造方法。
7. The production method according to claim 6, wherein the additive is bifunctional.
JP13120196A 1996-04-26 1996-04-26 Additive-containing thermoplastic resin molded article and method for producing the same Expired - Fee Related JP3590194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13120196A JP3590194B2 (en) 1996-04-26 1996-04-26 Additive-containing thermoplastic resin molded article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13120196A JP3590194B2 (en) 1996-04-26 1996-04-26 Additive-containing thermoplastic resin molded article and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09296054A true JPH09296054A (en) 1997-11-18
JP3590194B2 JP3590194B2 (en) 2004-11-17

Family

ID=15052409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13120196A Expired - Fee Related JP3590194B2 (en) 1996-04-26 1996-04-26 Additive-containing thermoplastic resin molded article and method for producing the same

Country Status (1)

Country Link
JP (1) JP3590194B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142975A (en) * 1981-01-23 1982-09-03 Ciba Geigy Ag 2-(2-hydroxyphenyl)-benzotriazole, manufacture and stabilized organic material containing same
JPS63101428A (en) * 1986-10-20 1988-05-06 Showa Denko Kk Production of modified polyolefin
JPH01278533A (en) * 1988-05-02 1989-11-08 Nippon Unicar Co Ltd Production of polysiloxane-modified olefinic polymer
JPH07126404A (en) * 1993-10-31 1995-05-16 Takiron Co Ltd Uv absorber-containing resin molded product and its production
JPH08104776A (en) * 1994-10-05 1996-04-23 Tsutsunaka Plast Ind Co Ltd Thermoplastic resin film and sheet
JPH08505183A (en) * 1993-07-13 1996-06-04 シェブロン ケミカル カンパニー Ethylene-based composition for oxygen scavenging and process for its production by esterification and transesterification in a reactive extruder
JPH08511825A (en) * 1993-06-24 1996-12-10 ザ、プロクター、エンド、ギャンブル、カンパニー Siloxane modified polyolefin copolymer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142975A (en) * 1981-01-23 1982-09-03 Ciba Geigy Ag 2-(2-hydroxyphenyl)-benzotriazole, manufacture and stabilized organic material containing same
JPS63101428A (en) * 1986-10-20 1988-05-06 Showa Denko Kk Production of modified polyolefin
JPH01278533A (en) * 1988-05-02 1989-11-08 Nippon Unicar Co Ltd Production of polysiloxane-modified olefinic polymer
JPH08511825A (en) * 1993-06-24 1996-12-10 ザ、プロクター、エンド、ギャンブル、カンパニー Siloxane modified polyolefin copolymer
JPH08505183A (en) * 1993-07-13 1996-06-04 シェブロン ケミカル カンパニー Ethylene-based composition for oxygen scavenging and process for its production by esterification and transesterification in a reactive extruder
JPH07126404A (en) * 1993-10-31 1995-05-16 Takiron Co Ltd Uv absorber-containing resin molded product and its production
JPH08104776A (en) * 1994-10-05 1996-04-23 Tsutsunaka Plast Ind Co Ltd Thermoplastic resin film and sheet

Also Published As

Publication number Publication date
JP3590194B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
KR20120089912A (en) Polyamide resin composition and molded product using the same
JP6481496B2 (en) Resin for filament for material extrusion type 3D printer
KR20210049226A (en) Thermoplastic resin composition having excellent hydrolysis resistance and laser transmittance and molded article comprising the same
JP4094902B2 (en) Thermoplastic molding composition containing polycarbonate
JP3583557B2 (en) Method for producing additive-containing thermoplastic resin molded article
JPH0749468B2 (en) Method for producing improved polyester resin
JPH09296054A (en) Molded object of additive-containing thermoplastic resin and its production
JP2529751B2 (en) Hollow molded polyallylen sulfide resin product and method for producing the same
KR20190078889A (en) Lens barrel member
JP3904262B2 (en) Laminate
JP3236978B2 (en) UV absorbent-containing resin molded article and method for producing the same
JP3681238B2 (en) Polycarbonate laminated sheet
JP2002219742A (en) Method for manufacturing polyester pipe
JPH07145247A (en) Molded article of resin containing ultraviolet absorber and its production
KR101144035B1 (en) Recycling method of Wasted air bag fabrics
JPH0218454A (en) Thermoplastic resin composition
KR20100050780A (en) Polycarbonate resin composition and method of preparing the same
JPH04334801A (en) Lamp reflector
JP3448851B2 (en) Additive-containing resin molded article and method for producing the same
JP2022080271A (en) Film, multilayer body, and transparent conductive film
KR102087405B1 (en) Reinforced polycarbonate resin and article made thherefrom
JP2686816B2 (en) Welding rod for molded polyarylene sulfide
KR100847398B1 (en) Polycarbonate resin composition
JP2007503489A (en) Branched polyformals and copolyformals, their preparation and use
JPH059452B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees