JPH09295175A - Laser beam machine - Google Patents
Laser beam machineInfo
- Publication number
- JPH09295175A JPH09295175A JP8107665A JP10766596A JPH09295175A JP H09295175 A JPH09295175 A JP H09295175A JP 8107665 A JP8107665 A JP 8107665A JP 10766596 A JP10766596 A JP 10766596A JP H09295175 A JPH09295175 A JP H09295175A
- Authority
- JP
- Japan
- Prior art keywords
- laser beam
- laser
- cylindrical lens
- processing machine
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/1303—Apparatus specially adapted to the manufacture of LCDs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133512—Light shielding layers, e.g. black matrix
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
- Liquid Crystal (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、液晶表示装置用カ
ラーフィルタのトリミング加工のような薄膜精密加工に
用いて好適なレーザ加工機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser processing machine suitable for use in thin film precision processing such as trimming of color filters for liquid crystal display devices.
【0002】[0002]
【従来の技術】近時、YAGレーザ加工機によって薄膜
精密加工を行う技術が確立され、例えば液晶表示装置を
製造する際に必要なカラーフィルタのトリミング加工
が、かかるレーザ加工機を用いることにより短時間で精
度良く行えるようになっている。2. Description of the Related Art Recently, a technique for performing precision thin film processing by a YAG laser processing machine has been established, and for example, trimming processing of a color filter required when manufacturing a liquid crystal display device is shortened by using such a laser processing machine. It can be done accurately in time.
【0003】この種のレーザ加工機は通常、レーザ発振
器から供給されたレーザビーム(YAGレーザ)を光学
系により所定の光路に沿って導いて被加工物に照射させ
る加工機本体と、搭載した被加工物をリニアモータ等に
より互いに直交する二方向へ移送可能なXYテーブル
と、これらの加工機本体およびXYテーブルを載置した
ベース盤(定盤)とによって概略構成されている。そし
て、加工機本体の光学系には、各種のレンズ群に加え
て、レーザビームを通過させる所定形状の透孔を有しビ
ーム成形部材として機能するアパーチャが配設されてお
り、レーザ発振器から供給されたレーザビームは該アパ
ーチャを通過することによってビーム形状が成形される
ので、光路の先端部に配設されている対物レンズから被
加工物に向けて、所定のビーム形状のレーザビームがス
ポット状に照射されるようになっている。This type of laser processing machine usually has a processing machine main body for guiding a laser beam (YAG laser) supplied from a laser oscillator along a predetermined optical path by an optical system to irradiate the work, and a mounted processing machine. It is roughly configured by an XY table capable of transferring a workpiece in two directions orthogonal to each other by a linear motor or the like, and a base plate (surface plate) on which the processing machine main body and the XY table are mounted. In addition to various lens groups, the optical system of the main body of the processing machine is provided with an aperture that has a predetermined shape through which the laser beam passes and that functions as a beam shaping member. The formed laser beam is shaped into a beam by passing through the aperture, so that the laser beam having a predetermined beam shape is spotted toward the workpiece from the objective lens disposed at the tip of the optical path. It is designed to be illuminated.
【0004】ところで、レーザ発振器から供給されるレ
ーザビームの光軸まわりのエネルギー密度分布は一般に
ガウス形分布曲線として表され、中心部分のエネルギー
密度が最も高く、中心部分から離れるにつれてエネルギ
ー密度は指数関数的に低下していく。それゆえ、このよ
うなレーザビームをアパーチャの透孔へ導いた場合、該
透孔の中心に対して光軸が僅かにずれただけでも、レー
ザビームの低エネルギー領域がアパーチャから出射され
てしまうので、被加工物に対する加工むらが起こりやす
くなる。つまり、エネルギー密度分布がガウス形のレー
ザビームは高エネルギー領域が狭いので、レーザ発振器
の特性や各部材の取付誤差などに起因する光軸変動によ
り、アパーチャの透孔中心に対して光軸が位置ずれを起
こすと、該透孔がよほど幅狭でない限り、レーザビーム
の低エネルギー領域がアパーチャを通過して被加工物に
照射されることとなり、そこでは満足なレーザ加工が行
えなくなってしまう。その結果、例えば液晶表示装置用
カラーフィルタのレーザトリミング加工を行う場合に
は、トリミング幅に寸法誤差やばらつきが生じて、表示
品位の劣化を招来しやすくなる。なお、このような不具
合を回避するためにアパーチャの透孔を極力幅狭に形成
し、光軸が多少位置ずれを起こしてもレーザビームの高
エネルギー領域のみが該透孔を通過するように設定する
ことも可能ではあるが、その場合、アパーチャで遮断さ
れて有効利用されないレーザビームの割合が著しく高ま
ってしまうので、好ましくない。By the way, the energy density distribution around the optical axis of the laser beam supplied from the laser oscillator is generally expressed as a Gaussian distribution curve, and the energy density of the central portion is the highest, and the energy density becomes an exponential function as the distance from the central portion increases. Is gradually decreasing. Therefore, when such a laser beam is guided to the aperture of the aperture, even if the optical axis is slightly deviated from the center of the aperture, the low energy region of the laser beam is emitted from the aperture. , Processing unevenness on the workpiece is likely to occur. In other words, the laser beam with a Gaussian energy density distribution has a narrow high-energy region. If the deviation occurs, unless the through hole is very narrow, the low energy region of the laser beam passes through the aperture and is irradiated on the workpiece, and satisfactory laser processing cannot be performed there. As a result, for example, when laser trimming of a color filter for a liquid crystal display device is performed, a dimensional error or variation occurs in the trimming width, which easily causes deterioration in display quality. In order to avoid such a problem, the aperture through hole is formed as narrow as possible so that even if the optical axis is slightly displaced, only the high energy region of the laser beam passes through the aperture. Although it is possible to do so, in that case, the ratio of the laser beam that is blocked by the aperture and is not effectively used is significantly increased, which is not preferable.
【0005】そこで従来、特開昭60−191689号
公報に開示されているように、レーザ発振器から供給さ
れたレーザビームの光軸まわりのエネルギー密度分布を
均一化させるエネルギー分布変換部材を光学系に組み込
んで、光軸が若干変動してもレーザビームの低エネルギ
ー領域が被加工物に照射されないように配慮したレーザ
加工機が提案されている。すなわち、かかる従来技術
は、エネルギー分布変換部材として、レーザビームが入
射される側(入射光側)に四角錐形の屈折面を有するプ
リズムを用い、このプリズムの屈折面にて複数の方向に
屈折させたレーザビームを重ね合わせることにより、そ
のエネルギー密度分布を均一化させるというもので、こ
うするとレーザビームの高エネルギー領域が拡大するの
で光軸変動の影響を受けにくくなり、被加工物に照射さ
れるレーザビームのエネルギー密度のばらつきに起因す
る加工むらが起こりにくくなる。なお、この公報にはエ
ネルギー分布変換部材として、入射光側に切妻屋根形の
屈折面を有するプリズムを用いた場合の例も記載されて
いるが、該プリズムよりも、四角錐形の屈折面を有する
前記プリズムを用いたほうが、レーザビームのエネルギ
ー密度分布はより均一化できる。Therefore, as disclosed in Japanese Patent Laid-Open No. Sho 60-191689, an energy distribution conversion member for uniformizing the energy density distribution around the optical axis of the laser beam supplied from the laser oscillator is conventionally used in the optical system. There is proposed a laser processing machine which is incorporated so as to prevent the low energy region of the laser beam from irradiating the work piece even if the optical axis is slightly changed. That is, in such a conventional technique, a prism having a quadrangular pyramid refracting surface on the side on which a laser beam is incident (incident light side) is used as an energy distribution conversion member, and the refracting surface of this prism refracts in multiple directions. The energy density distribution of the laser beams is made uniform by superimposing the laser beams, which expands the high-energy region of the laser beam, making it less susceptible to optical axis fluctuations and irradiating the workpiece. Unevenness due to variations in the energy density of the laser beam is less likely to occur. Note that this publication also describes an example of using a prism having a gable roof type refracting surface on the incident light side as the energy distribution conversion member, but a quadrangular pyramid refracting surface is used rather than the prism. The energy density distribution of the laser beam can be made more uniform by using the prism.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上述し
た従来技術のようにエネルギー分布変換部材を光学系に
組み込んでレーザビームの高エネルギー領域を拡大して
も、アパーチャ等のビーム成形部材へ導かれるレーザビ
ームの発散角はレーザ発振器の特性に応じて変化するの
で、所望のレーザ加工を行うためにレーザ発振器の交換
を行った場合、ビーム成形部材で遮断されてしまうレー
ザビームの割合が高まってエネルギー効率が悪化する虞
がある。また、一般にビーム成形部材には、ビーム形状
を高速レーザ加工に好適な長方形に成形するため長方形
状の透孔が設けられているが、上述した従来技術ではビ
ーム形状が略円形のレーザビームをエネルギー分布変換
部材に入射させることにより、該変換部材からビーム形
状が略正方形でエネルギー分布密度がほぼ均一なレーザ
ビームを出射させているので、ビーム成形部材の長方形
状の透孔を通過できないレーザビームの割合を低く設定
してエネルギー効率を高めることが困難であった。However, even if the high energy region of the laser beam is expanded by incorporating the energy distribution conversion member into the optical system as in the above-mentioned prior art, the laser beam is guided to the beam forming member such as the aperture. Since the divergence angle of the beam changes according to the characteristics of the laser oscillator, when the laser oscillator is replaced to perform the desired laser processing, the proportion of the laser beam that is blocked by the beam shaping member increases and energy efficiency increases. May worsen. Further, generally, the beam shaping member is provided with a rectangular through hole for shaping the beam shape into a rectangle suitable for high-speed laser processing. However, in the above-mentioned conventional technique, a laser beam having a substantially circular beam shape is energized. Since the laser beam having a substantially square beam shape and a substantially uniform energy distribution density is emitted from the distribution conversion member by being incident on the distribution conversion member, a laser beam that cannot pass through the rectangular through hole of the beam shaping member is generated. It was difficult to increase the energy efficiency by setting the ratio low.
【0007】[0007]
【課題を解決するための手段】本発明は、レーザ発振器
から供給されたレーザビームを、そのエネルギー密度分
布を均一化させる部材へ導く前に、該レーザビームのビ
ーム径とビーム形状の縦横比とを可変調整することとす
る。これにより、簡単な調整を行うだけで、レーザビー
ムの光軸や発散角の変化に起因する加工むらやエネルギ
ー効率の劣化が回避でき、常に良好な加工品質が得られ
る。According to the present invention, before a laser beam supplied from a laser oscillator is guided to a member for making its energy density distribution uniform, the beam diameter of the laser beam and the aspect ratio of the beam shape are set. Variably adjusted. As a result, it is possible to avoid machining unevenness and deterioration of energy efficiency due to changes in the optical axis of the laser beam and the divergence angle, and to always obtain good processing quality, simply by performing adjustment.
【0008】[0008]
【発明の実施の形態】本発明のレーザ加工機では、レー
ザ発振器から供給されたレーザビームを光学系内のビー
ム成形部材の透孔へ導いてビーム形状を成形した後、被
加工物に向けて照射するレーザ加工機において、前記光
学系が、レーザビームのビーム径を可変調整するビーム
エクスパンダーと、このビームエクスパンダーから出射
されたレーザビームのビーム形状の縦横比を可変調整す
るシリンドリカルレンズ群と、このシリンドリカルレン
ズ群から出射されたレーザビームの光軸まわりのエネル
ギー密度分布を均一化させるエネルギー分布変換部材と
を備え、このエネルギー分布変換部材から出射されたレ
ーザビームを前記ビーム成形部材へと導くように構成し
てある。なお、前記シリンドリカルレンズ群としては、
光軸に垂直な面内でレーザビームの横幅を拡大させる第
1のシリンドリカルレンズと縦幅を拡大させる第2のシ
リンドリカルレンズとを用いればよい。BEST MODE FOR CARRYING OUT THE INVENTION In a laser processing machine of the present invention, a laser beam supplied from a laser oscillator is guided to a through hole of a beam forming member in an optical system to form a beam shape, and then directed toward a workpiece. In the laser processing machine for irradiation, the optical system includes a beam expander that variably adjusts the beam diameter of the laser beam, and a cylindrical lens group that variably adjusts the aspect ratio of the beam shape of the laser beam emitted from the beam expander. And an energy distribution conversion member for making the energy density distribution around the optical axis of the laser beam emitted from this cylindrical lens group uniform, and guiding the laser beam emitted from this energy distribution conversion member to the beam shaping member. It is configured as follows. As the cylindrical lens group,
A first cylindrical lens that expands the lateral width of the laser beam and a second cylindrical lens that expands the vertical width may be used in a plane perpendicular to the optical axis.
【0009】このように、光学系にビームエクスパンダ
ーとシリンドリカルレンズ群とエネルギー分布変換部材
とが組み込んであるレーザ加工機は、レーザ発振器から
供給されたレーザビームのビーム径を前記ビームエクス
パンダーにて可変調整することにより、発散角が変化し
た場合にも前記ビーム成形部材へ向かうレーザビームの
大きさ(断面積)をほぼ一定に保つことができ、また、
レーザビームのビーム形状の縦横比を前記シリンドリカ
ルレンズ群にて可変調整することにより、前記ビーム成
形部材の透孔の形状に合わせた長円形のビーム形状とな
すことができ、また、これらのビームエクスパンダーお
よびシリンドリカルレンズ群を通過したレーザビームを
前記エネルギー分布変換部材へ入射させることにより、
ビーム形状やその大きさが調整済みのレーザビームの光
軸まわりのエネルギー密度分布を均一化させることがで
きる。したがって、例えばレーザ発振器を交換して発散
角が変化した場合にはビームエクスパンダーにてレーザ
ビームの大きさを調整し、またビーム成形部材を交換し
て透孔形状が変化した場合にはシリンドリカルレンズ群
にてビーム形状を調整しさえすれば、ビーム成形部材の
透孔を含む所定の領域に、エネルギー密度分布がほぼ均
一なレーザビームを導くことができる。それゆえ、レー
ザビームの光軸や発散角の変化に起因する加工むらやエ
ネルギー効率の劣化が回避しやすくなって、良好な加工
品質が低コストで安定的に得られる。As described above, the laser beam machine in which the beam expander, the cylindrical lens group, and the energy distribution conversion member are incorporated in the optical system is the beam diameter of the laser beam supplied from the laser oscillator. By variably adjusting, even if the divergence angle changes, the size (cross-sectional area) of the laser beam toward the beam shaping member can be kept substantially constant, and
By variably adjusting the aspect ratio of the beam shape of the laser beam with the cylindrical lens group, it is possible to form an elliptical beam shape that matches the shape of the through hole of the beam shaping member. By making the laser beam that has passed through the panda and the cylindrical lens group incident on the energy distribution conversion member,
It is possible to make the energy density distribution around the optical axis of the laser beam whose beam shape and size have been adjusted uniform. Therefore, for example, when the laser oscillator is replaced and the divergence angle changes, the size of the laser beam is adjusted by the beam expander, and when the beam forming member is replaced and the through-hole shape changes, the cylindrical lens is changed. As long as the beam shape is adjusted in groups, it is possible to guide a laser beam having a substantially uniform energy density distribution to a predetermined region including the through hole of the beam shaping member. Therefore, it becomes easy to avoid unevenness in processing and deterioration in energy efficiency due to changes in the optical axis and divergence angle of the laser beam, and good processing quality can be stably obtained at low cost.
【0010】また、前記エネルギー分布変換部材とし
て、入射光側と出射光側にそれぞれ切妻屋根形の屈折面
を有し、かつ入射光側の屈折面の稜線と出射光側の屈折
面の稜線とを互いに直交させてなるプリズムを用いれ
ば、入射光側に四角錐形の屈折面を有するプリズムを用
いた場合に比べて、レーザビームのエネルギー密度分布
を均一化する機能を損なうことなく、部品製作費を低減
することができる。Further, as the energy distribution conversion member, a gable roof type refracting surface is provided on each of the incident light side and the outgoing light side, and the ridge line of the incident light side refracting surface and the ridge line of the outgoing light side refracting surface are provided. The use of prisms that are orthogonal to each other makes it possible to fabricate parts without impairing the function of making the energy density distribution of the laser beam uniform, as compared with the case of using a prism having a quadrangular pyramid refracting surface on the incident light side. The cost can be reduced.
【0011】[0011]
【実施例】実施例について図面を参照して説明すると、
図1は本実施例に係るレーザ加工機の光学系のレイアウ
トを示す説明図、図2は該光学系内のホモジナイザーレ
ンズを示す斜視図、図3は該レーザ加工機の全体側面
図、図4は該レーザ加工機に組み込んだXYテーブルの
正面図、図5は一部を図示省略した該XYテーブルの側
面図、図6は該レーザ加工機を用いてカラーフィルタの
トリミング加工を行う液晶表示装置の製造技術を示す工
程説明図、図7は図6に示す製造過程においてカラーフ
ィルタをレーザトリミングする工程を示す説明図であ
る。EXAMPLES Examples will be described with reference to the drawings.
FIG. 1 is an explanatory view showing a layout of an optical system of a laser processing machine according to the present embodiment, FIG. 2 is a perspective view showing a homogenizer lens in the optical system, FIG. 3 is an overall side view of the laser processing machine, and FIG. Is a front view of an XY table incorporated in the laser processing machine, FIG. 5 is a side view of the XY table, a portion of which is not shown, and FIG. 6 is a liquid crystal display device for trimming a color filter using the laser processing machine. 7 is a process explanatory view showing the manufacturing technique of FIG. 7, and FIG. 7 is an explanatory view showing a process of laser trimming the color filter in the manufacturing process shown in FIG.
【0012】本実施例に係るレーザ加工機は、図3に示
すように、レーザ発振器5から供給されたレーザビーム
(YAGレーザ)をレンズ群やビームスプリッタ等から
なる光学系で導いて被加工物に照射させる加工機本体1
と、搭載した被加工物をリニアモータにより互いに直交
する二方向へ移送可能なXYテーブル2と、これらの加
工機本体1およびXYテーブル2を載置した定盤(ベー
ス盤)3と、この定盤3を載置した除振台4とによって
概略構成されている。なお、図4中の符号21は加工機
本体1を載置している光学定盤を示しており、この光学
定盤21は支柱22を介して定盤3に支持されている。
また、このレーザ加工機は真空ポンプ8などと共に、強
磁性体からなり消磁効果を有する安全カバー(図示せ
ず)に覆われており、図3に鎖線で示すカバーフレーム
6が該安全カバーの支持枠となる。As shown in FIG. 3, the laser beam machine according to this embodiment guides a laser beam (YAG laser) supplied from a laser oscillator 5 by an optical system including a lens group, a beam splitter and the like to be processed. Machine body 1 to irradiate
An XY table 2 capable of transferring the mounted workpiece in two directions orthogonal to each other by a linear motor, a surface plate (base plate) 3 on which the processing machine body 1 and the XY table 2 are mounted, It is roughly configured by a vibration isolation table 4 on which the board 3 is placed. Note that reference numeral 21 in FIG. 4 indicates an optical surface plate on which the processing machine body 1 is mounted, and the optical surface plate 21 is supported by the surface plate 3 via columns 22.
Further, this laser processing machine is covered with a vacuum pump 8 and the like by a safety cover (not shown) made of a ferromagnetic material and having a degaussing effect, and a cover frame 6 shown by a chain line in FIG. 3 supports the safety cover. It becomes a frame.
【0013】前記XYテーブル2は、上面に多数開設し
た吸着孔を介して空気を吸引することにより搭載した被
加工物を吸着固定することができる吸着テーブル9と、
この吸着テーブル9の底面中央部に開設されている軸穴
に円柱状の支軸10aを挿入して該吸着テーブル9を回
動可能に支持するXテーブル10と、このXテーブル1
0を摺動自在に支持する一対の平行なX軸レール部11
aを両側縁に設けてなる断面形状が凹状の支持台11
と、この支持台11の内側に設置され前記X軸レール部
11aに沿ってXテーブル10を往復直線移動させるX
軸リニアモータ12と、Xテーブル10の位置データを
検出するX軸リニアエンコーダ13と、支持台11を載
置したYテーブル14と、前記X軸レール部11aと直
交する方向に延びてYテーブル14を摺動自在に支持す
る三本のY軸レール15,16と、これらのY軸レール
15,16に沿ってYテーブル14を往復直線移動させ
るY軸リニアモータ17と、Yテーブル14の位置デー
タを検出するY軸リニアエンコーダ18とによって主に
構成されている。ただし、Xテーブル10と各X軸レー
ル部11a間、およびYテーブル14と各Y軸レール1
5,16間にはそれぞれ、テーブル側に設けたエアーノ
ズルから圧縮空気を吹き出すことにより、被加工物がX
軸方向およびY軸方向へ円滑に移送できるようになって
いる。The XY table 2 has a suction table 9 capable of sucking and fixing a workpiece to be mounted thereon by sucking air through a large number of suction holes provided on the upper surface.
An X table 10 for rotatably supporting the suction table 9 by inserting a columnar support shaft 10a into a shaft hole formed in the center of the bottom surface of the suction table 9, and the X table 1
A pair of parallel X-axis rail portions 11 slidably supporting 0
A support base 11 having a concave cross section formed by providing a on both side edges
X which is installed inside the support base 11 and linearly moves the X table 10 back and forth along the X-axis rail portion 11a.
Axis linear motor 12, X axis linear encoder 13 for detecting the position data of X table 10, Y table 14 on which support 11 is placed, and Y table 14 extending in the direction orthogonal to said X axis rail portion 11a. Of the three Y-axis rails 15 and 16 that slidably support the Y-axis, a Y-axis linear motor 17 that linearly reciprocates the Y-table 14 along these Y-axis rails 15 and 16, and position data of the Y-table 14. And a Y-axis linear encoder 18 for detecting However, between the X table 10 and each X-axis rail portion 11a, and between the Y table 14 and each Y-axis rail 1a.
Compressed air is blown out between the nozzles 5 and 16 from the air nozzles provided on the table side, so that the workpiece is moved to X-axis.
It can be smoothly transferred in the axial direction and the Y-axis direction.
【0014】なお、図4において、符号3aはY軸レー
ル15,16の各底部を挿入して幅方向に位置決めする
ために定盤3の上面に設けた取付溝を示し、符号17
a,17b,17cはそれぞれY軸リニアモータ17を
構成するコイルと磁石とヨークを示し、符号18a,1
8bはそれぞれY軸リニアエンコーダ18を構成する検
出部と目盛部を示している。また、図5において、符号
10bはXテーブル10のエアー吹き出し面を示し、符
号12a,12b,12cはそれぞれX軸リニアモータ
12を構成するコイルと磁石とヨークを示し、符号13
a,13bはそれぞれX軸リニアエンコーダ13を構成
する検出部と目盛部を示し、符号20は支軸10aを回
動中心として吸着テーブル9を回転駆動するためのモー
タを示している。In FIG. 4, reference numeral 3a designates a mounting groove provided on the upper surface of the surface plate 3 for inserting the bottom portions of the Y-axis rails 15 and 16 and positioning them in the width direction, and reference numeral 17
Reference numerals a, 17b, and 17c denote coils, magnets, and yokes forming the Y-axis linear motor 17, respectively.
Reference numerals 8b respectively indicate a detecting portion and a scale portion which constitute the Y-axis linear encoder 18. Further, in FIG. 5, reference numeral 10b indicates an air blowing surface of the X table 10, reference numerals 12a, 12b, and 12c respectively indicate a coil, a magnet, and a yoke constituting the X-axis linear motor 12, and a reference numeral 13
Reference numerals a and 13b respectively denote a detection portion and a scale portion which constitute the X-axis linear encoder 13, and a reference numeral 20 denotes a motor for rotationally driving the suction table 9 with the support shaft 10a as a rotation center.
【0015】このようなXYテーブル2を組み込んだレ
ーザ加工機は、XYテーブル2を駆動制御することによ
り、吸着テーブル9上に搭載した被加工物を水平面内に
おいて高い位置精度で移動させることができるので、加
工機本体1の光学系の先端部(対物レンズ)から照射さ
れるスポット状のレーザビームに対して被加工物を所定
の軌跡で移動させることにより、ビーム照射による所望
の加工パターンを被加工物に描画することができる。The laser beam machine incorporating such an XY table 2 can move the workpiece mounted on the suction table 9 with high position accuracy in the horizontal plane by controlling the drive of the XY table 2. Therefore, by moving the workpiece along a predetermined locus with respect to the spot-shaped laser beam emitted from the tip (objective lens) of the optical system of the processing machine main body 1, a desired processing pattern by beam irradiation is obtained. Can be drawn on the work piece.
【0016】次に、前記加工機本体1の光学系について
述べると、レーザ発振器5から供給されたレーザビーム
は、図1に示すように、反射ミラー23,24で反射さ
れた後、ビームエクスパンダー25へ入射されてビーム
径が例えば三倍に拡大され、次いで1/4λ偏光板とも
称される第1の位相差板26へ入射されて直線偏光が円
偏光に変換される。そして、第1の位相差板26から出
射された円偏光のレーザビームは、まず第1のシリンド
リカルレンズ27へ入射されて、光軸に垂直な面内で該
レーザビームの横幅が拡大され、次いで第2のシリンド
リカルレンズ28へ入射されて、光軸に垂直な面内で該
レーザビームの縦幅が拡大され、このシリンドリカルレ
ンズ群27,28を通過させることでレーザビームのビ
ーム形状は長円形となる。なお、本実施例では、ビーム
エクスパンダー25を構成する複数のレンズどうしの間
隔が変更可能なので、このビームエクスパンダー25に
よりレーザビームのビーム径を可変調整することができ
る。また、本実施例では、第1および第2のシリンドリ
カルレンズ27,28どうしの間隔が変更可能なので、
このシリンドリカルレンズ群27,28によりレーザビ
ームのビーム形状の縦横比を可変調整することができ
る。Next, the optical system of the processing machine body 1 will be described. The laser beam supplied from the laser oscillator 5 is reflected by the reflecting mirrors 23 and 24 and then expanded by the beam expander as shown in FIG. 25, the beam diameter is expanded to three times, for example, and then the first phase difference plate 26, which is also called a ¼λ polarizing plate, is incident to convert the linearly polarized light into circularly polarized light. Then, the circularly polarized laser beam emitted from the first retardation plate 26 is first incident on the first cylindrical lens 27, and the lateral width of the laser beam is expanded in a plane perpendicular to the optical axis. When the laser beam is incident on the second cylindrical lens 28 and the vertical width of the laser beam is expanded in a plane perpendicular to the optical axis, the beam shape of the laser beam becomes an elliptical shape by passing through the cylindrical lens groups 27 and 28. Become. In the present embodiment, the distance between the plurality of lenses forming the beam expander 25 can be changed, so that the beam expander 25 can variably adjust the beam diameter of the laser beam. In addition, in this embodiment, since the distance between the first and second cylindrical lenses 27 and 28 can be changed,
The cylindrical lens groups 27 and 28 can variably adjust the aspect ratio of the beam shape of the laser beam.
【0017】第2のシリンドリカルレンズ28から出射
された断面形状が長円形のレーザビームは、エネルギー
分布変換部材である所定形状のホモジナイザーレンズ2
9へ入射され、そこで四方向へ屈折されて重ね合わされ
ることから、該レーザビームの光軸まわりのエネルギー
密度分布は均一化される。なお、本実施例ではホモジナ
イザーレンズ29として、図2に示すように、入射光側
と出射光側にそれぞれ切妻屋根形の屈折面29a,29
bを有し、かつ入射光側の屈折面29aの稜線29cと
出射光側の屈折面29bの稜線29dとを互いに直交さ
せてなるプリズムを用いているので、片面に四角錐形の
屈折面を有するプリズムを用いた場合に比べて、レーザ
ビームのエネルギー密度分布を均一化する機能を損なう
ことなく、部品製作費を低減することができる。The laser beam having an elliptical cross section emitted from the second cylindrical lens 28 is a homogenizer lens 2 having a predetermined shape which is an energy distribution conversion member.
Since it is incident on the laser beam 9, the light beam is refracted in four directions and superposed, the energy density distribution around the optical axis of the laser beam is made uniform. In this embodiment, as the homogenizer lens 29, as shown in FIG. 2, the gabled roof-shaped refracting surfaces 29a and 29 are provided on the incident light side and the outgoing light side, respectively.
Since a prism having b and having the ridge line 29c of the refracting surface 29a on the incident light side and the ridge line 29d of the refracting surface 29b on the outgoing light side orthogonal to each other is used, a quadrangular pyramid refracting surface is formed on one surface. Compared with the case where the prism provided is used, the component manufacturing cost can be reduced without impairing the function of making the energy density distribution of the laser beam uniform.
【0018】ホモジナイザーレンズ29から出射された
エネルギー密度分布がほぼ均一なレーザビームは、反射
ミラー30で反射された後、第1のビームスプリッタ3
1へ入射されて二方向へ向かう直線偏光に分割され、こ
れにより複数個所を同時にレーザ加工できる二本の分割
ビームが得られる。そして、第1のビームスプリッタ3
1から出射された一方の分割ビームは、回動可能な第2
の位相差板32に入射されて再び円偏光に変換された
後、反射ミラー34を経て第2のビームスプリッタ36
へ入射され、そこで平行な二本の直線偏光に分割され
る。同様に、第1のビームスプリッタ31から出射され
た他方の分割ビームは、回動可能な第3の位相差板33
に入射されて円偏光に変換された後、反射ミラー35を
経て第2のビームスプリッタ36へ入射され、そこで平
行な二本の直線偏光に分割される。すなわち、レーザ発
振器5から出射された一本のレーザビームが、所定の光
路を経た後、互いに平行な計四本のレーザビームに分割
された状態で第2のビームスプリッタ36から出射され
るようになっている。なお、第2および第3の位相差板
32,33を適宜回動することによって、各分割ビーム
のパワー(エネルギーレベル)のばらつきを是正するパ
ワー調整は比較的容易に行える。The laser beam having a substantially uniform energy density distribution emitted from the homogenizer lens 29 is reflected by the reflection mirror 30, and then the first beam splitter 3
It is split into linearly polarized light which is incident on 1 and travels in two directions, whereby two split beams capable of simultaneously laser processing a plurality of locations are obtained. Then, the first beam splitter 3
One of the split beams emitted from the first
After being incident on the phase difference plate 32 of the above and converted into circularly polarized light again, it passes through the reflection mirror 34 and the second beam splitter 36.
And is split into two parallel linearly polarized lights. Similarly, the other split beam emitted from the first beam splitter 31 is rotated by the rotatable third retardation plate 33.
Is incident on the second beam splitter 36 through the reflection mirror 35, and is then split into two parallel linearly polarized lights. That is, one laser beam emitted from the laser oscillator 5 is emitted from the second beam splitter 36 in a state of being divided into a total of four laser beams parallel to each other after passing through a predetermined optical path. Has become. By appropriately rotating the second and third retardation plates 32 and 33, the power adjustment for correcting the variation in the power (energy level) of each split beam can be relatively easily performed.
【0019】こうして第2のビームスプリッタ36から
出射された各分割ビームは、ビーム成形部材であるアパ
ーチャ37の透孔37aを通過した後、レンズ群等を経
て、光路の先端部に位置する対物レンズ(図7参照)に
入射され、この対物レンズから前記XYテーブル2上の
被加工物に向けて、互いに平行な四本の分割ビームがス
ポット状に照射されるようになっている。すなわち、ア
パーチャ37には四個所に長方形状の透孔37aが形成
されており、各分割ビームがその光路中に開口している
透孔37aを通過すると、ビーム形状が高速レーザ加工
に好適な長方形に成形されるようになっている。なお、
本実施例に係るレーザ加工機は、液晶表示装置用カラー
フィルタのレーザトリミング加工を行うためのものなの
で、アパーチャ37の透孔37aの幅寸法がトリミング
加工幅と同等に設定してある。Each split beam emitted from the second beam splitter 36 in this way passes through the through hole 37a of the aperture 37, which is a beam shaping member, and then passes through the lens group or the like to the objective lens located at the tip of the optical path. (See FIG. 7), and the objective lens irradiates the workpiece on the XY table 2 with four parallel split beams in spots. That is, a rectangular through hole 37a is formed at four positions in the aperture 37, and when each split beam passes through the through hole 37a opened in the optical path, the beam shape is a rectangular shape suitable for high-speed laser processing. It is designed to be molded into. In addition,
Since the laser processing machine according to the present embodiment is for performing laser trimming processing of the color filter for the liquid crystal display device, the width dimension of the through hole 37a of the aperture 37 is set to be equal to the trimming processing width.
【0020】このように、ビームエクスパンダー25と
シリンドリカルレンズ群27,28とホモジナイザーレ
ンズ29とが光学系に組み込んである加工機本体1は、
レーザ発振器5から供給されたレーザビームのビーム径
をビームエクスパンダー25にて可変調整することによ
り、発散角が変化した場合にもアパーチャ37へ向かう
レーザビームの大きさ(断面積)をほぼ一定に保つこと
ができ、また、レーザビームのビーム形状の縦横比をシ
リンドリカルレンズ群27,28にて可変調整すること
により、アパーチャ37の透孔37aの形状に合わせた
長円形のビーム形状となすことができ、また、これらの
ビームエクスパンダー25およびシリンドリカルレンズ
群27,28を通過したレーザビームをホモジナイザー
レンズ29へ入射させることにより、ビーム形状やその
大きさが調整済みのレーザビームの光軸まわりのエネル
ギー密度分布を均一化させることができる。したがっ
て、例えばレーザ発振器5を交換して発散角が変化した
場合にはビームエクスパンダー25にてレーザビームの
大きさを調整し、またアパーチャ37を交換して透孔形
状が変化した場合には第1および第2のシリンドリカル
レンズ27,28の間隔を変えてビーム形状を調整しさ
えすれば、アパーチャ37の透孔37aを含む所定の領
域に、エネルギー密度分布がほぼ均一なレーザビームを
導くことができる。つまり、この加工機本体1は、簡単
な調整を行うだけで、レーザビームの光軸や発散角の変
化に起因する加工むらやエネルギー効率の劣化が回避で
きるように構成されており、それゆえ良好な加工品質が
低コストで安定的に得られるようになっている。As described above, the processing machine main body 1 in which the beam expander 25, the cylindrical lens groups 27 and 28, and the homogenizer lens 29 are incorporated in the optical system is
By variably adjusting the beam diameter of the laser beam supplied from the laser oscillator 5 with the beam expander 25, the size (cross-sectional area) of the laser beam heading to the aperture 37 can be made substantially constant even when the divergence angle changes. Further, the aspect ratio of the beam shape of the laser beam can be variably adjusted by the cylindrical lens groups 27 and 28 to form an oval beam shape that matches the shape of the through hole 37a of the aperture 37. The laser beam that has passed through the beam expander 25 and the cylindrical lens groups 27 and 28 is made incident on the homogenizer lens 29, so that the energy around the optical axis of the laser beam whose beam shape and size have been adjusted is adjusted. The density distribution can be made uniform. Therefore, for example, when the laser oscillator 5 is replaced and the divergence angle changes, the size of the laser beam is adjusted by the beam expander 25, and when the aperture 37 is replaced and the through hole shape changes, the If the beam shape is adjusted by changing the distance between the first and second cylindrical lenses 27 and 28, it is possible to guide a laser beam having a substantially uniform energy density distribution to a predetermined region including the through hole 37a of the aperture 37. it can. In other words, the processing machine body 1 is configured to avoid processing unevenness and energy efficiency deterioration due to changes in the optical axis of the laser beam and the divergence angle by performing simple adjustments. Various processing qualities can be stably obtained at low cost.
【0021】次に、上述したレーザ加工機の使用例とし
て、液晶表示装置の製造過程におけるカラーフィルタの
レーザトリミング加工について説明する。Next, as an example of using the above-mentioned laser processing machine, laser trimming processing of a color filter in the manufacturing process of a liquid crystal display device will be described.
【0022】かかるレーザトリミング加工を行う前に、
まず図6(a)に示すように、ガラス基板等の透明基板
50の片面に、ITO等をパターニングすることによ
り、一定のピッチ間隔で一方向に延びる多数本の透明電
極51を形成する。次いで図6(b)に示すように、各
透明電極51上に、電着法や印刷法等の手法により、R
(赤),G(緑),B(青)のカラーフィルタ52を所
定の配列で積層する。ちなみに、図6(b)の例では、
R,G,B,R,G,B,R,……の順にカラーフィル
タ52が積層されている。そして、積層後、約250℃
で焼成してカラーフィルタ52を固化する。Before performing such laser trimming processing,
First, as shown in FIG. 6A, by patterning ITO or the like on one surface of a transparent substrate 50 such as a glass substrate, a large number of transparent electrodes 51 extending in one direction at regular pitch intervals are formed. Then, as shown in FIG. 6B, R is formed on each transparent electrode 51 by a method such as an electrodeposition method or a printing method.
(Red), G (green), and B (blue) color filters 52 are laminated in a predetermined arrangement. By the way, in the example of FIG. 6 (b),
The color filters 52 are laminated in the order of R, G, B, R, G, B, R, .... And after stacking, about 250 ℃
Is baked to solidify the color filter 52.
【0023】しかる後、透明基板50を前記XYテーブ
ル2の吸着テーブル9上に搭載し、このXYテーブル2
を制御しながら、カラーフィルタ52の長手方向と直交
する方向に一定のピッチ間隔で複数本の分割ビームを照
射することにより、R,G,Bの各カラーフィルタ52
を部分的に除去するというレーザトリミング加工を行
い、これにより図6(c)に示すように、遮光膜が未形
成ではあるが所定の配置に並んだカラーフィルタ52が
得られる。なお、かかるレーザトリミング加工を模式的
に示す図7において、吸着テーブル9上の透明基板50
は同図の紙面直交方向に移送され、その移動に伴い、前
記加工機本体1の対物レンズ38から照射されるスポッ
ト状のレーザビームSが、カラーフィルタ52の不要部
分を除去していく。Thereafter, the transparent substrate 50 is mounted on the suction table 9 of the XY table 2, and the XY table 2 is attached.
While controlling the R, G, B color filters 52 by irradiating a plurality of split beams at a constant pitch in a direction orthogonal to the longitudinal direction of the color filters 52.
Is partially removed by laser trimming, and as a result, as shown in FIG. 6C, a color filter 52 in which a light-shielding film is not formed but is arranged in a predetermined arrangement is obtained. Note that, in FIG. 7 schematically showing such laser trimming, the transparent substrate 50 on the suction table 9 is shown.
Are transported in the direction orthogonal to the paper surface of the figure, and the spot-shaped laser beam S emitted from the objective lens 38 of the processing machine main body 1 removes unnecessary portions of the color filter 52 with the movement.
【0024】そして、カラーフィルタ52の不要部分を
除去したなら、透明基板50のカラーフィルタ形成面に
ブラックレジストを塗布して乾燥させた後、他面側から
露光用光を照射し、露光後に現像処理して未露光の前記
ブラックレジストを除去することにより、図6(d)に
示すように、カラーフィルタ52の周囲の間隙部分に遮
光膜53が形成される。After the unnecessary portion of the color filter 52 is removed, a black resist is applied to the color filter forming surface of the transparent substrate 50 and dried, and then exposure light is irradiated from the other surface side and development is performed after exposure. By processing and removing the unexposed black resist, the light-shielding film 53 is formed in the gap portion around the color filter 52, as shown in FIG. 6D.
【0025】このような製造技術において、レーザ加工
機は、複数本の分割ビームを透明基板50のカラーフィ
ルタ形成面の複数個所に同時に照射するので、カラーフ
ィルタ52のレーザトリミング加工は短時間に効率良く
行える。その際、加工機本体1の対物レンズ38からは
いつでも、エネルギー密度分布がほぼ均一なレーザビー
ムが照射されるので、カラーフィルタ52のトリミング
幅に寸法誤差やばらつきが少ない高精度なレーザ加工が
行え、良好な加工品質が期待できる。In such a manufacturing technique, since the laser beam machine irradiates a plurality of divided beams to a plurality of positions on the color filter forming surface of the transparent substrate 50 at the same time, the laser trimming process of the color filter 52 is efficiently performed in a short time. You can do it well. At that time, since the laser beam having a substantially uniform energy density distribution is emitted from the objective lens 38 of the processing machine body 1 at any time, highly accurate laser processing with few dimensional errors and variations in the trimming width of the color filter 52 can be performed. Good processing quality can be expected.
【0026】[0026]
【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。The present invention is embodied in the form described above and has the following effects.
【0027】ビームエクスパンダーとシリンドリカルレ
ンズ群とでビーム形状やその大きさを適宜調整したレー
ザビームを、ホモジナイザーレンズ等のエネルギー分布
変換部材を通過させてから、アパーチャ等のビーム成形
部材へ入射させるので、該透孔を含む所定の領域にエネ
ルギー密度分布がほぼ均一なレーザビームを導くことが
でき、それゆえレーザビームの光軸や発散角の変化に起
因する加工むらやエネルギー効率の劣化が回避しやすく
なって、良好な加工品質が低コストで安定的に得られ
る。Since a laser beam whose beam shape and size are appropriately adjusted by the beam expander and the cylindrical lens group is passed through an energy distribution conversion member such as a homogenizer lens, it is incident on a beam forming member such as an aperture. , A laser beam having a substantially uniform energy density distribution can be guided to a predetermined region including the through hole, and therefore, it is possible to avoid machining unevenness and deterioration of energy efficiency due to changes in the optical axis and divergence angle of the laser beam. It becomes easier and good processing quality can be stably obtained at low cost.
【0028】また、前記エネルギー分布変換部材とし
て、入射光側と出射光側にそれぞれ切妻屋根形の屈折面
を有し、かつ入射光側の屈折面の稜線と出射光側の屈折
面の稜線とを互いに直交させてなるプリズムを用いれ
ば、入射光側に四角錐形の屈折面を有するプリズムを用
いた場合に比べて、レーザビームのエネルギー密度分布
を均一化する機能を損なうことなく、部品製作費を低減
することができる。As the energy distribution conversion member, a gable roof type refracting surface is provided on each of the incident light side and the outgoing light side, and the ridge line of the incident light side refracting surface and the ridge line of the outgoing light side refracting surface are provided. The use of prisms that are orthogonal to each other makes it possible to fabricate parts without impairing the function of making the energy density distribution of the laser beam uniform, as compared with the case of using a prism having a quadrangular pyramid refracting surface on the incident light side. The cost can be reduced.
【図1】本実施例に係るレーザ加工機の光学系のレイア
ウトを示す説明図である。FIG. 1 is an explanatory diagram showing a layout of an optical system of a laser beam machine according to this embodiment.
【図2】該光学系内のホモジナイザーレンズを示す斜視
図である。FIG. 2 is a perspective view showing a homogenizer lens in the optical system.
【図3】該レーザ加工機の全体側面図である。FIG. 3 is an overall side view of the laser processing machine.
【図4】該レーザ加工機に組み込んだXYテーブルの正
面図である。FIG. 4 is a front view of an XY table incorporated in the laser processing machine.
【図5】一部を図示省略した該XYテーブルの側面図で
ある。FIG. 5 is a side view of the XY table, a part of which is not shown.
【図6】該レーザ加工機を用いてカラーフィルタのトリ
ミング加工を行う液晶表示装置の製造技術を示す工程説
明図である。FIG. 6 is a process explanatory view showing a manufacturing technique of a liquid crystal display device which performs trimming processing of a color filter using the laser processing machine.
【図7】図6に示す製造過程においてカラーフィルタを
レーザトリミングする工程を示す説明図である。FIG. 7 is an explanatory diagram showing a step of laser-trimming a color filter in the manufacturing process shown in FIG.
1 加工機本体 2 XYテーブル 5 レーザ発振器 9 吸着テーブル 10 Xテーブル 14 Yテーブル 25 ビームエクスパンダー 26,32,33 位相差板(1/4λ偏光板) 27,28 シリンドリカルレンズ 29 ホモジナイザーレンズ(エネルギー分布変換部
材) 29a,29b 屈折面 29c,29d 稜線 31,36 ビームスプリッタ 37 アパーチャ(ビーム成形部材) 37a 透孔 50 透明基板 51 透明電極 52 カラーフィルタ1 Processing Machine Main Body 2 XY Table 5 Laser Oscillator 9 Adsorption Table 10 X Table 14 Y Table 25 Beam Expander 26, 32, 33 Phase Difference Plate (1 / 4λ Polarizing Plate) 27, 28 Cylindrical Lens 29 Homogenizer Lens (Energy Distribution Conversion) Member) 29a, 29b Refractive surface 29c, 29d Ridge line 31, 36 Beam splitter 37 Aperture (beam shaping member) 37a Through hole 50 Transparent substrate 51 Transparent electrode 52 Color filter
Claims (4)
ムを光学系内のビーム成形部材の透孔へ導いてビーム形
状を成形した後、被加工物に向けて照射するレーザ加工
機であって、前記光学系が、レーザビームのビーム径を
可変調整するビームエクスパンダーと、このビームエク
スパンダーから出射されたレーザビームのビーム形状の
縦横比を可変調整するシリンドリカルレンズ群と、この
シリンドリカルレンズ群から出射されたレーザビームの
光軸まわりのエネルギー密度分布を均一化させるエネル
ギー分布変換部材とを備え、このエネルギー分布変換部
材から出射されたレーザビームを前記ビーム成形部材へ
と導くように構成したことを特徴とするレーザ加工機。1. A laser processing machine for guiding a laser beam supplied from a laser oscillator to a through hole of a beam forming member in an optical system to form a beam shape, and thereafter irradiating the beam to a workpiece. The optical system includes a beam expander that variably adjusts the beam diameter of the laser beam, a cylindrical lens group that variably adjusts the aspect ratio of the beam shape of the laser beam emitted from this beam expander, and a cylindrical lens group that emits the laser beam. An energy distribution conversion member for making the energy density distribution around the optical axis of the laser beam uniform, and guiding the laser beam emitted from the energy distribution conversion member to the beam shaping member. Laser processing machine.
リカルレンズ群が、光軸に垂直な面内でレーザビームの
横幅を拡大させる第1のシリンドリカルレンズと縦幅を
拡大させる第2のシリンドリカルレンズとからなること
を特徴とするレーザ加工機。2. The cylindrical lens group according to claim 1, wherein the cylindrical lens group includes a first cylindrical lens that expands a lateral width of a laser beam in a plane perpendicular to the optical axis and a second cylindrical lens that expands a longitudinal width. A laser processing machine characterized by comprising.
エネルギー分布変換部材として、入射光側と出射光側に
それぞれ切妻屋根形の屈折面を有し、かつ入射光側の屈
折面の稜線と出射光側の屈折面の稜線とを互いに直交さ
せてなるプリズムを用いたことを特徴とするレーザ加工
機。3. The energy distribution conversion member according to claim 1, wherein the energy distribution conversion member has a gable roof-shaped refracting surface on each of an incident light side and an outgoing light side, and a ridgeline of the refracting surface on the incident light side. A laser beam machine using a prism in which a ridge line of a refracting surface on the outgoing light side is orthogonal to each other.
いて、前記被加工物が、液晶表示装置の構成部材となる
カラーフィルタであることを特徴とするレーザ加工機。4. The laser processing machine according to claim 1, wherein the object to be processed is a color filter which is a constituent member of a liquid crystal display device.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10766596A JP3309046B2 (en) | 1996-04-26 | 1996-04-26 | Laser processing machine |
TW086104924A TW330875B (en) | 1996-04-26 | 1997-04-16 | The manufacturing method for LCD device and laser processing machine |
KR1019970015692A KR100254833B1 (en) | 1996-04-26 | 1997-04-25 | manufacturing method of liquid crystal display device and the laser machining device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10766596A JP3309046B2 (en) | 1996-04-26 | 1996-04-26 | Laser processing machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09295175A true JPH09295175A (en) | 1997-11-18 |
JP3309046B2 JP3309046B2 (en) | 2002-07-29 |
Family
ID=14464913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10766596A Expired - Fee Related JP3309046B2 (en) | 1996-04-26 | 1996-04-26 | Laser processing machine |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3309046B2 (en) |
KR (1) | KR100254833B1 (en) |
TW (1) | TW330875B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002328365A (en) * | 2001-04-26 | 2002-11-15 | Dainippon Printing Co Ltd | Transmission and reflection type liquid crystal display device and color filter used for the same, and method used for producing the color filter |
JP2002540950A (en) * | 1999-04-07 | 2002-12-03 | シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング | Apparatus and method for peeling a thin layer on a carrier material |
JP2004042140A (en) * | 2002-07-12 | 2004-02-12 | Hitachi Zosen Corp | Process and device for removal of thin film |
JP2008055485A (en) * | 2006-08-31 | 2008-03-13 | Hitachi Via Mechanics Ltd | Laser beam machining method and apparatus |
JP2008257099A (en) * | 2007-04-09 | 2008-10-23 | Sumitomo Metal Mining Co Ltd | Absorption type multilayer film nd filter chip and method of manufacturing same, method of joining same, diaphragm blade with same, and method of manufacturing diaphragm blade |
US7820937B2 (en) * | 2004-10-27 | 2010-10-26 | Boston Scientific Scimed, Inc. | Method of applying one or more electromagnetic beams to form a fusion bond on a workpiece such as a medical device |
CN103639594A (en) * | 2013-12-19 | 2014-03-19 | 苏州德龙激光股份有限公司 | Laser drilling device and method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100420142B1 (en) * | 1996-10-28 | 2004-09-04 | 삼성에스디아이 주식회사 | Method and device for forming black matrix layer in complex pattern for color filter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3159906B2 (en) * | 1995-10-23 | 2001-04-23 | アルプス電気株式会社 | Manufacturing method of liquid crystal display element |
-
1996
- 1996-04-26 JP JP10766596A patent/JP3309046B2/en not_active Expired - Fee Related
-
1997
- 1997-04-16 TW TW086104924A patent/TW330875B/en active
- 1997-04-25 KR KR1019970015692A patent/KR100254833B1/en not_active IP Right Cessation
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002540950A (en) * | 1999-04-07 | 2002-12-03 | シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング | Apparatus and method for peeling a thin layer on a carrier material |
JP2002328365A (en) * | 2001-04-26 | 2002-11-15 | Dainippon Printing Co Ltd | Transmission and reflection type liquid crystal display device and color filter used for the same, and method used for producing the color filter |
JP2004042140A (en) * | 2002-07-12 | 2004-02-12 | Hitachi Zosen Corp | Process and device for removal of thin film |
US7820937B2 (en) * | 2004-10-27 | 2010-10-26 | Boston Scientific Scimed, Inc. | Method of applying one or more electromagnetic beams to form a fusion bond on a workpiece such as a medical device |
JP2008055485A (en) * | 2006-08-31 | 2008-03-13 | Hitachi Via Mechanics Ltd | Laser beam machining method and apparatus |
JP2008257099A (en) * | 2007-04-09 | 2008-10-23 | Sumitomo Metal Mining Co Ltd | Absorption type multilayer film nd filter chip and method of manufacturing same, method of joining same, diaphragm blade with same, and method of manufacturing diaphragm blade |
CN103639594A (en) * | 2013-12-19 | 2014-03-19 | 苏州德龙激光股份有限公司 | Laser drilling device and method |
Also Published As
Publication number | Publication date |
---|---|
KR970071058A (en) | 1997-11-07 |
JP3309046B2 (en) | 2002-07-29 |
KR100254833B1 (en) | 2000-05-01 |
TW330875B (en) | 1998-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6028288A (en) | Laser beam machine and liquid crystal display device fabrication method using the machine | |
JP2020069531A (en) | Laser processing device and laser processing method | |
KR20070117500A (en) | Composite sheet, machining method for composite sheet and laser machining apparatus | |
WO2021251090A1 (en) | Light source device for exposure, lighting device, exposure device, and exposure method | |
JPH09295175A (en) | Laser beam machine | |
KR20120120670A (en) | Selective thin film removeing device using splitted laser beam | |
KR100824022B1 (en) | Apparatus and method for projection exposure | |
WO2020090905A1 (en) | Laser processing device and laser processing method | |
KR20220146323A (en) | Adjustment method of laser machining apparatus, and laser machining apparatus | |
WO2020090894A1 (en) | Laser processing device and laser processing method | |
JP3214540B2 (en) | Laser processing machine | |
KR102627053B1 (en) | Laser beam machining device | |
JPH09108878A (en) | Laser beam machine | |
JPH09141481A (en) | Laser beam machine | |
KR102012297B1 (en) | The pattern formation method to use multi-beam scanner system | |
WO2024218918A1 (en) | Laser irradiation device, laser processing device, laser processing method, laser exposure device, laser exposure method, mask installation method, laser processing device installation method, laser exposure device installation method, mask, and laser irradiation system | |
WO2024219462A1 (en) | Laser irradiation device, laser processing device, laser processing method, mask installation method, laser processing device installation method, and mask | |
WO2024218915A1 (en) | Laser irradiation device, laser processing device, exposure device, laser processing method, exposure processing method, mask installation method, laser processing device installation method, exposure device installation method, mask, and laser irradiation system | |
JPH08257770A (en) | Method and device for developing ablation | |
WO2024219457A1 (en) | Laser irradiation device, laser processing device, exposure device, laser processing method, exposure processing method, mask installation method, laser processing device installation method, exposure device installation method, and mask | |
JP2000263268A (en) | Laser beam machining device and machining method using same device | |
JP3080694B2 (en) | Exposure equipment | |
WO2020090913A1 (en) | Laser machining device and laser machining method | |
JP2000323025A (en) | Manufacture of electrode substrate for plasma display panel and its device | |
KR20230062360A (en) | Illumination optical system and laser processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020430 |
|
LAPS | Cancellation because of no payment of annual fees |