JPH09295167A - Production of clad material of copper alloy and steel - Google Patents

Production of clad material of copper alloy and steel

Info

Publication number
JPH09295167A
JPH09295167A JP10803496A JP10803496A JPH09295167A JP H09295167 A JPH09295167 A JP H09295167A JP 10803496 A JP10803496 A JP 10803496A JP 10803496 A JP10803496 A JP 10803496A JP H09295167 A JPH09295167 A JP H09295167A
Authority
JP
Japan
Prior art keywords
copper alloy
steel
container
raw material
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10803496A
Other languages
Japanese (ja)
Other versions
JP3626553B2 (en
Inventor
Takanori Kuroki
隆憲 黒木
Yasushi Umemoto
靖 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroki Kogyosho Co Ltd
Original Assignee
Kuroki Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroki Kogyosho Co Ltd filed Critical Kuroki Kogyosho Co Ltd
Priority to JP10803496A priority Critical patent/JP3626553B2/en
Publication of JPH09295167A publication Critical patent/JPH09295167A/en
Application granted granted Critical
Publication of JP3626553B2 publication Critical patent/JP3626553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily obtain a clad material of hardly having a restriction on the dimension by heating a copper alloy raw material charged in a vessel of steel higher than the temperature of generating the liquid phase in the raw material, joining the heated copper alloy with the steel composed of a part of the vessel and making them as one body. SOLUTION: An uniform mixture of an alloy powder mixture 1 blended with bronze powder and brass powder and a dry borax anhydride is arranged on a bottom plate 2 of a box of soft steel, a graphite powder is scattered on the upper in a degree of without being exposed of the alloy powder and a graphite coating layer 6 is made, and the surface of the copper alloy powder is coated. Then, a soft steel lid 4 installed with a small hole 7 is mounted, and these are assembled with a welding part 5 spot-welded on a part of the circumference to side plates 3A, 3B with shielded arc welding. This is placed inside an electric furnace, after heating, melting, then cooling, further taking out outside the furnace and it is air cooled naturally. The obtained clad plate is formed with the copper alloy layer on the soft steel bottom plate as the base material and it has a sound joining state without defects of blow holes, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性、耐焼付
性、耐摩耗性を必要とする部位に用いられる銅合金と鋼
とのクラッド材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a clad material of a copper alloy and steel used in a portion requiring corrosion resistance, seizure resistance and wear resistance.

【0002】[0002]

【従来の技術】従来、銅合金はその本来もつ化学的安定
性のため、耐食性、耐焼付性、耐摩耗性を必要とする部
位に使用されてきたが、機械部品としては機械的強度に
乏しいため鋼を代表とする高強度材料と接合された複合
材として用いられることが多く、特に鋼に積層した形態
であるクラッド材が有用とされてきた。
2. Description of the Related Art Conventionally, copper alloys have been used in parts requiring corrosion resistance, seizure resistance, and wear resistance because of their inherent chemical stability, but they lack mechanical strength as mechanical parts. Therefore, it is often used as a composite material joined to a high-strength material typified by steel, and in particular, a clad material laminated on steel has been considered useful.

【0003】このクラッド材は、肉盛溶接、鋳込み、鋳
かけ等の溶融接合法、圧延接合、爆着接合、拡散接合等
の非溶融接合法、そして焼結、溶射等の半溶融接合法に
よって製造されてきた。
This clad material is subjected to a melt-bonding method such as overlay welding, casting, casting, non-melt bonding method such as rolling bonding, explosive bonding, diffusion bonding, and semi-melt bonding method such as sintering and thermal spraying. Has been manufactured.

【0004】しかしながら、それぞれに以下のような欠
点がある。
However, each has the following disadvantages.

【0005】溶融接合法である肉盛溶接の場合には、単
位時間当りの溶着金属量が制限され、広い面積をもつク
ラッド材の場合には製造効率が非常に低くなり、溶接施
工に高い技能が必要となる。
In the case of overlay welding, which is a fusion bonding method, the amount of deposited metal per unit time is limited, and in the case of a clad material having a large area, the production efficiency is extremely low, and the welding skill is high. Is required.

【0006】また、鋳込み、鋳かけは高温である金属溶
湯の保持、運搬を伴う施工作業のため、製造のための装
置設備が大がかりなものとなるため、製造コストも高く
なる。
Further, since casting and casting are construction works involving holding and transporting a high-temperature molten metal, the equipment and facilities for manufacturing become large, and the manufacturing cost also increases.

【0007】さらに、溶融接合法においては、湯流れ性
およびぬれ性促進のために溶湯温度を高く設定すること
になり、合金組成の変動および施工後における曲がり発
生等の形状劣化が起こる場合がある。
Further, in the fusion bonding method, the molten metal temperature is set high in order to promote the flowability and wettability of the molten metal, which may cause changes in the alloy composition and deterioration in shape such as bending after construction. .

【0008】さらに、特開昭57−94481号公報
に、母材上の合わせ材上面にフラックスを置き、溶融拡
散させる複合金属材料の製造法が開示されているが、加
熱雰囲気を非酸化性雰囲気とする雰囲気制御を必要とし
た製造法であり、接合強度を向上させるために圧延工程
を必要とする。
Further, Japanese Unexamined Patent Publication No. 57-94481 discloses a method for producing a composite metal material in which a flux is placed on the upper surface of a laminated material on a base material and melted and diffused. However, the heating atmosphere is a non-oxidizing atmosphere. It is a manufacturing method that requires atmosphere control and requires a rolling process to improve the bonding strength.

【0009】さらに、非溶融接合法である圧延接合の場
合は、原料の製作組合せが煩雑で、寸法および形状の自
由度が低く、拡散接合は真空等の雰囲気制御が必要なた
め生産効率が低く、製造コストも高くなる。
Further, in the case of rolling joining which is a non-melt joining method, the production combination of raw materials is complicated, the degree of freedom in size and shape is low, and diffusion joining requires low atmosphere control such as vacuum, so that the production efficiency is low. The manufacturing cost also increases.

【0010】また、爆着接合の場合は、バッチ生産方式
であるため製造コストが高く、適用できる材料組合せが
狭い、厚さの薄い製品への適用が困難であるなどの寸法
の自由度に制限がある。
Further, in the case of explosive bonding, since it is a batch production method, the manufacturing cost is high, the applicable material combination is narrow, and it is difficult to apply it to a product having a small thickness. There is.

【0011】半溶融接合法である焼結によるクラッド材
の製造は連続的な生産方式でも行われているが、比較的
小さい部品および薄いクラッド材への適用が主流であ
り、寸法的な自由度が乏しく、焼結工程において雰囲気
制御を行うために特殊な専用設備を必要とするため、製
造コストが高くなる。さらに、焼結および溶射の場合、
鋼等の裏金への接合強度は他の接合法より低い傾向があ
る。
The clad material is manufactured by sintering, which is a semi-melt joining method, even in a continuous production system, but it is mainly applied to relatively small parts and thin clad material, and the degree of freedom in dimension is high. However, the production cost is high because special dedicated equipment is required to control the atmosphere in the sintering process. Furthermore, in the case of sintering and spraying,
Bonding strength to the backing metal such as steel tends to be lower than other bonding methods.

【0012】[0012]

【発明が解決しようとする課題】この発明が解決しよう
とする課題は、従来の銅合金と鋼とのクラッド材の製造
上の欠点を解消することにあって、寸法上の制限が少な
い銅合金と鋼とのクラッド材を簡便且つ安価に製造する
手段を得ることにある。
The problem to be solved by the present invention is to eliminate the drawbacks in the production of the conventional clad material of copper alloy and steel, and the copper alloy has few dimensional restrictions. It is to obtain a means for easily and inexpensively producing a clad material of steel and steel.

【0013】[0013]

【課題を解決するための手段】この発明は、銅合金と鋼
の融点差を利用することにより、銅合金原料を鋼製の容
器に入れ、銅合金の少なくとも一部に液相が生じる温度
以上に電気炉、ガス炉および高周波加熱炉で加熱するこ
とにより一体接合が可能であるという知見に基づいて、
その課題を解決した。
The present invention utilizes a difference in melting point between a copper alloy and steel to put a copper alloy raw material in a steel container and to produce a liquid phase in at least a part of the copper alloy at a temperature not lower than a temperature. Based on the knowledge that it is possible to integrally bond by heating in an electric furnace, a gas furnace and a high frequency heating furnace,
I solved the problem.

【0014】具体的には、銅合金となるべき原料と、空
気中の酸素および材料表面の酸化物を吸収あるいは消費
または遮断させる材料とを、容器中のガスが加熱に伴い
容器外へ流出できる程度の隙間または小孔を設けた任意
の形状のその一部を鋼により構成した容器中に封入し、
銅合金となるべき原料の少なくとも一部に液相が生じる
温度以上に加熱して、銅合金と容器の一部を構成する鋼
とを一体接合することを特徴とする。
Specifically, the raw material to be a copper alloy and the material that absorbs, consumes, or blocks oxygen in the air and oxides on the surface of the material can flow out of the container as the gas in the container heats. Enclose a part of any shape with a gap or small holes in a container made of steel,
It is characterized in that at least a part of a raw material to be a copper alloy is heated to a temperature at which a liquid phase is generated or higher to integrally join the copper alloy and the steel forming a part of the container.

【0015】また、他の特徴は、銅合金となるべき原料
を、任意の形状の鋼製容器に入れ、還元性あるいは真空
雰囲気において、銅合金となるべき原料の少なくとも一
部に液相が生じる温度以上に加熱して、銅合金と容器の
一部を構成する鋼とを一体接合することにある。
Another feature is that a raw material to be a copper alloy is placed in a steel container having an arbitrary shape, and a liquid phase is generated in at least a part of the raw material to be a copper alloy in a reducing or vacuum atmosphere. It is to heat above the temperature to integrally join the copper alloy and the steel forming a part of the container.

【0016】空気中の酸素および材料表面の酸化物を吸
収あるいは消費または遮断させる材料が、容器内および
原料間空隙の残存酸素、および原料表面の酸化物と反応
して、酸化物あるいは複合酸化物を形成することにより
除去し、さらに容器内の雰囲気を不活性あるいは還元性
とし、還元性雰囲気により容器内表面および銅合金原料
表面を清浄化する。
A material that absorbs, consumes, or blocks oxygen in the air and the oxide on the surface of the material reacts with the residual oxygen in the voids in the container and between the raw materials and the oxide on the surface of the raw material to form an oxide or a complex oxide. To form an inactive or reducing atmosphere, and the reducing atmosphere cleans the inner surface of the container and the surface of the copper alloy raw material.

【0017】[0017]

【発明の実施の形態】この発明に適用できる材料の組合
せのための銅合金となるべき原料としては、通常の条件
で溶解可能な銅合金であれば特に制限はなく、特に圧延
等の塑性加工性の乏しいリン青銅および鉛青銅にも適用
可能である。
BEST MODE FOR CARRYING OUT THE INVENTION As a raw material to be a copper alloy for the combination of materials applicable to the present invention, there is no particular limitation as long as it is a copper alloy which can be melted under normal conditions. It is also applicable to phosphor bronze and lead bronze, which have poor properties.

【0018】また、銅合金となるべき原料としては、銅
合金の合金組成である板状、棒状あるいはブロック状の
塊状物、各種合金粉粒体あるいは純金属粉粒体の混合物
を好適に用いることができる。
Further, as a raw material to be a copper alloy, it is preferable to use a plate-like, rod-like or block-like lump having an alloy composition of the copper alloy, various alloy powders or a mixture of pure metal powders. You can

【0019】さらに、鋼としては、普通炭素鋼、合金鋼
あるいはステンレス鋼を代表とする鉄を主成分とした一
般にいう鋼が使用される。
Further, as the steel, generally-used steel containing iron as a main component such as ordinary carbon steel, alloy steel or stainless steel is used.

【0020】またさらに、容器中および原材料表面の残
存酸素および酸化物を吸収あるいは消費または遮断させ
る材料としては、炭素または炭素化合物、銅合金より低
い融点をもっ塩基性フラックスを用いることができる。
Furthermore, as a material for absorbing, consuming or blocking residual oxygen and oxides in the container and on the surface of the raw material, carbon or a carbon compound, or a basic flux having a melting point lower than that of a copper alloy can be used.

【0021】この残存酸素および酸化物を吸収あるいは
消費または遮断させる材料の使用によって、鋼製容器は
気密構造である必要はなくなり、通常の溶接構造で充分
である。
By using a material that absorbs, consumes or blocks residual oxygen and oxides, the steel container does not have to have an airtight structure, and a normal welded structure is sufficient.

【0022】すなわち、銅合金を用いる場合、容器内に
微量の炭素または炭素化合物が存在すれば、これが約4
00°C以上において容器内の残存酸素と反応して二酸
化炭素および一酸化炭素となり、不活性あるいは還元性
ガスとなり、気相−固相間反応で接合界面を含む銅合金
表面および母材表面を含む容器内表面の酸化物を還元す
る作用があり、また、炭素または炭素化合物と銅合金と
の反応性はなく、巻き込まれても液相では比重の差によ
り炭素または炭素化合物は浮上し、銅合金と分離され
る。
That is, when a copper alloy is used, if a trace amount of carbon or a carbon compound is present in the container, it is about 4
At temperatures above 00 ° C, it reacts with the residual oxygen in the container to form carbon dioxide and carbon monoxide, and becomes an inert or reducing gas. It has the effect of reducing oxides on the inner surface of the container that contains it, and there is no reactivity between carbon or carbon compounds and copper alloys, and even if they are entrained, carbon or carbon compounds float due to the difference in specific gravity in the liquid phase, and copper Separated from alloy.

【0023】また、銅合金より低い融点をもつ塩基性フ
ラックスを使用すると、このフラックスは、銅合金より
低い温度で溶解流動し、接合界面を含む銅合金表面およ
び母材表面を含む容器内表面の酸化物は液相−固相間反
応によって溶解除去され、清浄な銅合金表面を生成す
る。酸化物を溶融したフラックスはスラグとなるが、こ
のスラグは銅合金との反応性がなく、液相では比重の差
により浮上分離する。
When a basic flux having a melting point lower than that of the copper alloy is used, the flux melts and flows at a temperature lower than that of the copper alloy, and the flux of the inner surface of the container including the copper alloy surface including the bonding interface and the base metal surface is used. The oxide is dissolved and removed by a liquid-solid reaction to form a clean copper alloy surface. The flux obtained by melting the oxide becomes slag, but this slag has no reactivity with the copper alloy and floats and separates in the liquid phase due to the difference in specific gravity.

【0024】また、銅合金として粉粒体の使用は、原料
を任意の組成で調合することができ、複雑な母材表面に
隙間無く密着させることも可能であり、合金材料の選択
の自由度が大きくなるため、本発明の実施には、特に好
ましい。
The use of the granular material as the copper alloy allows the raw materials to be blended in an arbitrary composition and can be closely adhered to the surface of the complex base material without any gaps. Is especially preferred for the practice of the present invention.

【0025】この銅合金として粉粒体の使用の際は、合
金成分組成を調整する段階で、上記の炭素、炭素化合
物、更にはフラックスを、銅合金原料に対して均一に添
加混合すれば粉粒体間空隙および接合界面を含む粉粒体
表面に残存する酸素または酸化物が除去されて、ガス含
有の少ない空隙および清浄な粉粒体表面となり、粉粒体
原料を使用してもブローホールの発生を防止することが
可能となる。
When using the granular material as the copper alloy, the carbon, the carbon compound, and the flux described above are uniformly added to and mixed with the copper alloy raw material in the step of adjusting the alloy composition. Oxygen or oxides remaining on the surface of the granular material including inter-particle voids and bonding interface are removed, resulting in voids with less gas content and a clean granular surface, and blowholes even when using the granular material It is possible to prevent the occurrence of.

【0026】しかし、その添加量が0.1%未満である
と、残存酸素および酸化物を除去する効果が得られず、
また2.0重量%を超すと過剰な酸化物の生成を助長す
ることになり、ブローホール等の欠陥の原因となること
があるので、添加量は0.1〜2.0重量%の範囲が好
ましい。
However, if the amount added is less than 0.1%, the effect of removing residual oxygen and oxides cannot be obtained, and
On the other hand, if the content exceeds 2.0% by weight, excessive generation of oxides is promoted, which may cause defects such as blowholes. Therefore, the addition amount is in the range of 0.1 to 2.0% by weight. Is preferred.

【0027】ただし、添加量は、用いる材料によって異
なり、例えば、フラックスとしてホウ砂を用いる場合に
は0.1〜0.5重量%、黒鉛の場合には0.5〜1.
0重量%が好ましい範囲である。この場合、フラックス
と黒鉛とを複合して添加しても、その合計量が、上記の
範囲内であれば、その効果は発揮される。
However, the addition amount depends on the material used, and is, for example, 0.1 to 0.5% by weight when borax is used as the flux and 0.5 to 1% by weight when graphite is used.
A preferable range is 0% by weight. In this case, even if the flux and graphite are added in combination, the effect is exhibited if the total amount is within the above range.

【0028】さらに、容器内に酸化防止のためには、容
器内に微量の炭素または炭素化合物を配置し、残存酸素
と反応して消費させるか、容器内を反応性の低い窒素雰
囲気に置換する方法でもよく、あるいは容器内に銅合金
より低い融点をもつ塩基性フラックスを最表面に銅合金
が露出しない程度に散布することによってスラグ層を形
成することができる。
Further, in order to prevent oxidation in the container, a minute amount of carbon or a carbon compound is placed in the container and reacted with residual oxygen for consumption, or the inside of the container is replaced with a nitrogen atmosphere having low reactivity. Alternatively, the slag layer can be formed by spraying a basic flux having a melting point lower than that of the copper alloy into the container so that the copper alloy is not exposed on the outermost surface.

【0029】また銅合金が亜鉛、リンまたは鉛のような
蒸気圧の高い組成成分を含有する場合、銅合金表面を炭
素または炭素化合物およびフラックスで被覆することに
より、雰囲気中に蒸散するのを防止する効果もあり、成
分歩留も向上させることが可能となる。
When the copper alloy contains a composition component having a high vapor pressure, such as zinc, phosphorus or lead, the copper alloy surface is coated with carbon or a carbon compound and a flux to prevent evaporation into the atmosphere. This also has the effect of improving the component yield.

【0030】いずれの場合でも、容器は必ずしも充分に
気密である必要はなく、アーク溶接などによる通常の溶
接構造で充分であり、最終製品としての接合材の形状を
有する容器構造のもので、容器外からの過剰な大気の流
入が防止できる程度の構造であれば良い。その際に、容
器内で生じたガスが温度上昇により昇圧・膨張するのを
防ぐために、容器にガス抜きのための隙間または小孔を
開ける。この場合の隙間は構造部材を溶接せず、重ね合
わせた間隙程度でも充分で、小孔が大き過ぎると逆に空
気が流入するため、径2mm程度あれば充分である。
In any case, the container does not necessarily have to be sufficiently airtight, and an ordinary welding structure such as arc welding is sufficient, and the container structure has the shape of the joining material as the final product. Any structure may be used as long as it can prevent an excessive inflow of air from the outside. At this time, in order to prevent the gas generated in the container from increasing in pressure and expanding due to a rise in temperature, a gap or a small hole is formed in the container to release the gas. In this case, it is sufficient that the gap is about the overlapped gap without welding the structural members. If the small hole is too large, the air flows in reversely, so that the diameter of about 2 mm is sufficient.

【0031】さらには、比較的良好な密着が得られるの
であれば、鋼製容器の上面に耐熱材料であるアルミナ等
のセラミックスを蓋として置くだけで、容器内の不活性
あるいは還元性雰囲気に対する気密性と、容器内部のガ
スを逃がすための通気性が適度に保たれ、良好なクラッ
ド材を製造することが出来る。ただし、強度が低く、厚
さが薄い金属製の蓋を用いる場合は、溶接によって側面
材と固定しておかなければ、高温での処理中に過度の変
形が生じ、適度な気密性が保たれないことがある。
Further, if relatively good adhesion can be obtained, it is only necessary to place a ceramic such as alumina, which is a heat-resistant material, as a lid on the upper surface of the steel container, and the container is hermetically sealed against an inert or reducing atmosphere. And the air permeability for letting out the gas inside the container are appropriately maintained, and a good clad material can be manufactured. However, when using a low-strength, thin-thick metal lid, unless it is fixed to the side material by welding, excessive deformation occurs during high-temperature processing, and appropriate airtightness is maintained. There may not be.

【0032】また、還元性雰囲気炉または真空炉を用い
て一体接合を行う場合には、特に容器を設ける必要はな
く、一体化された時に母材となる底板と溶融した銅合金
を保持する側壁があれば良い。
Further, when integrally joining using a reducing atmosphere furnace or a vacuum furnace, it is not necessary to provide a container in particular, and a bottom plate serving as a base material when integrated and a side wall for holding a molten copper alloy. If there is

【0033】さらには、通常の大気炉を用いて一体接合
を行う場合に、気密構造となる鋼製容器に銅合金を真空
封入して行うこともできる。
Furthermore, when integrally joining using a normal atmospheric furnace, the copper alloy may be vacuum sealed in a steel container having an airtight structure.

【0034】この場合の銅合金原料は、施工後において
所定銅合金の組成となれば形状および寸法の制限はな
く、板状およびブロック状の塊状物、粒状および粉末状
の粉粒体、線状および棒状の棒線材が使用でき、これら
を適度の割合で混合した混合物でも使用可能である。原
料寸法は容器内に装入できる寸法であればよく、板状お
よびブロック状の塊状物の原料は適当な寸法および形状
に切断して用いればよい。
In this case, the copper alloy raw material is not limited in shape and size as long as the composition of the predetermined copper alloy is obtained after the construction, and plate-like and block-like lumps, granules and powders, and linear particles. Also, rod-shaped rods and wire rods can be used, and a mixture obtained by mixing these in appropriate proportions can also be used. The raw material size may be any size that can be charged into the container, and the raw material of the plate-shaped and block-shaped lumps may be cut into an appropriate size and shape before use.

【0035】線状および棒状の棒線材は、適当な長さに
切断して母材となる鋼上に整列させて並べてもよいし、
線径の数倍の長さに切断して用いれば、他の材料と合わ
せて用いる場合は混合および成分調整が容易である。
The wire rods and rod-shaped rods may be cut into a suitable length and aligned on the base steel.
When cut into lengths several times the wire diameter, mixing and component adjustment are easy when used in combination with other materials.

【0036】この粒状および粉末状の粉粒体は、この場
合も、銅合金原料として非常に有用であり、混合などの
作業性、成分調整などの管理性に優れている。粒度分布
および形状の選択が自由であり、銅合金層を任意の位置
に、自由な形状に配置することが可能である。銅合金の
組成も自由に調整可能であり、急冷凝固したアトマイズ
粉を用いれば、通常の溶解法では得られない成分および
組成の銅合金も利用できるため、銅合金の選択の自由度
は大きくなる。
In this case, the granular or powdery granular material is also very useful as a copper alloy raw material, and is excellent in workability such as mixing and controllability such as component adjustment. The particle size distribution and shape can be freely selected, and the copper alloy layer can be arranged at any position and in any shape. The composition of the copper alloy can also be adjusted freely, and if atomized powder solidified by quenching is used, copper alloys with components and compositions that cannot be obtained by the usual melting method can also be used, thus increasing the degree of freedom in selecting the copper alloy. .

【0037】銅合金原料の一部に液相が生じる温度以上
への加熱は、容器外部は大気雰囲気であっても、容器内
部を還元性あるいは真空雰囲気として、この雰囲気の下
で固相線温度以上でかつ液相線温度+100°C以下の
温度範囲に加熱して、銅合金と容器の一部を構成する鋼
とを一体接合させる。加熱温度が固相線温度以下では容
器の一部を構成する鋼との冶金的接合が起こらず、固相
線温度+100°Cを越して加熱すると、銅合金の主成
分である銅の容器への粒界浸入や容器の一部を構成する
鋼の主成分である鉄による銅合金の希釈等の過剰な反応
や、銅合金成分の蒸発等による歩留低下が起こり、健全
な一体接合ができない。
Heating above the temperature at which a liquid phase is generated in a part of the copper alloy raw material makes the inside of the container a reducing or vacuum atmosphere even if the outside of the container is an air atmosphere, and the solidus temperature is set under this atmosphere. The copper alloy and the steel forming a part of the container are integrally joined by heating to the temperature range not lower than the liquidus temperature + 100 ° C. If the heating temperature is below the solidus temperature, metallurgical bonding with the steel that forms a part of the container does not occur, and if heating is performed above the solidus temperature + 100 ° C, it becomes a copper container that is the main component of the copper alloy. Grain boundary infiltration of steel and excessive reaction such as dilution of copper alloy with iron, which is the main component of steel that constitutes a part of the container, and yield decrease due to evaporation of copper alloy components, etc., and sound integral joining cannot be performed. .

【0038】母材となる鋼が容器の一部を構成すれば、
例えば角箱状の容器の場合は底板が母材となるように、
円筒状の容器の場合はパイプを母材となるように組み立
てれば、構造が簡易なため容器製作工程が簡便で、製作
コストも低くなる。別途組み立てた容器内に母材となる
鋼を配置してもよく、この場合には、容器の材質は鋼で
なくセラミック等の耐熱材料製でもよく、容器の一部を
構成する場合よりさらに広く選択でき、材質の選択によ
り容器の再利用も可能となる。したがって、容器はセラ
ミック等の耐熱材料製でもよいが、熱衝撃に弱く、製作
コストも高いので、耐熱材料で容器の内面のみを内張り
したり、一部を耐熱材料とした構造の容器であれば、繰
返し再利用することも可能であり、容器製作工程の省略
とコスト低下も可能となる。
If the base steel constitutes a part of the container,
For example, in the case of a square box-shaped container, the bottom plate becomes the base material,
In the case of a cylindrical container, if the pipe is assembled so as to be the base material, the structure of the container is simple, so that the container manufacturing process is simple and the manufacturing cost is low. Steel that is the base material may be placed in a separately assembled container. In this case, the material of the container may be made of a heat-resistant material such as ceramic instead of steel, and is wider than when it constitutes a part of the container. It can be selected, and the container can be reused by selecting the material. Therefore, the container may be made of a heat-resistant material such as ceramic.However, since the container is vulnerable to thermal shock and the production cost is high, if the container has a structure in which only the inner surface of the container is lined with a heat-resistant material or a part is made of a heat-resistant material, It is also possible to reuse repeatedly, and it is possible to omit the container manufacturing process and reduce the cost.

【0039】ただし鋼を容器内に配置する場合、原料状
態および溶解状態の銅合金が容器との隙間に浸入するこ
とを防ぐことが必要であり、浸入が起こると原料が損失
したり、施工後の分離が困難になる。つまり、容器の一
部に鋼を点溶接したり、固定用の治具を設置したり、耐
熱用接着剤で固定したり、銅合金と反応しない耐熱性粉
末を隙間に詰めるだけでもよい。
However, when arranging steel in the container, it is necessary to prevent the raw material state and the molten state copper alloy from invading the gap between the container and the container. Becomes difficult to separate. In other words, steel may be spot-welded to a part of the container, a fixing jig may be installed, a heat-resistant adhesive may be used for fixing, or heat-resistant powder that does not react with the copper alloy may be filled in the gap.

【0040】また、容器形状の選択は製造するクラッド
材の形状により決まり、板状のクラッド材の場合は底板
を母材として箱状の容器、パイプ状のクラッド材の場合
は側壁であるパイプを母材として、必要に応じてパイプ
内に中子を配置して筒状の容器を組み立てれば、任意の
形状のクラッド材を得ることができる。
The selection of the container shape is determined by the shape of the clad material to be manufactured. In the case of a plate-shaped clad material, a box-shaped container using the bottom plate as a base material, and in the case of a pipe-shaped clad material, a pipe that is a side wall is selected. As a base material, a clad material having an arbitrary shape can be obtained by arranging a core in a pipe as necessary and assembling a tubular container.

【0041】さらに、この発明においては、加熱温度を
固相−液相共存域に設定することにより、銅合金層の構
造を本来の溶解鋳造組織とは異なる空隙が適度に分散し
た構造をもつ銅合金層と鋼が一体接合したクラッド材を
製造することも可能である。つまり、加熱温度を固相線
温度以上でかつ液相線温度+50°C以下とすることに
より、銅合金材料は固相と液相が混在した固相−液相共
存状態となり、適度の時間保持した上で固相線温度以下
に冷却すれば固相−液相共存状態を保存した組織構造の
銅合金層を形成することが可能となる。
Further, in the present invention, by setting the heating temperature in the solid phase-liquid phase coexistence region, the copper having a structure in which the structure of the copper alloy layer is appropriately dispersed with voids different from the original melt-cast structure It is also possible to manufacture a clad material in which the alloy layer and the steel are integrally joined. In other words, by setting the heating temperature to the solidus temperature or higher and the liquidus temperature + 50 ° C or lower, the copper alloy material is in a solid phase-liquid phase coexisting state in which the solid phase and the liquid phase are mixed, and the copper alloy material is retained for an appropriate time. Then, if cooled to a temperature below the solidus temperature, it becomes possible to form a copper alloy layer having a structural structure that preserves the solid-liquid coexistence state.

【0042】この場合、固相−液相共存状態に占める固
相部分の割合が過度に多いと、銅合金層が形状を保て
ず、鋼との良好な接合強度も得られないので、空隙を適
度の大きさおよび分布形態に形成することが必要であ
る。空隙の大きさおよび分布を制御するためには、粉粒
体の銅合金原料を用いることが適しており、粉粒体の形
状および粒度を調整することで空隙を適度の大きさおよ
び分布形態に制御することが可能である。
In this case, if the proportion of the solid phase portion in the solid phase-liquid phase coexisting state is too large, the copper alloy layer cannot maintain its shape and good joint strength with steel cannot be obtained, so that the voids are not formed. Needs to be formed in a proper size and distribution form. In order to control the size and distribution of the voids, it is appropriate to use a copper alloy raw material of the granular material, and to adjust the shape and the particle size of the granular material so that the voids have an appropriate size and distribution form. It is possible to control.

【0043】銅合金層に適度の大きさおよび分布に形成
された空隙は、ライナーとして用いられた場合に潤滑油
の保持および貯蔵を行う場所としての機能があり、粉末
焼結法で形成される含油軸受の粉末間空隙と同等の役割
を果たすことが期待される。
The voids formed in the copper alloy layer with an appropriate size and distribution have a function as a place for holding and storing the lubricating oil when used as a liner, and are formed by the powder sintering method. It is expected to play the same role as the inter-powder voids of oil-impregnated bearings.

【0044】[0044]

【実施例】【Example】

実施例1 実施例1から実施例3は、銅合金原料として粉粒体であ
る銅合金粉末を用いた例である。
Example 1 Examples 1 to 3 are examples in which copper alloy powder, which is a granular material, is used as a copper alloy raw material.

【0045】図1に示す幅720mm、長さ1250m
m、高さ70mm(内寸)の軟鋼(SS400)製箱
(蓋7および側板3A,3Bの板厚9mm、母材となる
底板2の板厚19mm)の底板2と側板3A,3Bを被
覆アーク溶接で組み立てた。
Width 720 mm and length 1250 m shown in FIG.
Covering the bottom plate 2 and the side plates 3A, 3B of m, height 70 mm (inner size) made of mild steel (SS400) box (9 mm plate thickness of the lid 7 and the side plates 3A, 3B, 19 mm thickness of the bottom plate 2 serving as the base material) It was assembled by arc welding.

【0046】この軟鋼製箱の底板2上に、粒度分布が1
20メッシュ以下である青銅粉(スズ10重量%、残銅
および不可避不純物)と粒度分布が100メッシュ以下
である黄銅粉(亜鉛20重量%、残銅および不可避不純
物)を原料として、青銅BC2(スズ7.2重量%、亜
鉛3.6重量%、残銅および不可避不純物)となるよう
に配合した合計44.7kgの合金粉末混合物1と、乾
燥した無水ホウ砂80gをV型混合機を用いて均一に混
合したものを配置し、その上に銅合金粉末が露出しない
程度に粒径80μm以下の黒鉛粉末を散布して黒鉛被覆
層6とし、銅合金粉末表面を被覆した。そして直径2m
mの小孔7を1か所設けた軟鋼板製蓋4を載せ、側板3
A,3Bと被覆アーク溶接で周の一部を点溶接した8個
所の溶接部5で組み立てた。
On the bottom plate 2 of this mild steel box, the particle size distribution is 1
Bronze powder BC2 (tin Using a V-type mixer, alloy powder mixture 1 of a total of 44.7 kg and 80 g of dried anhydrous borax were blended so as to be 7.2% by weight, 3.6% by weight of zinc, residual copper and unavoidable impurities). A uniformly mixed material was placed, and graphite powder having a particle size of 80 μm or less was sprinkled thereon to form a graphite coating layer 6 to coat the surface of the copper alloy powder. And diameter 2m
The mild steel plate lid 4 provided with one small hole 7 of m is placed on the side plate 3
Assembling was carried out at 8 welding parts 5 in which part of the circumference was spot-welded by A, 3B and covered arc welding.

【0047】これを電気炉内に置き、200°C/Hr
で加熱し、900°Cで2時間の保持後に1050°C
でさらに4時問保持して溶解した上で、800°Cまで
200°C/Hrで冷却した後、さらに炉外へ引出して
自然空冷させた。
This was placed in an electric furnace and kept at 200 ° C / Hr.
After heating at 900 ° C for 2 hours and holding at 1050 ° C
After being held for 4 more hours and melted, it was cooled to 800 ° C at 200 ° C / Hr, and then further pulled out of the furnace and air-cooled.

【0048】得られたクラッド板は、母材となる厚さ1
9mmの軟鋼製底板2上に厚さ6mmの銅合金層が形成
されており、ブローホール等の欠陥も観察されず、母材
と銅合金層は全面に渡って健全な接合状態を有するもの
であった。
The obtained clad plate has a thickness of 1
A 6 mm-thick copper alloy layer is formed on a 9 mm mild steel bottom plate 2, defects such as blow holes are not observed, and the base material and the copper alloy layer have a sound bonding state over the entire surface. there were.

【0049】また、得られた銅合金層は、スズ9.0重
量%、亜鉛3.0重量%、残銅および不可避不純物の組
成となり、銅合金層の硬さはビッカース硬さHv90〜
110で、JIS−G−0601に規定された剪断強さ
試験片を採取して求めた剪断強さは、表1に他の銅合金
との組合せの場合の結果と併せて示すが、30kgf/
mm2以上の値であり接合界面は充分な接合強度である
ことを示した。
Further, the obtained copper alloy layer had a composition of 9.0 wt% tin, 3.0 wt% zinc, residual copper and unavoidable impurities, and the hardness of the copper alloy layer was Vickers hardness Hv90-.
At 110, the shear strength determined by collecting the shear strength test piece specified in JIS-G-0601 is shown in Table 1 together with the result in the case of combination with other copper alloys.
It was a value of mm 2 or more, indicating that the bonding interface had sufficient bonding strength.

【0050】[0050]

【表1】 さらに、JIS−G−0601に規定された側曲げ試験
片(板厚:銅合金層3mm+鋼母材16mm、幅:9.
5mm、長さ:150mm)を採取して、内側半径20
mmの押し治具とローラー式支持治具を用いて側曲げ試
験を行ったところ、約90度の曲げ角度でも界面付近に
割れは発生しなかった。
[Table 1] Further, a side bending test piece (plate thickness: copper alloy layer 3 mm + steel base material 16 mm, width: 9.
5 mm, length: 150 mm) is sampled and the inner radius is 20
When a side bending test was performed using a pressing jig of mm and a roller type supporting jig, cracks did not occur near the interface even at a bending angle of about 90 degrees.

【0051】施工後のクラッド板外観は、銅合金の最表
面にはスラグおよび黒鉛が浮上した鋳肌となっていた
が、これらは通常の機械加工により容易に除去でき、機
械加工仕上げで平滑な表面とすることが可能であった。
The appearance of the clad plate after the construction was a cast surface with slag and graphite floating on the outermost surface of the copper alloy, but these can be easily removed by ordinary machining and smoothed by machining finish. It could have been a surface.

【0052】実施例2 実施例1と同様の軟鋼(SS400)製箱の底板2上
に、実施例1と同様の銅合金粉末原料を用いて青銅BC
2(スズ7.0重量%、亜鉛4.7重量%、残銅および
不可避不純物)となるように配合した合計44.7kg
の銅合金粉末混合物と、乾燥した粒径80μm以下の黒
鉛粉末313gをV型混合機を用いて均一に混合したも
のを配置し、その上に銅合金粉末が露出しない程度に粒
径80μm以下の黒鉛粉末散布して黒鉛被覆層6とし、
銅合金粉末表面を被覆した。そして直径2mmの小孔を
1か所設けた軟鋼板製蓋4を載せ、側板3A,3Bと被
覆アーク溶接で周の一部を点溶接した8個所の溶接部で
組み立てた。
Example 2 On the bottom plate 2 of a mild steel (SS400) box similar to that in Example 1, the same copper alloy powder raw material as in Example 1 was used, and bronze BC was used.
2 (tin 7.0% by weight, zinc 4.7% by weight, residual copper and unavoidable impurities) in total of 44.7 kg
Of the copper alloy powder mixture and 313 g of dried graphite powder having a particle size of 80 μm or less are uniformly mixed by using a V-type mixer, and the copper alloy powder having a particle size of 80 μm or less is exposed to the extent that the copper alloy powder is not exposed. Graphite powder is sprinkled to form the graphite coating layer 6,
The copper alloy powder surface was coated. Then, a mild steel plate lid 4 provided with one small hole having a diameter of 2 mm was placed, and the side plates 3A and 3B were assembled at eight welded portions by spot welding a part of the circumference by covered arc welding.

【0053】これを電気炉内に置き、200°C/Hr
で加熱し、1050°Cで6時間保持して溶解した上
で、800°Cまで200°C/Hrで冷却した後、さ
らに炉外へ引出して自然空冷させた。
This was placed in an electric furnace and kept at 200 ° C / Hr.
After heating at 1050 ° C. for 6 hours to dissolve it, it was cooled to 800 ° C. at 200 ° C./Hr, and then further pulled out of the furnace and air-cooled.

【0054】得られたクラッド板は、母材となる厚さ1
9mmの軟鋼製底板上に厚さ6mmの銅合金層が形成さ
れており、ブローホール等の欠陥も観察されず、母材と
銅合金層は全面に渡って健全な接合がなされていた。
The obtained clad plate has a thickness of 1
A 6 mm-thick copper alloy layer was formed on a 9 mm mild steel bottom plate, defects such as blow holes were not observed, and the base material and the copper alloy layer were soundly joined over the entire surface.

【0055】また、得られた銅合金層は、スズ7.4重
量%、亜鉛4.2重量%、残銅および不可避不純物の組
成となり、銅合金層の硬さはHv90〜110で、銅合
金層と母材の接合界面における剪断強さは約30kgf
/mm2で充分な接合強度を示した。
Further, the obtained copper alloy layer had a composition of tin 7.4% by weight, zinc 4.2% by weight, residual copper and inevitable impurities, and the hardness of the copper alloy layer was Hv 90 to 110, and the copper alloy Shear strength at the bonding interface between the layer and the base metal is about 30 kgf
/ Mm 2 showed sufficient bonding strength.

【0056】施工後のクラッド板外観は、銅合金の最表
面にはスラグおよび黒鉛が浮上した鋳肌となっていた
が、これらは通常の機械加工により容易に除去でき、機
械加工仕上げで平滑な表面とすることが可能であつた。
The appearance of the clad plate after construction was a cast surface with slag and graphite floating on the outermost surface of the copper alloy, but these can be easily removed by ordinary machining and smoothed by machining. It could be a surface.

【0057】実施例3 図2に示す最外径120mm1最内径50mm1高さ1
00mmの軟鋼(SS400)製円筒容器(母材となる
外側パイプ2Aの肉厚10mm、内側パイプ2B、底板
2,蓋4の板厚5mm)の底板3と同心円状に配置した
外側パイプ2Aおよび内側パイプ2Bを被覆アーク溶接
で組み立てた。
Example 3 Outermost diameter 120 mm 1 Outermost diameter 50 mm 1 Height 1 shown in FIG.
Outer pipe 2A and inner side arranged concentrically with bottom plate 3 of a 00 mm cylindrical container made of mild steel (SS400) (thickness of outer pipe 2A as a base material is 10 mm, inner pipe 2B, bottom plate 2 and lid 4 is 5 mm) Pipe 2B was assembled by coated arc welding.

【0058】この軟鋼製筒状容器の外側パイプ2A、内
側パイプ2Bおよびに底板3に囲まれた溝状の空問に、
実施例1と同様の銅合金粉末原料を用いて、青銅BC2
(スズ7.2重量%、亜鉛3.6重量%、残銅および不
可避不純物)となるように配合した合計1.65kgの
合金粉末混合物1と、乾燥した粒径80μm以下の黒鉛
粉末11.2gをV型混合機を用いて均一に混合したも
のを装入し、その上に銅合金粉末が露出しない程度に粒
径80μm以下の黒鉛粉末を散布して黒鉛被覆層6と
し、銅合金粉末表面を被覆した。そして軟鋼板製蓋4を
載せるのみで溶接は行わず、容器として組み立てた。
In the hollow pipe surrounded by the outer pipe 2A, the inner pipe 2B and the bottom plate 3 of the mild steel tubular container,
Using the same copper alloy powder raw material as in Example 1, bronze BC2
(1 wt% tin, 3.6 wt% zinc, residual copper and unavoidable impurities), a total of 1.65 kg of alloy powder mixture 1 and 11.2 g of dried graphite powder having a particle size of 80 μm or less. Was uniformly mixed using a V-type mixer, and a graphite powder having a particle size of 80 μm or less was sprinkled thereon to form a graphite coating layer 6, the surface of the copper alloy powder. Was coated. Then, only the lid 4 made of mild steel plate was placed, welding was not performed, and the container was assembled.

【0059】これを電気炉内に置き、200°C/Hr
で加熱し、1050°Cで4時間保持して溶した上で、
800°Cまで200°C/Hrで冷却した後、さらに
炉外へ引出して自然空冷した。
This was placed in an electric furnace, and 200 ° C / Hr
After heating at 1050 ° C for 4 hours to melt,
After cooling to 800 ° C at 200 ° C / Hr, it was further drawn out of the furnace and air-cooled.

【0060】施工後に内側パイプを通常の機械加工によ
り除去すれば、銅合金と鋼が一体接合したクラッド管を
得ることができる。
If the inner pipe is removed by ordinary machining after the construction, a clad pipe in which the copper alloy and the steel are integrally joined can be obtained.

【0061】得られたクラッド管は、母材となる厚さ1
0mmの軟鋼製パイプ内表面に厚さ約20mmの銅合金
層が形成されており、ブローホール等の欠陥も観察され
ず、母材と銅合金層は全面に渡って健全な接合がなされ
ていた。
The obtained clad tube has a thickness of 1 as a base material.
A copper alloy layer having a thickness of about 20 mm was formed on the inner surface of a 0 mm mild steel pipe, defects such as blowholes were not observed, and the base material and the copper alloy layer were joined together soundly over the entire surface. .

【0062】図3は内側パイプの代わりに黒鉛製中子を
用いた場合の、溶解前における原料の断面配置状態を示
す。黒鉛製中子は銅合金と反応せず、容易に分離するこ
とが可能なため、再度利用することも可能であり、鋳肌
も平滑なため銅合金内面の切削量が少なかった。
FIG. 3 shows the cross-sectional arrangement of the raw material before melting when a graphite core is used instead of the inner pipe. Since the graphite core did not react with the copper alloy and could be easily separated, it could be reused, and the casting surface was smooth and the amount of cutting on the inner surface of the copper alloy was small.

【0063】実施例4 図1に示す容器と形状は同じであるが、寸法がより小型
である、幅190mm、長さ260mm、高さ50mm
(内寸)の軟鋼(SS400)製箱(蓋および側板板厚
5mm、母材となる底板の板厚9mm)の底板と側板を
被覆アーク溶接で組み立てた。
Example 4 The shape is the same as the container shown in FIG. 1, but the dimensions are smaller, width 190 mm, length 260 mm, height 50 mm.
A bottom plate and a side plate of an (inner size) box made of mild steel (SS400) (cover and side plate thickness 5 mm, base plate thickness 9 mm) were assembled by covered arc welding.

【0064】この軟鋼製箱の底板3の上に、実施例1と
同様の銅合金粉末原料を用いて青銅BC2(スズ7.2
重量%、亜鉛重量3.6%、残銅および不可避不純物)
となるように配合した合計1.65kgの合金粉末混合
物1と、乾燥した無水ホウ砂2.8gを均一に混合した
ものを配置し、その上に銅合金粉末が露出しない程度に
粒径80μm以下の黒鉛粉末を散布して黒鉛被覆層6と
し、銅合金粉末表面を被覆した。そして軟鋼板製蓋を載
せるのみで溶接は行わず、容器として組み立てた。
On the bottom plate 3 of this mild steel box, bronze BC2 (tin 7.2) using the same copper alloy powder raw material as in Example 1.
Wt%, zinc weight 3.6%, residual copper and unavoidable impurities)
The alloy powder mixture 1 of 1.65 kg in total that was mixed so as to be uniformly mixed with 2.8 g of dried anhydrous borax was arranged, and the particle diameter was 80 μm or less so that the copper alloy powder was not exposed thereon. The graphite powder of was sprayed to form a graphite coating layer 6, and the surface of the copper alloy powder was coated. Then, only a lid made of mild steel plate was placed, welding was not performed, and the container was assembled.

【0065】これを電気炉内に置き、200°C/Hr
で加熱し、1000°Cで2時間保持して溶解した上
で、900°Cまで200°C/Hrで冷却した後、さ
らに炉外へ引出して自然空冷させた。
This was placed in an electric furnace and kept at 200 ° C / Hr.
After heating at 1000 ° C. for 2 hours to melt it, it was cooled to 900 ° C. at 200 ° C./Hr, then further pulled out of the furnace and air-cooled.

【0066】図4に溶解前における原料の断面配置状態
を示し、図5に溶解後における空隙を生成させたクラッ
ド板の断面状況を示す。
FIG. 4 shows the cross-sectional arrangement of the raw material before melting, and FIG. 5 shows the cross-sectional condition of the clad plate in which the voids have been generated after melting.

【0067】得られたクラッド板は、母材となる厚さ9
mmの軟鋼製底板3上に厚さ5mmの銅合金層9が形成
さた。この銅合金層9は、マクロ組織観察において約
0.1〜1.0mmの大きさの均一に分布した空隙11
を含む約3mm厚さの銅合金層9Aと空隙11を含まな
い約2mm厚さの銅合金層9Bで構成され、銅合金層と
鋼の接合界面10付近には欠陥は観察されなかった。剪
断試験においても破断位置は銅合金層9であり、界面は
健全な接合がなされていると判断された。
The obtained clad plate had a thickness of 9 as a base material.
A copper alloy layer 9 having a thickness of 5 mm was formed on the bottom plate 3 made of mm of mild steel. This copper alloy layer 9 has voids 11 with a size of about 0.1 to 1.0 mm, which are uniformly distributed in macroscopic observation.
It was composed of a copper alloy layer 9A having a thickness of about 3 mm and a copper alloy layer 9B having a thickness of about 2 mm not containing voids 11. No defects were observed in the vicinity of the joining interface 10 between the copper alloy layer and the steel. Also in the shear test, the fracture position was the copper alloy layer 9, and it was determined that the interface was soundly joined.

【0068】施工後のクラッド板外観は、銅合金の最表
面にはスラグおよび黒鉛が浮上した鋳肌となっていた
が、これらは通常の機械加工により容易に除去でき、機
械加工仕上げを行うとマクロ組織観察において観察され
た約0.1〜1.0mmの大きさの空隙が、銅合金表面
の全面にほぼ均一に露出する表面となり、これらの表面
に開放した空隙は潤滑油の油溜りとしての機能をもたせ
ることが可能である。
The appearance of the clad plate after the construction was a cast surface with slag and graphite floating on the outermost surface of the copper alloy, but these can be easily removed by ordinary machining, and if a machining finish is performed. The voids with a size of about 0.1 to 1.0 mm observed in the macrostructure observation are the surfaces that are exposed almost uniformly on the entire surface of the copper alloy, and the voids opened on these surfaces serve as oil pools for lubricating oil. It is possible to have the function of.

【0069】[0069]

【発明の効果】【The invention's effect】

(1)簡便な装置および施工方法で、製造コストを低く
抑えて、寸法上の制限の少ない銅合金と鋼のクラッド材
を製造することができる。
(1) It is possible to manufacture a clad material of copper alloy and steel with less dimensional restrictions with a simple apparatus and construction method, while keeping the manufacturing cost low.

【0070】(2)融点差のみを利用した接合であるた
め、溶解できる銅合金であれば適用が可能であり、広い
範囲の銅合金と鋼の組合せによるクラッド材が製造でき
る。
(2) Since the joining uses only the difference in melting point, any copper alloy that can be melted can be applied, and a clad material made of a wide range of combinations of copper alloy and steel can be manufactured.

【0071】(3)冶金的な反応により一体化する接合
であるため、界面強度の優れたクラッド材を得ることが
できる。
(3) Since the joining is integrated by a metallurgical reaction, a clad material having excellent interfacial strength can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 クラッド板を製造する場合の、溶解前におけ
る原料の断面配置状態を示す。
FIG. 1 shows a cross-sectional arrangement state of raw materials before melting when a clad plate is manufactured.

【図2】 内側パイプを用いてクラッド管を製造する場
合の、溶解前における原料の断面配置状態を示す。
FIG. 2 shows a cross-sectional arrangement state of raw materials before melting when a clad pipe is manufactured using an inner pipe.

【図3】 黒鉛製中子を用いてクラッド管を製造する場
合の、溶解前における原料の断面配置状態を示す。
FIG. 3 shows a cross-sectional arrangement state of raw materials before melting when a clad tube is manufactured using a graphite core.

【図4】 溶解前における原料の断面配置状態を示す。FIG. 4 shows a cross-sectional arrangement state of raw materials before melting.

【図5】 制御した空隙を生成させたクラッド板の断面
状況を示す。
FIG. 5 shows a cross-sectional situation of a clad plate in which controlled voids are generated.

【符号の説明】[Explanation of symbols]

1 銅合金粉末混合物 2 底板(母材) 2A 外側パイプ(母材) 2B 内側パイプ 3 底板 3A,3B 側板 4 蓋 5 溶接部 6 黒鉛被覆層 7 小孔 8 中子 9 銅合金層 9A 空隙を含む銅合金層 9B 空隙を含まない銅合金層 10 接合界面 11 空隙 1 Copper alloy powder mixture 2 Bottom plate (base material) 2A Outer pipe (base material) 2B Inner pipe 3 Bottom plate 3A, 3B Side plate 4 Lid 5 Welded portion 6 Graphite coating layer 7 Small hole 8 Core 9 Copper alloy layer 9A Including voids Copper alloy layer 9B Copper alloy layer not containing voids 10 Bonding interface 11 Voids

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 クラッド材を形成する銅合金原料とこの
銅合金原料を雰囲気中の酸素と遮断する材料とを、 一部を同じクラッド材を形成する鋼によって構成し、且
つ、容器中の空気が加熱に伴い容器外へ流出できる程度
の隙間を設けた容器中に装入し、 この鋼製容器に装入した銅合金原料をその銅合金原料の
少なくとも一部に液相が生じる温度以上に加熱して、こ
の加熱された銅合金を容器の一部を構成する鋼とを接合
して一体化することを特徴とする銅合金と鋼のクラッド
材の製造方法。
1. A copper alloy raw material for forming a clad material and a material for shielding the copper alloy raw material from oxygen in an atmosphere are partially made of steel forming the same clad material, and air in a container is used. Is charged into a container with a gap that allows it to flow out of the container due to heating, and the copper alloy raw material charged into this steel container is heated to a temperature above the temperature at which a liquid phase is generated in at least a part of the copper alloy raw material. A method for producing a copper alloy and a steel clad material, which comprises heating and joining the heated copper alloy with steel constituting a part of a container to integrate them.
【請求項2】 請求項1に記載の雰囲気中の酸素と遮断
する材料が、炭素、または、炭素化合物、または、銅合
金より融点の低い塩基性フラックスであることを特徴と
する銅合金と鋼のクラッド材の製造方法。
2. The copper alloy and the steel according to claim 1, wherein the material that blocks oxygen in the atmosphere is carbon, a carbon compound, or a basic flux having a melting point lower than that of the copper alloy. Method for manufacturing clad material.
【請求項3】 クラッド材を形成する銅合金原料を鋼製
容器に装入し、この鋼製容器に装入した銅合金原料を非
酸化性雰囲気の下で銅合金原料の少なくとも一部に液相
が生じる温度以上に加熱して、銅合金と容器の一部を構
成する鋼とを一体接合することを特徴とする銅合金と鋼
のクラッド材の製造方法。
3. A copper alloy raw material for forming a clad material is charged into a steel container, and the copper alloy raw material charged into the steel container is liquidized into at least a part of the copper alloy raw material under a non-oxidizing atmosphere. A method for producing a clad material of copper alloy and steel, comprising integrally heating a copper alloy and steel constituting a part of a container by heating to a temperature at which a phase occurs or higher.
【請求項4】 請求項1または請求項2に記載のクラッ
ド材を構成する銅合金原料が、クラッド材を形成する銅
合金組成を有する板状、ブロック状の塊状物、あるいは
粉末状、粒状の粉粒体、あるいは線状、棒状の棒線材で
あることを特徴とする銅合金と鋼のクラッド材の製造方
法。
4. The copper alloy raw material constituting the clad material according to claim 1 or 2, wherein the copper alloy raw material has a plate-like or block-like lump having a copper alloy composition forming the clad material, or a powdery or granular material. A method for producing a copper alloy and steel clad material, which is a powder or granular material, or a wire rod having a linear or rod shape.
【請求項5】 請求項4に記載のクラッド材を形成する
銅合金原料を、クラッド材を形成する銅合金組成を有す
る粉粒体とし、銅合金原料の少なくとも一部に液相が生
じる加熱温度を固相線温度以上でかつ液相線温度+50
°C以下の温度として、制御した空隙を有する銅合金相
を生成させることを特徴とする銅合金と鋼のクラッド材
の製造方法。
5. A heating temperature at which a liquid phase is generated in at least a part of the copper alloy raw material, wherein the copper alloy raw material forming the clad material according to claim 4 is a granular material having a copper alloy composition forming the clad material. Above solidus temperature and liquidus temperature +50
A method for producing a copper alloy-steel clad material, characterized in that a copper alloy phase having controlled voids is generated at a temperature of ° C or less.
JP10803496A 1996-04-26 1996-04-26 Manufacturing method of clad material of copper alloy and steel Expired - Lifetime JP3626553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10803496A JP3626553B2 (en) 1996-04-26 1996-04-26 Manufacturing method of clad material of copper alloy and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10803496A JP3626553B2 (en) 1996-04-26 1996-04-26 Manufacturing method of clad material of copper alloy and steel

Publications (2)

Publication Number Publication Date
JPH09295167A true JPH09295167A (en) 1997-11-18
JP3626553B2 JP3626553B2 (en) 2005-03-09

Family

ID=14474281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10803496A Expired - Lifetime JP3626553B2 (en) 1996-04-26 1996-04-26 Manufacturing method of clad material of copper alloy and steel

Country Status (1)

Country Link
JP (1) JP3626553B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460618B1 (en) * 2002-05-10 2004-12-14 주식회사 국제유압 Welding method using semisolid section of copper alloy
JP2012061519A (en) * 2010-09-17 2012-03-29 Akane:Kk Joining method of metal material
KR101431240B1 (en) * 2014-03-25 2014-08-18 영동주식회사 Manufacturing method of clad steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460618B1 (en) * 2002-05-10 2004-12-14 주식회사 국제유압 Welding method using semisolid section of copper alloy
JP2012061519A (en) * 2010-09-17 2012-03-29 Akane:Kk Joining method of metal material
KR101431240B1 (en) * 2014-03-25 2014-08-18 영동주식회사 Manufacturing method of clad steel sheet

Also Published As

Publication number Publication date
JP3626553B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
US6968990B2 (en) Fabrication and utilization of metallic powder prepared without melting
US7946467B2 (en) Braze material and processes for making and using
JP2005330585A (en) Method for preparing metallic article having other additive constituent without any melting
KR20090127929A (en) A brazing piece, a method of making a brazing piece, and a method of brazing and components made from said brazing piece
SE430481B (en) SET TO JOIN PARTS OF SOLID MATERIAL THROUGH HOT ISOSTATIC PRESSURE
JP6488875B2 (en) Porous aluminum sintered body and method for producing porous aluminum sintered body
JP7230243B2 (en) Nickel-base alloy for powder and method for producing powder
WO2015174542A1 (en) Porous aluminum sintered body and method for producing porous aluminum sintered body
US5158621A (en) Rapidly solidified aluminum-germanium base brazing alloys and method for brazing
JP2021508782A (en) Use in additional manufacturing of aluminum-containing alloys
EP1433555A1 (en) Method for meltless manufacturing of rod, and its use as a welding rod
US3971657A (en) Sintering of particulate metal
Salleh et al. A comparative study of solder properties of Sn-0.7 Cu lead-free solder fabricated via the powder metallurgy and casting methods
US5332455A (en) Rapidly solidified aluminum-magnesium base brazing alloys
US7419528B2 (en) Method for fabricating a superalloy article without any melting
EP4139071A1 (en) Additive manufacturing powders for use in additive manufacturing processes resulting in improved stability of steel melt-track
JPH09295167A (en) Production of clad material of copper alloy and steel
JP3774286B2 (en) Manufacturing method of clad material of copper alloy and alloy steel
JP3641338B2 (en) Manufacturing method of white metal and steel cladding
JPS5959848A (en) Addition of insoluble substance to liquid or partially liqu-id metal
JP2020026546A (en) CYLINDRICAL SPUTTERING TARGET AND In-BASED SOLDER AND MANUFACTURING METHOD OF CYLINDRICAL SPUTTERING TARGET
JPH1143780A (en) Production of composite material
JP2535652B2 (en) Laser cladding and alloying method
WO2009155655A1 (en) Manufacture of wear resistant composite components
JP4167011B2 (en) Method for producing composite material comprising non-ferrous metal alloy containing low melting point material and steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041203

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term