JPH0929454A - Synchronization inverter welding power source - Google Patents

Synchronization inverter welding power source

Info

Publication number
JPH0929454A
JPH0929454A JP20739695A JP20739695A JPH0929454A JP H0929454 A JPH0929454 A JP H0929454A JP 20739695 A JP20739695 A JP 20739695A JP 20739695 A JP20739695 A JP 20739695A JP H0929454 A JPH0929454 A JP H0929454A
Authority
JP
Japan
Prior art keywords
welding
signal
current
unit
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20739695A
Other languages
Japanese (ja)
Other versions
JP3639355B2 (en
Inventor
Shigefumi Torii
重文 鳥居
Takashi Ishida
孝 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP20739695A priority Critical patent/JP3639355B2/en
Publication of JPH0929454A publication Critical patent/JPH0929454A/en
Application granted granted Critical
Publication of JP3639355B2 publication Critical patent/JP3639355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high reliability welded part with stabilized quality by forcedly resetting a ramp signal of PWMI each time a welding drive control signal is inputted so as to make welding power at each welding time constant. SOLUTION: A reset signal generating part 10 receives a welding drive control signal S3, further a reset signal RST, which resets a ramp signal with a pulse width sufficiently narrower than a period of a lamp signal at the same time as the welding drive control signal S3 is turned on, is generated. A PWM control part 11 receives the signal RST from the reset signal generating part 10, and a function to forcedly reset the lamp signal is added, so that the welding drive control signal S3 and lamp signal are synchronized. At the same time the welding drive control signal S3 is turned on, the reset signal RST is generated and the ramp signal is forcedly reset, thus, the pulse widths of inverter drive signals S11, S12 are made equal from welding start, the welding drive control signal S3 is turned on, the actual welding start timing is always made constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は溶接電源に係り、特
に溶接開始信号から実際の溶接開始タイミングを一定と
する制御回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding power source, and more particularly to a control circuit for making an actual welding start timing constant from a welding start signal.

【0002】[0002]

【従来の技術】図3に従来のインバータ溶接電源のブロ
ック図を、図4に、この従来のインバータ溶接電源のイ
ンバータ駆動部の動作タイミングチャート図を示す。図
3に示すように、従来のインバータ溶接電源は基本的に
は整流平滑部1、インバータ部2、溶接トランス3、整
流部4、溶接電流検出素子5、溶接ヘッド6a、6b、
増幅乗算部7、PWM(Pulse Width Mo
duration)制御部8、溶接条件設定部9から構
成される。
2. Description of the Related Art FIG. 3 shows a block diagram of a conventional inverter welding power source, and FIG. 4 shows an operation timing chart of an inverter drive unit of the conventional inverter welding power source. As shown in FIG. 3, the conventional inverter welding power source basically includes a rectifying / smoothing section 1, an inverter section 2, a welding transformer 3, a rectifying section 4, a welding current detecting element 5, welding heads 6a and 6b, and
Amplifying and multiplying unit 7, PWM (Pulse Width Mo
duration) control unit 8 and welding condition setting unit 9.

【0003】図3を用いて、従来のインバータ溶接電源
の動作について説明する。周知のように、商用の3相交
流が整流平滑部1に入力され、整流、平滑されてからイ
ンバータ部2に入力される。インバータ部2は4つのト
ランジスタからなり、PWM制御部8からの商用交流周
波数よりも十分に高い所定の周波数のインバータ駆動信
号S1、S2によって、この4つのトランジスタを2組
のトランジスタに分けて交互にオン/オフすることによ
りに高周波の交流矩形波を出力する。
The operation of the conventional inverter welding power source will be described with reference to FIG. As is well known, commercial three-phase alternating current is input to the rectifying / smoothing unit 1, rectified and smoothed, and then input to the inverter unit 2. The inverter unit 2 is composed of four transistors, and the inverter drive signals S1 and S2 of a predetermined frequency sufficiently higher than the commercial AC frequency from the PWM control unit 8 divide the four transistors into two sets of transistors and alternately. A high frequency AC rectangular wave is output by turning on / off.

【0004】インバータ部2から出力された前記高周波
の交流矩形波は溶接トランス3の一次側コイルに供給さ
れ、二次側コイルに低電圧で大電流のパルスを生成す
る。この二次側コイルに生じた低電圧で大電流のパルス
は一対のダイオードからなる整流部4で直流に変換さ
れ、これに応じた溶接電流IWが溶接ヘッド6a、6b
に流れ、被溶接物で抵抗発熱が発生する。
The high frequency AC rectangular wave output from the inverter unit 2 is supplied to the primary coil of the welding transformer 3 to generate a low voltage, large current pulse in the secondary coil. The low-voltage, high-current pulse generated in the secondary coil is converted into direct current by the rectifying unit 4 composed of a pair of diodes, and the welding current IW corresponding thereto is converted into the welding heads 6a, 6b.
And resistance heat is generated in the object to be welded.

【0005】次に、PWM制御部8のインバータ駆動信
号S1、S2の生成について、溶接電力を例にとって説
明する。溶接電流IWの検出のためにホール素子5を設
け、このホール素子5で検出される溶接電流IWに比例
した電圧V1を増幅乗算部7の一方に入力する。また、
溶接ヘッド6a、6b間には、被溶接物の抵抗値に応じ
た電圧降下が発生する。この降下電圧V2も同じように
増幅乗算部7のもう一方に入力する。この増幅乗算部7
では、電圧V1を電流変換して得られる電流と降下電圧
V2を増幅乗算処理して、溶接電力PWを求める。
Next, the generation of the inverter drive signals S1 and S2 of the PWM control section 8 will be described by taking welding power as an example. A hall element 5 is provided to detect the welding current IW, and a voltage V1 proportional to the welding current IW detected by the hall element 5 is input to one of the amplification / multiplication units 7. Also,
A voltage drop corresponding to the resistance value of the object to be welded occurs between the welding heads 6a and 6b. This dropped voltage V2 is similarly input to the other side of the amplification / multiplication unit 7. This amplification multiplication unit 7
Then, the current obtained by converting the voltage V1 into a current and the drop voltage V2 are amplified and multiplied to obtain the welding power PW.

【0006】PWM制御部8は市販のPWM ICを使
用し、外付けのタイミング用の抵抗とコンデンサで決定
される周波数のランプ信号S4を生成し、溶接条件設定
部9の溶接電力設定値PSと増幅乗算部7からの溶接電
力PWとが一致するようにインバータ駆動信号S1、S
2を生成する。この様子が、図4に示されている。図4
において、(A)は図示しないシーケンス制御部からの
溶接を開始し、終了させる溶接駆動制御信号S3、
(B)は前記PWM ICの発生するランプ信号S4、
(C)は増幅乗算部7からの溶接電力PWをフィードバ
ックして溶接条件設定部9からの溶接電力値PSと一致
させるようにして求められる制御レベルP、(D)はラ
ンプ信号S4と制御レベルPとを比較して得られたイン
バータ駆動信号S1、(E)は同じくインバータ駆動信
号S2である。
The PWM control unit 8 uses a commercially available PWM IC to generate a ramp signal S4 having a frequency determined by an external timing resistor and capacitor, and uses the welding power setting value PS of the welding condition setting unit 9 as the welding power setting value PS. The inverter drive signals S1 and S are set so that the welding power PW from the amplification / multiplication unit 7 matches.
Generate 2. This is shown in FIG. FIG.
In (A), a welding drive control signal S3 for starting and ending welding from a sequence control unit (not shown),
(B) is a ramp signal S4 generated by the PWM IC,
(C) is a control level P obtained by feeding back the welding power PW from the amplification / multiplication unit 7 to match it with the welding power value PS from the welding condition setting unit 9, and (D) is a ramp signal S4 and control level. Inverter drive signals S1 and (E) obtained by comparing with P are also inverter drive signals S2.

【0007】[0007]

【発明が解決しようとする課題】図4に示すように、溶
接駆動制御信号S3とランプ信号S4とは非同期である
から溶接開始と終了時のインバータ駆動信号S1、S2
のパルス幅は他の時と異なり、溶接動作の度に変化す
る。このことが、結果として最終的に得られる溶接開始
タイミングを遅らし、全体としての溶接電力を変化さ
せ、同じ溶接条件で溶接しても、溶接の度に実際の電力
が違ってしまうという欠点があった。本発明は、上記課
題を解決するためになされたもので、簡単な構成で溶接
の度に均一な条件で溶接を可能とする同期式インバータ
溶接電源を提供することを目的とする。
As shown in FIG. 4, since the welding drive control signal S3 and the ramp signal S4 are asynchronous, the inverter drive signals S1 and S2 at the start and end of welding.
The pulse width of is different from that at other times and changes at every welding operation. As a result, the welding start timing finally obtained is delayed, the welding power as a whole is changed, and even if welding is performed under the same welding conditions, the actual power will differ for each welding. there were. The present invention has been made to solve the above problems, and an object of the present invention is to provide a synchronous inverter welding power supply which has a simple structure and enables welding under uniform conditions for each welding.

【0008】[0008]

【課題を解決するための手段】本発明は、被溶接物に印
加される電圧を検出する電圧検出部と、被溶接物に流れ
る電流を検出する電流検出部と、前記電流検出部から得
られた測定電流値と前記電圧検出部から得られた測定電
圧値とを乗算して被溶接物に供給される電力値を演算す
る増幅乗算部と、定電流制御のための溶接電流、または
定電圧制御のための溶接電圧、または定電力制御のため
の溶接電力を溶接条件として設定する溶接条件設定部
と、直流から交流に変換するトランジスタで構成される
インバータ部と、溶接駆動制御信号を受けて、前記増幅
乗算部からの電力値と前記溶接条件設定部からの溶接電
力値が一致するように、または前記電圧検出部からの電
圧値と前記溶接条件設定部からの溶接電圧値が一致する
ように、または前記電流検出部からの測定電流値と前記
溶接条件設定部からの溶接電流値が一致するように前記
インバータ部を構成するトランジスタの導通時間を制御
するパルス幅変調回路を主構成要素としたインバータ制
御部とを有するインバータ溶接電源において、前記溶接
駆動制御信号を受けて、前記インバータ制御部のランプ
信号をリセットするリセットパルス生成部を有すること
を特徴とするものである。
The present invention is obtained from a voltage detecting section for detecting a voltage applied to a work piece, a current detecting section for detecting a current flowing through the work piece, and the current detecting section. Amplifying and multiplying unit for multiplying the measured current value and the measured voltage value obtained from the voltage detection unit to calculate the electric power value supplied to the workpiece, the welding current for constant current control, or the constant voltage Welding condition control section for setting welding voltage for control or welding power for constant power control as welding conditions, inverter section composed of transistor for converting DC to AC, and welding drive control signal , So that the power value from the amplification multiplication unit and the welding power value from the welding condition setting unit match, or the voltage value from the voltage detection unit and the welding voltage value from the welding condition setting unit match Or the above Inverter control section having a pulse width modulation circuit as a main constituent element for controlling the conduction time of the transistor forming the inverter section so that the measured current value from the flow detection section and the welding current value from the welding condition setting section match. In the inverter welding power source having, a reset pulse generation unit that receives the welding drive control signal and resets the ramp signal of the inverter control unit is provided.

【0009】[0009]

【作用】本発明によれば、溶接駆動信号の度にPWM
ICのランプ信号を強制的にリセットすることで、イン
バータ駆動信号のパルス幅を溶接開始時とその他の時期
で同じ幅とすることができるから、溶接の度に均一の条
件で溶接が可能となる。
According to the present invention, the PWM is applied at every welding drive signal.
By forcibly resetting the ramp signal of the IC, the pulse width of the inverter drive signal can be made the same at the start of welding and at other times, so that welding can be performed under uniform conditions for each welding. .

【0010】[0010]

【発明の実施の形態】図1は本発明の1実施形態を示す
同期式インバータ溶接電源のブロック図であり、図2は
この同期式インバータ溶接電源の動作を説明するタイミ
ングチャート図である。図1において、1から7、およ
び9の符号を付与したものは図1の同一符号を付与した
ものと同じものであり、10は溶接駆動制御信号S3を
受けて、溶接駆動制御信号S3がオンになると同時に、
ランプ信号S4の周期よりも十分狭いパルス幅でランプ
信号S4をリセットするリセット信号RSTを生成する
リセット信号生成部で、PWM制御部11は図3の8の
符号を付与したものと機能的には同等であるが、リセッ
ト信号生成部10からのリセット信号RSTを受けてラ
ンプ信号S4が強制的にリセットされる機能を付加され
ており、溶接駆動制御信号S3とランプ信号S4を同期
をとれるようにしている。この様子が、図2に示されて
いる。図2において、(A)は図示しないシーケンス制
御部からの溶接を開始し、終了させる溶接駆動制御信号
S3、(B)はリセット信号生成部10からのリセット
信号RST、(C)は前記PWM ICの発生するラン
プ信号S4、(D)は溶接電力PWと溶接電力値PSか
ら得られる制御レベルP、(E)はランプ信号S4と制
御レベルPとを比較して得られたインバータ駆動信号S
11、(F)は同じくインバータ駆動信号S12であ
る。こうすることにより、溶接駆動制御信号S3がオン
になると同時にリセット信号RSTが生成されて、ラン
プ信号S4が強制的にリセットされるので、生成される
インバータ駆動信号S11、S12のパルス幅は溶接開
始当初から等しくなり、かつ溶接駆動制御信号S3がオ
ンになってからの実際の溶接開始タイミングが常に一定
となる。
1 is a block diagram of a synchronous inverter welding power source showing an embodiment of the present invention, and FIG. 2 is a timing chart diagram for explaining the operation of the synchronous inverter welding power source. In FIG. 1, reference numerals 1 to 7 and 9 are the same as those assigned the same reference numeral in FIG. 1, and 10 receives the welding drive control signal S3 and the welding drive control signal S3 is turned on. At the same time,
A reset signal generation unit that generates a reset signal RST that resets the ramp signal S4 with a pulse width that is sufficiently narrower than the cycle of the ramp signal S4, and the PWM control unit 11 is functionally equivalent to that given the reference numeral 8 in FIG. Although equivalent, a function of forcibly resetting the ramp signal S4 in response to the reset signal RST from the reset signal generator 10 is added, so that the welding drive control signal S3 and the ramp signal S4 can be synchronized. ing. This is shown in FIG. In FIG. 2, (A) is a welding drive control signal S3 for starting and ending welding from a sequence control unit (not shown), (B) is a reset signal RST from a reset signal generating unit 10, and (C) is the PWM IC. Is generated from the welding power PW and the welding power value PS, and (E) is an inverter drive signal S obtained by comparing the ramp signal S4 with the control level P.
Similarly, 11 and (F) are inverter drive signals S12. By doing so, the reset signal RST is generated at the same time that the welding drive control signal S3 is turned on, and the ramp signal S4 is forcibly reset. From the beginning, they are equal, and the actual welding start timing after the welding drive control signal S3 is turned on is always constant.

【0011】[0011]

【発明の効果】本発明によれば、以上説明したように、
溶接駆動制御信号S3が入力される度にPWM ICの
ランプ信号S4を強制的にリセットすることにしたの
で、インバータ駆動信号S11、S12のパルス幅が溶
接開始時とその他の時期で同じ幅となるから、溶接の度
の溶接電力は一定となり、品質の安定した高信頼性の溶
接をすることができる。
According to the present invention, as described above,
Since the ramp signal S4 of the PWM IC is forcibly reset every time the welding drive control signal S3 is input, the pulse widths of the inverter drive signals S11 and S12 become the same width at the start of welding and at other times. Therefore, the welding power for each welding is constant, and stable and reliable welding with stable quality can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施形態を示す同期式インバータ溶
接電源のブロック図である。
FIG. 1 is a block diagram of a synchronous inverter welding power source showing an embodiment of the present invention.

【図2】図1の同期式インバータ溶接電源の動作を説明
するタイミングチャート図である。
FIG. 2 is a timing chart illustrating the operation of the synchronous inverter welding power source of FIG.

【図3】従来のインバータ溶接電源のブロック図であ
る。
FIG. 3 is a block diagram of a conventional inverter welding power source.

【図4】図3のインバータ溶接電源の動作を説明するタ
イミングチャート図である。
FIG. 4 is a timing chart illustrating the operation of the inverter welding power source of FIG.

【符号の説明】[Explanation of symbols]

1 整流平滑部1 2 インバータ部 3 溶接トランス 4 整流部 5 ホール素子 6a、6b 溶接ヘッド 7 増幅乗算部 8 11 PWM制御部 9 溶接条件設定部 10 リセット信号生成部 1 Rectifying / smoothing part 1 2 Inverter part 3 Welding transformer 4 Rectifying part 5 Hall element 6a, 6b Welding head 7 Amplifying and multiplying part 8 11 PWM control part 9 Welding condition setting part 10 Reset signal generating part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被溶接物に印加される電圧を検出する電
圧検出部と、被溶接物に流れる電流を検出する電流検出
部と、前記電流検出部から得られた測定電流値と前記電
圧検出部から得られた測定電圧値とを乗算して被溶接物
に供給される電力値を演算する増幅乗算部と、定電流制
御のための溶接電流、または定電圧制御のための溶接電
圧、または定電力制御のための溶接電力を溶接条件とし
て設定する溶接条件設定部と、直流から交流に変換する
トランジスタで構成されるインバータ部と、溶接駆動制
御信号を受けて、前記増幅乗算部からの電力値と前記溶
接条件設定部からの溶接電力値が一致するように、また
は前記電圧検出部からの電圧値と前記溶接条件設定部か
らの溶接電圧値が一致するように、または前記電流検出
部からの測定電流値と前記溶接条件設定部からの溶接電
流値が一致するように前記インバータ部を構成するトラ
ンジスタの導通時間を制御するパルス幅変調回路を主構
成要素としたインバータ制御部とを有するインバータ溶
接電源において、 前記溶接駆動制御信号を受けて、前記インバータ制御部
のランプ信号をリセットするリセットパルス生成部を有
することを特徴とする同期式インバータ溶接電源。
1. A voltage detector for detecting a voltage applied to a workpiece, a current detector for detecting a current flowing through the workpiece, a measured current value obtained from the current detector, and the voltage detector. Amplification and multiplication unit that calculates the electric power value supplied to the workpiece by multiplying the measured voltage value obtained from the unit, the welding current for constant current control, or the welding voltage for constant voltage control, or A welding condition setting unit that sets welding power for constant power control as a welding condition, an inverter unit configured by a transistor that converts direct current to alternating current, and a power from the amplification multiplication unit that receives a welding drive control signal. So that the value and the welding power value from the welding condition setting unit match, or the voltage value from the voltage detecting unit and the welding voltage value from the welding condition setting unit match, or from the current detecting unit Measured current value In an inverter welding power source having an inverter control section having a pulse width modulation circuit as a main constituent element for controlling the conduction time of a transistor forming the inverter section so that the welding current values from the welding condition setting section match each other, A synchronous inverter welding power source, comprising: a reset pulse generation unit that receives the welding drive control signal and resets a ramp signal of the inverter control unit.
JP20739695A 1995-07-24 1995-07-24 Synchronous inverter welding power supply Expired - Fee Related JP3639355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20739695A JP3639355B2 (en) 1995-07-24 1995-07-24 Synchronous inverter welding power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20739695A JP3639355B2 (en) 1995-07-24 1995-07-24 Synchronous inverter welding power supply

Publications (2)

Publication Number Publication Date
JPH0929454A true JPH0929454A (en) 1997-02-04
JP3639355B2 JP3639355B2 (en) 2005-04-20

Family

ID=16539054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20739695A Expired - Fee Related JP3639355B2 (en) 1995-07-24 1995-07-24 Synchronous inverter welding power supply

Country Status (1)

Country Link
JP (1) JP3639355B2 (en)

Also Published As

Publication number Publication date
JP3639355B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
US4467165A (en) Induction heating apparatus
US5877952A (en) Power supply apparatus with initial arcing sustaining circuit
JP7181805B2 (en) Power supply circuit for transient thermal resistance measurement of semiconductor devices
JPH0929454A (en) Synchronization inverter welding power source
JPH07131984A (en) Dc power supply equipment
JP2004322189A (en) Welding machine or cutting machine
JPH02246769A (en) Power control circuit
JP3190791B2 (en) Control device of resistance welding machine
JPS62148091A (en) Control device for resistance welding machine
JPH08330050A (en) Pulse heat power source
JPS6149792A (en) Welding power source device
JP2783721B2 (en) Inverter controlled electric resistance welding machine
JP2885265B2 (en) Power supply
JP2666408B2 (en) Induction heating device
JP2537861B2 (en) High frequency heating equipment
JP2003236675A (en) Welding power source
JPH0985458A (en) Inverter controlled resistance welding machine
JP2666277B2 (en) X-ray high voltage equipment
JP2761814B2 (en) Resistance welding control method and apparatus
JP2745168B2 (en) Pot material detection device for induction heating cookers
JPS6064767A (en) Power source device for arc welding machine
JP2614690B2 (en) Method and apparatus for controlling a welding transformer
JPH0549263A (en) Power supply
JPH04300076A (en) Method and device for controlling resistance welding
JPS61248387A (en) Induction heating cooker

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees