JPH09293582A - Covered heater element - Google Patents

Covered heater element

Info

Publication number
JPH09293582A
JPH09293582A JP10693596A JP10693596A JPH09293582A JP H09293582 A JPH09293582 A JP H09293582A JP 10693596 A JP10693596 A JP 10693596A JP 10693596 A JP10693596 A JP 10693596A JP H09293582 A JPH09293582 A JP H09293582A
Authority
JP
Japan
Prior art keywords
heating element
covered
resin
terminal
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10693596A
Other languages
Japanese (ja)
Inventor
Masatoshi Akaha
正俊 赤羽
Kazuharu Yamazaki
和治 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dennetsu Co Ltd
Original Assignee
Nihon Dennetsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dennetsu Co Ltd filed Critical Nihon Dennetsu Co Ltd
Priority to JP10693596A priority Critical patent/JPH09293582A/en
Publication of JPH09293582A publication Critical patent/JPH09293582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance power load density and make a covered heater element small by insulating a heat radiating metal pipe covering a covered layer from a terminal near the connection part between a heater element wire of the covered heater element and the terminal. SOLUTION: In a covered heater element 30, the outer circumference of a heater element wire 32 comprising a single wire is covered with a resin tightly contact covering layer 34, and its outer circumference is further covered with a second resin covering layer 36 having environmental resistance. The covered layers 34, 36 at one end of the heater element wire 32 are peeled off, and the exposed heater element wire 32 is loosely inserted into a through hole 40 of a terminal 38. A heat radiating metal pipe 52 covering the covered layer of the covered heater element 30 near the connection part 48 between the heater element wire 32 and the terminal 38 is insulated from the terminal 38, heat stored near the connection part 48 is radiated to liquid A or gas existing on the liquid A side. The local overheat of the resin covered layers 34, 36 of the covered heater element 30 is suppressed. As a method insulating the terminal 38 from the heat radiating metal pipe 52, an insulating heat resistant material is placed between them, and heating caused by existing of air is prevented to the utmost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は被覆発熱体に関す
る。
TECHNICAL FIELD The present invention relates to a coated heating element.

【0002】[0002]

【従来の技術】従来の液体Aを加熱するための被覆発熱
体10は、図9に示すように、芯体12上に発熱素線1
4を螺旋状に巻回し、さらにその上を樹脂被覆層16で
被覆したものが一般的である。またその端子部15の構
造も図9に示すようになっている。すなわち、被覆発熱
体10の被覆を剥ぎ露出した発熱素線14の一端を、端
子18の貫通孔に挿入してろうづけ等をして端子部10
に形成されている。19は端子18および被覆発熱体1
0の端部を覆って形成された樹脂等から成る取付具であ
り、端子部15において被覆発熱体10と容器の壁部等
に液密に取り付けるようになっている。
2. Description of the Related Art A conventional coating heating element 10 for heating a liquid A is, as shown in FIG.
It is general that 4 is spirally wound and the resin coating layer 16 is further coated thereon. The structure of the terminal portion 15 is also as shown in FIG. That is, the one end of the heating element wire 14 that is exposed by stripping off the coating of the coating heating element 10 is inserted into the through hole of the terminal 18 and brazed to make the terminal portion 10.
Is formed. Reference numeral 19 denotes the terminal 18 and the coating heating element 1.
It is a fitting made of resin or the like formed to cover the end portion of No. 0, and is liquid-tightly attached to the covering heating element 10 and the wall portion of the container at the terminal portion 15.

【0003】[0003]

【発明が解決しようとする課題】前記のような被覆発熱
体10で液体Aを加熱する場合、常に液体Aと接してい
る液体A中の部位においては、発生した熱が液体Aにど
んどん吸収されるので、過熱が抑えられる。ただし被覆
発熱体10と端子18との接続部分直近で発生した熱
は、周囲を取付具19が覆っているため、発生した熱の
逃げ場所がなく取付具19内部に熱が籠もってしまい、
前記接続部分直近では過熱状態になりやすい。このため
該接続部直近が局部過熱される結果、該部位の被覆発熱
体10の樹脂被覆層16が炭化したり、溶けたりして耐
圧不良を起こすこととなる。また、取付具19は液体A
と外気Bの両方に接しており、外気Bに接している部位
では放熱効率が悪く過熱しやすくなる。特に取付具19
が樹脂で成形されている場合には、取付具19自体も過
熱状態となり、被覆発熱体10の樹脂被覆層16と同様
に、炭化したり、溶けたりする恐れがある。したがっ
て、従来のこの種の被覆発熱体では樹脂被覆層16の有
する耐熱性から想定される最大の耐電力負荷密度下では
使用することができず、これよりもかなり低い安全な電
力負荷密度で使用せざるを得なかった。このため必要な
容量を確保するためには必然的に長尺なものを使用せざ
るを得ず、大型化するという課題があった。
When the liquid A is heated by the coating heating element 10 as described above, the generated heat is absorbed more and more by the liquid A at the portion in the liquid A which is always in contact with the liquid A. Therefore, overheating can be suppressed. However, the heat generated in the vicinity of the connection portion between the coated heating element 10 and the terminal 18 is covered by the fixture 19, so that there is no place for the generated heat to escape and the heat is trapped inside the fixture 19.
Overheating tends to occur in the immediate vicinity of the connecting portion. Therefore, as a result of local overheating in the vicinity of the connecting portion, the resin coating layer 16 of the coating heating element 10 in the portion is carbonized or melted, and a withstand voltage defect occurs. Further, the fixture 19 is the liquid A.
And the outside air B are in contact with each other, and the portion in contact with the outside air B has poor heat dissipation efficiency and is likely to overheat. Especially the fixture 19
When the resin is molded with resin, the fixture 19 itself is also overheated, and like the resin coating layer 16 of the coating heating element 10, there is a risk of carbonization or melting. Therefore, the conventional coated heating element of this type cannot be used under the maximum power withstand load density assumed from the heat resistance of the resin coating layer 16, and is used with a safe power load density much lower than this. I had to do it. Therefore, in order to secure the necessary capacity, it was inevitable to use a long one, and there was a problem of increasing the size.

【0004】また前記被覆発熱体において螺旋状の発熱
素線14を芯体12に巻回した構造は、図10に示すよ
うに発熱素線14が存在するが故に、芯体12と樹脂被
覆層16との間に空隙20が生じ易い。このため空隙2
0が断熱層として作用し局部加熱される結果、樹脂被覆
層16が炭化したり、溶けたりして耐圧不良を起こすこ
ととなる。さらに空隙20が断熱層として作用すること
から、加熱効率が悪く、特に温度の立ち上がりが遅くな
るという課題があった。
Further, in the structure in which the spiral heating element wire 14 is wound around the core body 12 in the coated heating element, since the heating wire element 14 exists as shown in FIG. 10, the core body 12 and the resin coating layer are present. A gap 20 is likely to occur between the gap 16 and the gap 16. Therefore, the void 2
As a result of 0 acting as a heat insulating layer and being locally heated, the resin coating layer 16 is carbonized or melted to cause a pressure resistance defect. Further, since the void 20 acts as a heat insulating layer, there is a problem that the heating efficiency is poor and the rise of temperature is particularly delayed.

【0005】したがって、本発明は上記課題を解決すべ
くなされ、その目的とするところは、電力負荷密度が向
上し、小型化が図れ、また温度の立ち上がり特性に優れ
た被覆発熱体を提供するにある。
Therefore, the present invention has been made to solve the above problems, and an object of the present invention is to provide a coated heating element having improved power load density, reduced size, and excellent temperature rising characteristics. is there.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するため次の構成を備える。すなわち、本発明に係る被
覆発熱体は発熱素線が樹脂被覆層で被覆され、発熱素線
の端部が端子に接続されている被覆発熱体において、該
接続部直近の前記樹脂被覆層上を覆って、放熱用の金属
管を前記端子と絶縁して設けたことを特徴としている。
この構成を採用すれば、前記発熱素線と端子との接続部
分直近に発生した熱を、前記放熱用の金属管から液体中
または気体中に放熱することができるので、前記被覆発
熱体の樹脂被覆層の局部過熱を抑えることができる。こ
のため被覆発熱体を最大の電力負荷密度で使用すること
ができ、小型化が可能となる。また前記端子と前記放熱
用の金属管との間の絶縁方法として、絶縁耐熱材料を介
在させることによって、空気の存在による加熱を極力防
止できる。
The present invention has the following constitution in order to achieve the above object. That is, in the coated heating element according to the present invention, the heating element wire is covered with the resin coating layer, and the end portion of the heating element wire is connected to the terminal. It is characterized in that a metal tube for heat dissipation is provided so as to be insulated from the terminal.
If this configuration is adopted, the heat generated in the vicinity of the connecting portion between the heating element wire and the terminal can be radiated from the metal tube for heat radiation into the liquid or the gas. Local overheating of the coating layer can be suppressed. Therefore, the coated heating element can be used with the maximum power load density, and the size can be reduced. As a method of insulation between the terminal and the metal tube for heat dissipation, an insulating heat resistant material is interposed so that heating due to the presence of air can be prevented as much as possible.

【0007】さらに、前記発熱素線が単線より形成さ
れ、前記樹脂被覆層が該発熱素線の外周に形成された2
00℃以上の耐熱絶縁性能を有する第1の樹脂密着被覆
層と、該樹脂密着被覆層の外周に形成された耐環境性を
有する第2の樹脂被覆層とから成る被覆発熱体とするこ
ともできる。前記発熱素線に前記樹脂密着被覆層を設け
たので、該発熱素線と該樹脂密着被覆層との間に空隙が
生じず、これによる局部加熱が避けられるから、高い電
力負荷密度での使用が可能となり、小型化が図れ、また
加熱効率も向上して温度の立ち上がり特性を改善でき
る。
Further, the heating wire is formed of a single wire, and the resin coating layer is formed on the outer circumference of the heating wire.
It is also possible to provide a coated heating element including a first resin adhesive coating layer having a heat resistant insulation performance of 00 ° C. or higher and an environment resistant second resin adhesive layer formed on the outer periphery of the resin adhesive coating layer. it can. Since the heating element wire is provided with the resin adhesion coating layer, there is no gap between the heating element wire and the resin adhesion coating layer, and local heating due to this is avoided, so that use at high power load density is possible. The temperature rise characteristics can be improved by improving the heating efficiency by improving the heating efficiency.

【0008】また、前記樹脂被覆層上全体に前記金属管
を被覆することもできる。この構成を採用することによ
って、外傷がつかず、またハンドリングが容易になる。
さらに前記樹脂被覆層の少なくとも1層に無機材料から
なる粉体を混入させることにより、耐熱絶縁性能がより
向上し、強度的にも優れた被覆発熱体となる。
The metal tube may be entirely coated on the resin coating layer. By adopting this structure, no external damage is caused and handling becomes easy.
Furthermore, by mixing a powder made of an inorganic material into at least one of the resin coating layers, the heat resistance insulation performance is further improved, and the coated heating element is excellent in strength.

【0009】[0009]

【発明の実施の形態】以下、本発明に係る被覆発熱体の
好適な実施の形態を添付図面に基づいて詳細に説明す
る。図1に被覆発熱体30の実施の形態を示す。単線よ
りなる発熱素線32はその外周上を第1の樹脂密着被覆
層34で覆われ、該樹脂密着被覆層34のさらに外周
を、耐環境性を有した第2の樹脂被覆層36が覆ってい
る。第1の樹脂密着被覆層34および第2の樹脂被覆層
36が剥がれ、発熱素線32の一端側が露出され、該発
熱素線32の一端側が、端子38が有している貫通孔4
0に緩く挿入されている。発熱素線32は、端子38の
終端部42において、銀ろう等のろう材44で端子38
とろうづけされている。さらに、ろう材44は貫通孔4
0の内部に侵入し、端子38と発熱素線32とを固定し
ている。また、発熱素線32を挿入した状態で、端子3
8と発熱素線32とをカシメ等の方法で圧着させるとよ
い。この圧着部位46は、接続部48に近い部位が好適
である。圧着部位46を接続部48に近い所で圧着させ
ることによって、発熱素線32を流れる電流を、さらに
確実に抵抗値の低い端子38にも流すことになり、端子
38内部での発熱素線32の発熱量を抑えることができ
る。端子38は被覆発熱体30の径の2〜3倍の径に設
定し、導電性の良い銅等を用いることにより、上記のよ
うに端子部内の発熱素線32の発熱量を抑えることがで
きると共に、放熱効果も上げることができるので好適で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the coated heating element according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows an embodiment of the coated heating element 30. The heating wire 32 made of a single wire is covered with a first resin adhesion coating layer 34 on the outer periphery thereof, and the second resin coating layer 36 having environment resistance is further covered on the outer periphery of the resin adhesion coating layer 34. ing. The first resin adhesion coating layer 34 and the second resin coating layer 36 are peeled off to expose one end side of the heating element wire 32, and one end side of the heating element wire 32 has the through hole 4 which the terminal 38 has.
Inserted loosely at 0. The heating wire 32 is provided with a brazing material 44 such as silver braze at the terminal end 42 of the terminal 38.
Have been brazed. Further, the brazing material 44 is used as the through hole 4.
It penetrates into the inside of 0 and fixes the terminal 38 and the heating element wire 32. Also, with the heating wire 32 inserted, the terminal 3
8 and the heating element wire 32 may be crimped by a method such as caulking. The crimping portion 46 is preferably a portion near the connecting portion 48. By crimping the crimping portion 46 near the connecting portion 48, the current flowing through the heating element wire 32 can be more surely flown to the terminal 38 having a low resistance value, and the heating element wire 32 inside the terminal 38 can be obtained. It is possible to suppress the heat generation amount. By setting the diameter of the terminal 38 to 2 to 3 times the diameter of the coated heating element 30 and using copper or the like having good conductivity, the heat generation amount of the heating element wire 32 in the terminal portion can be suppressed as described above. At the same time, the heat radiation effect can be improved, which is preferable.

【0010】52は放熱用の金属管であり、接続部48
直近の被覆発熱体30の被覆層上を覆って、端子38と
絶縁して設けられており、接続部48直近に籠もった熱
を液体Aまたは液体A側に存する気体中に放熱させる。
このため金属管52は熱伝導性の良い銅等が好適であ
る。また、金属管52と第2の樹脂被覆層36との間
に、さらに樹脂性のチューブ54を被覆し、金属管52
と発熱素線32との間の絶縁をさらに確実なものとして
もよい。また漏電を防ぐため、金属管52と端子38と
の間を絶縁する必要があるが、金属管52と端子38の
間に空隙があると、この空隙が局部加熱してしまうの
で、空隙の無いように絶縁耐熱材料56を介在させ絶縁
するとよい。絶縁耐熱材料56は耐熱性の樹脂を用いる
と好適で、ポリイミド等を用いることができる。また絶
縁耐熱材料56と第2の樹脂被覆層36との間にわずか
でも空隙があると、上記のようにこの空隙が局部加熱し
てしまうので、絶縁耐熱材料56はペースト状の樹脂を
注入充填して硬化させるか、またはインジェクションに
より一体成形する等の方法で形成し、空隙を作らないよ
うにするとよい。
Reference numeral 52 is a metal tube for heat dissipation, which is a connecting portion 48.
It is provided so as to cover the covering layer of the covering heating element 30 in the immediate vicinity and to be insulated from the terminal 38, and radiates the heat accumulated in the vicinity of the connecting portion 48 into the liquid A or the gas existing on the liquid A side.
Therefore, the metal tube 52 is preferably made of copper or the like having good thermal conductivity. Further, a resin tube 54 is further coated between the metal tube 52 and the second resin coating layer 36,
The insulation between the heat generating element 32 and the heat generating element 32 may be made more reliable. In addition, in order to prevent electric leakage, it is necessary to insulate between the metal tube 52 and the terminal 38. However, if there is a gap between the metal tube 52 and the terminal 38, this gap causes local heating, so there is no gap. As described above, it is preferable to insulate by interposing the insulating heat resistant material 56. As the insulating heat resistant material 56, it is preferable to use a heat resistant resin, and polyimide or the like can be used. Further, if there is even a slight gap between the insulating heat-resistant material 56 and the second resin coating layer 36, the gap will be locally heated as described above, so that the insulating heat-resistant material 56 is injected and filled with a paste resin. Then, it is preferable to form it by a method such as curing by curing or integrally molding by injection so that no void is formed.

【0011】取付具58は端子38および被覆発熱体3
0の端部を覆って形成され、被覆発熱体30を端子部に
おいて容器の壁部等に液密に取り付けるものである。取
付具58は合成樹脂製で、一体成形するか、または半割
り状に成形して、金属管52、端子38、および絶縁耐
熱材料56を覆って、固定ネジ(図示せず)等によって
締めつけるようにしてもよい。なお取付具58は上記に
限定されるものでないことはもちろんである。
The mounting member 58 includes the terminal 38 and the coating heating element 3.
It is formed so as to cover the end portion of No. 0, and the covering heating element 30 is liquid-tightly attached to the wall portion of the container at the terminal portion. The fitting 58 is made of synthetic resin, and is integrally molded or halved so as to cover the metal tube 52, the terminal 38, and the heat-resistant insulating material 56, and fastened with a fixing screw (not shown) or the like. You may Needless to say, the attachment 58 is not limited to the above.

【0012】上記に述べた形態によると、発熱素線32
と端子38との接続部分直近に発生した熱を、放熱用の
金属管52から液体Aまたは液体A側に存する気体中に
放熱することができるので、被覆発熱体30の樹脂被覆
層34および36の局部過熱を抑えることができる。こ
のため被覆発熱体30を最大の電力負荷密度で使用する
ことができ、小型化が可能となる。さらには端子38を
通じて外気Bにも放熱でき、金属管52、端子38の両
放熱作用により、端子との接続部における樹脂被覆層を
好適に保護できるのである。また端子38と放熱用の金
属管52との間の絶縁方法として、絶縁耐熱材料56を
介在させることによって、空気の存在による過熱がさら
に好適に防止される。
According to the above-mentioned form, the heating wire 32
Since the heat generated in the vicinity of the connecting portion between the terminal 38 and the terminal 38 can be radiated from the metal tube 52 for heat radiation into the liquid A or the gas existing on the liquid A side, the resin coating layers 34 and 36 of the coating heating element 30. Local overheating can be suppressed. Therefore, the coated heating element 30 can be used with the maximum power load density, and the size can be reduced. Further, heat can be radiated to the outside air B through the terminal 38, and the resin coating layer in the connection portion with the terminal can be preferably protected by the heat radiation effect of both the metal tube 52 and the terminal 38. Further, as an insulating method between the terminal 38 and the metal tube 52 for heat dissipation, by interposing an insulating heat resistant material 56, overheating due to the presence of air can be prevented more suitably.

【0013】図2は被覆発熱体30の発熱部の構成の具
体例を示すものであるが、以下この発熱部の構成の実施
の形態についてさらに詳しく説明する。単線の発熱素線
32は、鉄クロム線あるいはニッケルクロム線等を用い
ることができる。さらに該発熱素線32は円形、楕円ま
たは矩形等とすることができ、特に断面形状には限定さ
れない。第1の樹脂密着被覆層34はポリイミド、ポリ
アミドまたはポリベンゾイミダゾール樹脂等の200℃
以上の耐熱性を有する樹脂で形成されている。該樹脂密
着被覆層34は厚さ25μm以上、好ましくは25〜3
0μm程度のものに形成するとよい。
FIG. 2 shows a specific example of the structure of the heat generating portion of the coated heat generating element 30, and the embodiment of the structure of the heat generating portion will be described in more detail below. As the single heating element wire 32, an iron chrome wire, a nickel chrome wire, or the like can be used. Further, the heating wire 32 can be circular, elliptical, rectangular, or the like, and is not particularly limited in cross-sectional shape. The first resin adhesion coating layer 34 is made of polyimide, polyamide, polybenzimidazole resin or the like at 200 ° C.
It is formed of a resin having the above heat resistance. The resin adhesion coating layer 34 has a thickness of 25 μm or more, preferably 25 to 3
It may be formed to have a thickness of about 0 μm.

【0014】さらに第1の樹脂密着被覆層34は、溶媒
で溶解した上記樹脂の樹脂液中に発熱素線32をディッ
ピング等するなどして、該発熱素線32に上記樹脂液を
塗布して後、熱風乾燥して溶媒を飛ばして被覆層を形成
する被覆層形成処理を数回〜数十回(3〜20回程度)
繰り返して所望の厚さの被覆層に形成することができ
る。これによりピンホールのない、かつ発熱素線32に
対する密着性の良好な被覆層とすることができる。ある
いは発熱素線32上に上記樹脂を所定の厚さに押出成形
して、該発熱素線32上に樹脂密着被覆層34を形成す
るようにすることもできる。
Further, the first resin adhesion coating layer 34 is obtained by applying the resin solution to the heating element wire 32 by, for example, dipping the heating element wire 32 in the resin solution of the resin dissolved in a solvent. After that, the coating layer forming treatment of drying with hot air to remove the solvent to form the coating layer is performed several times to several tens times (about 3 to 20 times).
It can be repeatedly formed into a coating layer having a desired thickness. As a result, a coating layer having no pinhole and having good adhesion to the heating element wire 32 can be obtained. Alternatively, the resin may be extruded on the heating wire 32 to a predetermined thickness to form the resin adhesion coating layer 34 on the heating wire 32.

【0015】耐環境性を有する第2の樹脂被覆層36
は、樹脂密着被覆層34の外周上に形成されている。該
樹脂被覆層36は厚さ50μm以上のフッ素樹脂層を設
けると好適である。フッ素樹脂は水中や空中での長時間
での使用に好適に耐えることができ、耐環境性に優れて
いる。該樹脂被覆層36がフッ素樹脂以外の、例えばポ
リイミドのときには、水中での使用で吸水してしまい、
長時間の使用で絶縁不良になるおそれがある。
Second resin coating layer 36 having environment resistance
Is formed on the outer periphery of the resin adhesion coating layer 34. The resin coating layer 36 is preferably provided with a fluororesin layer having a thickness of 50 μm or more. The fluororesin can withstand suitable use for a long time in water or air, and has excellent environmental resistance. When the resin coating layer 36 is other than fluororesin, for example, polyimide, it absorbs water when used in water,
Long-term use may result in poor insulation.

【0016】水中で使用した場合の耐電力負荷密度の結
果は次の通りである。上記実施の形態の25W/cm2
のワット密度(200℃)の被覆発熱体30の場合、水
中に入れて10分間通電後、水中耐圧 1500V 1
分間で絶縁が破壊した。20W/cm2 のワット密度
(145℃)の被覆発熱体30では500時間以上水中
に入れて通電した後でも絶縁破壊を起こさなかった。因
みに、図9に示す従来の被覆発熱体10で同様の試験を
行ったところ、10W/cm2 のワット密度で絶縁破壊
を起こした。原因としては前記したように空隙20が生
じているからと考えられる。また、発熱素線32にフッ
素樹脂層からなる樹脂被覆層36のみを直接形成した1
5W/cm2 のワット密度の被覆発熱体を製造して同様
の試験を行ったところ、1500V,1分間の水中耐圧
で絶縁が破壊した。
The results of the withstand load density when used in water are as follows. 25 W / cm 2 of the above embodiment
In the case of the coated heating element 30 having a watt density (200 ° C.), the voltage resistance in water is 1500 V 1
Insulation broke in minutes. The coated heating element 30 having a watt density (145 ° C.) of 20 W / cm 2 did not cause dielectric breakdown even after being immersed in water for 500 hours or more and energized. By the way, when a similar test was conducted using the conventional coated heating element 10 shown in FIG. 9, dielectric breakdown occurred at a watt density of 10 W / cm 2 . It is considered that the cause is that the void 20 is generated as described above. Further, only the resin coating layer 36 made of a fluororesin layer is directly formed on the heating element wire 1
When a coated heating element having a watt density of 5 W / cm 2 was manufactured and subjected to the same test, the insulation broke due to a withstand voltage in water of 1500 V for 1 minute.

【0017】流水中において水温が安定するまでの時間
を計測した結果は図3に示すように、本実施の形態の被
覆発熱体30の場合は約5秒であったが、図9に示す従
来の被覆発熱体10では25秒を要した。なお、被覆発
熱体は同一容量のものに調整し、本実施の形態のものは
コイル状に巻回した状態のものを使用し、両被覆発熱体
10、30をガラスパイプ中に配置し、1l/minの
流水で試験をした。
As shown in FIG. 3, the result of measuring the time until the water temperature stabilizes in running water was about 5 seconds in the case of the coated heating element 30 of the present embodiment. It took 25 seconds for the coated heating element 10. In addition, the coated heating elements are adjusted to have the same capacity, and in the present embodiment, a coiled state is used, and both coated heating elements 10 and 30 are arranged in a glass pipe. The test was conducted with running water of / min.

【0018】空中で使用した結果は次の通りである。本
実施の形態の被覆発熱体30の場合、0.9W/cm2
のワット密度(180℃)で樹脂被覆層36(フッ素樹
脂層)に劣化が見られた。図 に示す被覆発熱体10の
場合は、0.65W/cm2 のワット密度(150℃)
でフッ素樹脂層に劣化が見られた。また、発熱素線32
に直接フッ素樹脂層を形成した被覆発熱体では、0.8
W/cm2 のワット密度(165℃)でフッ素樹脂層に
劣化が見られた。このように、本実施の形態の被覆発熱
体30は空中での使用の場合にも従来のものあるいは比
較例のものに比して高い電力負荷密度で使用が可能とな
った。
The results used in air are as follows. In the case of the coated heating element 30 of the present embodiment, 0.9 W / cm 2
Deterioration was observed in the resin coating layer 36 (fluorine resin layer) at the watt density (180 ° C.). In the case of the coated heating element 10 shown in the figure, the watt density of 0.65 W / cm 2 (150 ° C.)
Therefore, the fluororesin layer was deteriorated. In addition, the heating wire 32
For a coated heating element in which a fluororesin layer is directly formed on the
Deterioration was observed in the fluororesin layer at a watt density (165 ° C.) of W / cm 2 . As described above, the coated heating element 30 of the present embodiment can be used with a higher power load density than the conventional one or the comparative example even when used in the air.

【0019】図4は被覆発熱体の被覆層上全体に金属管
を被覆した場合の具体的な形態を示す。また上記の実施
の形態で使用した符号で同一のものの説明は省略する。
52は第2の樹脂被覆層36を覆って設けた金属管であ
る。金属管52は、放熱性に優れる銅が望ましい。第2
の樹脂被覆層36上に金属管52を密着して形成するに
は、大径の管をロール掛け、あるいはダイス引きするド
ローイングによりシーズヒータと同様にして形成するこ
とができる。上記のように形成された被覆発熱体30の
外径は、例えば1〜3mmなど種々の太さのものにする
ことができる。
FIG. 4 shows a concrete form in which a metal tube is entirely coated on the coating layer of the coating heating element. Further, the same reference numerals used in the above embodiments will not be described.
Reference numeral 52 is a metal tube provided so as to cover the second resin coating layer 36. The metal tube 52 is preferably copper, which has excellent heat dissipation. Second
In order to form the metal tube 52 in close contact with the resin coating layer 36, it can be formed in the same manner as the sheathed heater by rolling a large diameter tube or drawing with a die. The outer diameter of the coated heating element 30 formed as described above can be various thicknesses such as 1 to 3 mm.

【0020】水中で使用した場合の耐電力負荷密度の結
果は次の通りである。上記実施の形態の25W/cm2
のワット密度(200℃)の被覆発熱体30の場合、水
中に入れて100時間通電後、水中耐圧 1500Vで
も絶縁が破壊しなかった。20W/cm2 のワット密度
(145℃)の被覆発熱体30では500時間以上水中
に入れて通電した後でも絶縁破壊を起こさなかった。こ
のように大きな電力負荷密度が得られるのは、水中にお
いて、金属管が均等熱放散を行うので、沸騰境膜でのロ
ーカルスポット(空隙)が生じにくくなるからである。
因みに、図9に示す従来の被覆発熱体10で同様の試験
を行ったところ、10W/cm2 のワット密度で絶縁破
壊を起こした。原因としては前記したように空隙20が
生じているからと考えられる。なお、発熱素線32にフ
ッ素樹脂層からなる樹脂被覆層36のみを直接形成した
15W/cm2 のワット密度のヒータ(金属管の被覆な
し)を製造して同様の試験を行ったところ、1500
V,1分間の水中耐圧で絶縁が破壊した。
The results of the power withstand load density when used in water are as follows. 25 W / cm 2 of the above embodiment
In the case of the coated heating element 30 having a watt density (200 ° C.), the insulation did not break even after being immersed in water for 100 hours and energized in water at 1500V. The coated heating element 30 having a watt density (145 ° C.) of 20 W / cm 2 did not cause dielectric breakdown even after being immersed in water for 500 hours or more and energized. The reason why such a large power load density is obtained is that the metal tube dissipates heat evenly in water, so that local spots (voids) in the boiling boundary film are less likely to occur.
By the way, when a similar test was conducted using the conventional coated heating element 10 shown in FIG. 9, dielectric breakdown occurred at a watt density of 10 W / cm 2 . It is considered that the cause is that the void 20 is generated as described above. A heater (without metal tube coating) having a watt density of 15 W / cm 2 in which only the resin coating layer 36 made of a fluororesin layer was directly formed on the heating element wire 32 was manufactured and subjected to the same test.
The insulation broke due to the breakdown voltage of 1 minute in water.

【0021】流水中において水温が安定するまでの時間
を計測した結果は図5に示すように、本実施の形態の被
覆発熱体30の場合は約15秒であったが、図9に示す
従来の被覆発熱体10では25秒を要した。なお、被覆
発熱体30および10は同一容量のものに調整し、本実
施の形態のものはコイル状に巻回した状態のものを使用
し、両被覆発熱体30、被覆発熱体10をガラスパイプ
中に配置し、1l/minの流水で試験をした。
As shown in FIG. 5, the result of measurement of the time until the water temperature stabilizes in running water was about 15 seconds in the case of the coated heating element 30 of the present embodiment, but the conventional method shown in FIG. It took 25 seconds for the coated heating element 10. It should be noted that the coated heating elements 30 and 10 are adjusted to have the same capacity. In the present embodiment, a coiled state is used. Both the coated heating elements 30 and 10 are glass pipes. It was placed inside and tested with running water of 1 l / min.

【0022】空中で使用した結果は次の通りである。本
実施の形態の被覆発熱体30の場合、0.9W/cm2
のワット密度(180℃)で100時間連続通電後、樹
脂被覆層36(フッ素樹脂層)に劣化が見られなかっ
た。図9に示す被覆発熱体10の場合は、0.65W/
cm2 のワット密度(150℃)でフッ素樹脂層に劣化
が見られた。また、発熱素線32に直接フッ素樹脂層の
みを形成した被覆発熱体では、0.8W/cm2 のワッ
ト密度(165℃)でフッ素樹脂層に劣化が見られた。
このように、本実施の形態の被覆発熱体30は空中での
使用の場合にも従来のものあるいは比較例のものに比し
て高い電力負荷密度で使用が可能となった。また、金属
管52で覆っていることから、外部からの衝撃を受けて
も傷が発生しにくく、ハンドリングも容易となった。
The results used in air are as follows. In the case of the coated heating element 30 of the present embodiment, 0.9 W / cm 2
No deterioration was observed in the resin coating layer 36 (fluorine resin layer) after continuous energization at the watt density (180 ° C.) for 100 hours. In the case of the coated heating element 10 shown in FIG. 9, 0.65 W /
Degradation was observed in the fluororesin layer at a watt density (150 ° C.) of cm 2 . Further, in the coated heating element in which only the fluororesin layer was directly formed on the heating element wire 32, the fluororesin layer was deteriorated at a watt density (165 ° C.) of 0.8 W / cm 2 .
As described above, the coated heating element 30 of the present embodiment can be used with a higher power load density than the conventional one or the comparative example even when used in the air. Further, since it is covered with the metal tube 52, scratches are less likely to occur even when an external impact is applied, and handling is facilitated.

【0023】図6は被覆発熱体の第2の樹脂被覆層36
に無機材料を混入させた実施の形態を示す。また上記の
実施の形態で使用した符号で同一のものの説明は省略す
る。本実施の形態では、第2の樹脂被覆層36に、マグ
ネシア、アルミナ、窒化アルミニウム、ガラス等の無機
材料からなる粉体を混入させている。これら無機粉体の
混入量が30wt%以下が好適であり、また1種に限ら
れず、2種以上を混合して用いてもよい。無機粉体を混
入させることにより、耐熱絶縁性能がより向上し、また
強度的にも優れる。第2の樹脂被覆層36の硬度が増す
から、ステンレス等の固い素材の金属管52をドローイ
ングにより形成する場合に好適である。また窒化アルミ
ニウムを混入した場合には熱伝導性に優れるから、温度
の立ち上がり特性もより向上した。その他の電気的特性
も図4に示すものと同等の結果が得られた。
FIG. 6 shows the second resin coating layer 36 of the coating heating element.
An embodiment in which an inorganic material is mixed in is shown. Further, the same reference numerals used in the above embodiments will not be described. In the present embodiment, the second resin coating layer 36 is mixed with powder made of an inorganic material such as magnesia, alumina, aluminum nitride, or glass. The mixing amount of these inorganic powders is preferably 30 wt% or less, and is not limited to one kind, and two or more kinds may be mixed and used. By mixing the inorganic powder, the heat resistant insulation performance is further improved and the strength is also excellent. Since the hardness of the second resin coating layer 36 increases, it is suitable when the metal tube 52 of a hard material such as stainless steel is formed by drawing. In addition, when aluminum nitride was mixed, the thermal conductivity was excellent, so the temperature rising characteristics were also improved. The other electrical characteristics were similar to those shown in FIG.

【0024】図7は被覆発熱体の第1の樹脂密着被覆層
34に無機材料を混入させた実施の形態を示す。また上
記の実施の形態で使用した符号で同一のものの説明は省
略する。本実施の形態では、第1の樹脂被覆層34に、
マグネシア、アルミナ、窒化アルミニウム、ガラス等の
無機材料からなる粉体を混入させている。これら無機粉
体の混入量は30wt%以下が好適であり、また1種に
限られず、2種以上を混合して用いてもよい。無機粉体
を混入させることにより、耐熱絶縁性能がより向上し、
また強度的にも優れる。特に窒化アルミニウムを混入し
た場合には熱伝導性に優れるから、温度の立ち上がり特
性もより向上した。その他の電気的特性も図4に示すも
のと同等の結果が得られた。なお、第1および第2の両
樹脂被覆層34、36に無機粉体を混入させることもで
きる。
FIG. 7 shows an embodiment in which an inorganic material is mixed in the first resin adhesion coating layer 34 of the coating heating element. Further, the same reference numerals used in the above embodiments will not be described. In the present embodiment, in the first resin coating layer 34,
Powders made of an inorganic material such as magnesia, alumina, aluminum nitride and glass are mixed. The mixing amount of these inorganic powders is preferably 30 wt% or less, and is not limited to one kind, and two or more kinds may be mixed and used. By mixing inorganic powder, heat resistant insulation performance is further improved,
It is also excellent in strength. In particular, when aluminum nitride was mixed in, the thermal conductivity was excellent, so the temperature rise characteristics were also improved. The other electrical characteristics were similar to those shown in FIG. It is also possible to mix inorganic powder into both the first and second resin coating layers 34 and 36.

【0025】図8は、図4のものにおいて第2の樹脂被
覆層36を省いて、第1の樹脂被覆層34上に直接金属
管52を設けた場合の実施の形態を示す。本実施の形態
でも第1の樹脂被覆層34に前記と同様の材質のものを
用いることにより発熱素線32との密着性は良好で両者
間に空隙は生じないから、前記各実施の形態と同様に優
れた電気的特性が得られ、高い電力負荷密度が得られ
る。樹脂被覆層は1層、2層に限られず、3層以上の多
層に設けることもできる。
FIG. 8 shows an embodiment in which the second resin coating layer 36 is omitted from the configuration of FIG. 4 and the metal tube 52 is directly provided on the first resin coating layer 34. Also in this embodiment, since the first resin coating layer 34 is made of the same material as that described above, the adhesion with the heating element wire 32 is good and no gap is formed between the two. Similarly, excellent electrical characteristics can be obtained and a high power load density can be obtained. The resin coating layer is not limited to one layer and two layers, and may be provided in multiple layers of three or more layers.

【0026】以上図2〜図8に基づいて発熱部の好適な
実施の形態について説明したが、発熱部の構成はこれに
限られないことはもちろんであり、図9に示すような従
来の発熱部であっても、樹脂被覆層上に金属管を配設す
ることによって、金属管を通じて液中にも放熱を図るこ
とができるから、端子部における樹脂被覆層の炭化、劣
化等を防止でき電力負荷密度をそれなりに高めて使用で
きる。
Although the preferred embodiment of the heat generating portion has been described above with reference to FIGS. 2 to 8, it goes without saying that the structure of the heat generating portion is not limited to this, and the conventional heat generating portion as shown in FIG. 9 is used. Even in the parts, by disposing the metal tube on the resin coating layer, it is possible to radiate heat into the liquid through the metal tube. It can be used by increasing the load density accordingly.

【0027】以上、本発明の好適な実施の形態について
種々述べてきたが、本発明は上述する実施の形態に限定
されるものではなく、発明の精神を逸脱しない範囲で多
くの改変を施し得るのはもちろんである。
Although various preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and many modifications can be made without departing from the spirit of the invention. Of course.

【0028】[0028]

【発明の効果】本発明に係る被覆発熱体は、発熱素線が
樹脂被覆層で被覆され、発熱素線の端部が端子に接続さ
れている被覆発熱体において、該接続部直近の前記樹脂
被覆層上を覆って、放熱用の金属管を前記端子と絶縁し
て設けているので、前記発熱素線と端子との接続部分直
近に発生した熱を、前記放熱用の金属管から液体中また
は気体中に放熱することができ、前記被覆発熱体の樹脂
被覆層の局部過熱を抑えることができる。このため被覆
発熱体を最大の電力負荷密度で使用することができ、小
型化が可能になる。また前記端子と前記放熱用の金属管
との間の絶縁方法として、絶縁耐熱材料を介在させるこ
とによって、空気の存在による加熱を極力防止できる。
The coated heating element according to the present invention is a coated heating element in which a heating element wire is covered with a resin coating layer and an end of the heating element wire is connected to a terminal, and the resin is provided in the vicinity of the connection portion. Since the metal tube for heat dissipation is provided so as to cover the covering layer and to be insulated from the terminal, the heat generated in the vicinity of the connecting portion between the heating element wire and the terminal is transferred from the metal tube for heat dissipation into the liquid. Alternatively, heat can be radiated into the gas, and local overheating of the resin coating layer of the coating heating element can be suppressed. Therefore, the coated heating element can be used with the maximum power load density, and the size can be reduced. As a method of insulation between the terminal and the metal tube for heat dissipation, an insulating heat resistant material is interposed so that heating due to the presence of air can be prevented as much as possible.

【0029】さらに、前記発熱素線が単線より形成さ
れ、前記樹脂被覆層が該発熱素線の外周に形成された2
00℃以上の耐熱絶縁性能を有する第1の樹脂密着被覆
層と、該樹脂密着被覆層の外周に形成された耐環境性を
有する第2の樹脂被覆層とから成る被覆発熱体による
と、前記発熱素線に前記樹脂密着被覆層を設けたので、
該発熱素線と該樹脂密着被覆層との間に空隙が生じず、
これによる局部加熱が避けられるから、高い電力負荷密
度での使用が可能となり、小型化が図れ、また加熱効率
も向上して温度の立ち上がり特性を改善できる。また、
前記樹脂被覆層上全体に前記金属管を被覆することによ
って、外傷がつかず、またハンドリングが容易になる。
さらに前記樹脂被覆層の少なくとも1層に無機材料から
なる粉体を混入させることにより、耐熱絶縁性能がより
向上し、強度的にも優れた被覆発熱体となる。
Further, the heating wire is formed of a single wire, and the resin coating layer is formed on the outer circumference of the heating wire.
According to the coated heating element including the first resin adhesive coating layer having a heat-resistant insulation performance of 00 ° C. or higher and the environment-resistant second resin adhesive layer formed on the outer periphery of the resin adhesive coating layer, Since the resin adhesion coating layer is provided on the heating element wire,
No void is generated between the heating element wire and the resin adhesion coating layer,
Since local heating due to this is avoided, it can be used with a high power load density, downsizing can be achieved, and heating efficiency can be improved to improve temperature rising characteristics. Also,
By covering the entire resin coating layer with the metal pipe, no damage is caused and handling is facilitated.
Furthermore, by mixing a powder made of an inorganic material into at least one of the resin coating layers, the heat resistance insulation performance is further improved, and the coated heating element is excellent in strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る被覆発熱体の構成を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing a configuration of a coated heating element according to the present invention.

【図2】樹脂被覆層を2層にした形態の構成を示す説明
図である。
FIG. 2 is an explanatory diagram showing a configuration of a mode in which two resin coating layers are provided.

【図3】樹脂被覆層を2層にした形態で、水中で使用し
た場合の温度の立ち上がり特性を示すグラフである。
FIG. 3 is a graph showing the temperature rising characteristics when used in water in the form of two resin coating layers.

【図4】被覆発熱体全体に金属管を覆った形態を示す説
明図である。
FIG. 4 is an explanatory view showing a form in which a metal tube is covered on the entire coated heating element.

【図5】被覆発熱体全体に金属管を覆った形態で、水中
で使用した場合の温度の立ち上がり特性を示す説明図で
ある。
FIG. 5 is an explanatory diagram showing temperature rising characteristics when used in water with a metal tube covering the entire coated heating element.

【図6】第2の樹脂被覆層に無機材料を混入させた形態
を示す説明図である。
FIG. 6 is an explanatory diagram showing a form in which an inorganic material is mixed in the second resin coating layer.

【図7】第1の樹脂密着被覆層に無機材料を混入させた
形態を示す説明図である。
FIG. 7 is an explanatory diagram showing a form in which an inorganic material is mixed in the first resin adhesion coating layer.

【図8】第2の樹脂被覆層を省いて、第1の樹脂密着被
覆層上に直接金属管を設けた形態を示す説明図である。
FIG. 8 is an explanatory diagram showing a form in which a second resin coating layer is omitted and a metal tube is directly provided on the first resin adhesion coating layer.

【図9】従来の被覆発熱体の形態を示す説明図である。FIG. 9 is an explanatory view showing a form of a conventional coated heating element.

【図10】従来の被覆発熱体の断面図である。FIG. 10 is a cross-sectional view of a conventional coated heating element.

【符号の説明】[Explanation of symbols]

30 被覆発熱体 32 発熱素線 34 第1の樹脂密着被覆層 36 第2の樹脂被覆層 38 端子 40 端子の貫通孔 42 端子の終端部 44 ろう材 46 圧着部位 48 接続部 52 放熱用の金属管 54 樹脂製のチューブ 56 絶縁耐熱材料 58 取付具 A 液体 B 外気 30 coating heating element 32 heating element wire 34 first resin adhesion coating layer 36 second resin coating layer 38 terminal 40 terminal through hole 42 terminal end portion 44 brazing material 46 crimping portion 48 connection portion 52 metal pipe for heat dissipation 54 Resin Tube 56 Insulation and Heat Resistant Material 58 Fixture A Liquid B Outside Air

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 発熱素線が樹脂被覆層で被覆され、発熱
素線の端部が端子に接続されている被覆発熱体におい
て、該接続部直近の前記樹脂被覆層上を覆って、放熱用
の金属管を前記端子と絶縁して設けたことを特徴とする
被覆発熱体。
1. In a coated heating element in which a heating element wire is covered with a resin coating layer and an end portion of the heating element wire is connected to a terminal, the resin heating layer is covered so as to radiate heat. The coated heating element, characterized in that the metal tube of (4) is provided so as to be insulated from the terminal.
【請求項2】 前記端子と前記放熱用の金属管との間
に、絶縁耐熱材料が介在していることを特徴とする請求
項1記載の被覆発熱体。
2. The coated heating element according to claim 1, wherein an insulating heat-resistant material is interposed between the terminal and the metal tube for heat dissipation.
【請求項3】 前記発熱素線が単線より形成され、前記
樹脂被覆層が該発熱素線の外周に形成された200℃以
上の耐熱絶縁性能を有する第1の樹脂密着被覆層と、該
樹脂密着被覆層の外周に形成された耐環境性を有する第
2の樹脂被覆層とから成ることを特徴とする請求項1ま
たは2記載の被覆発熱体。
3. A first resin adhesion coating layer having heat resistant insulation performance of 200 ° C. or higher, wherein the heating wire is formed of a single wire, and the resin coating layer is formed on the outer periphery of the heating wire, and the resin. The coated heating element according to claim 1 or 2, comprising a second resin coating layer having environment resistance formed on the outer periphery of the adhesion coating layer.
【請求項4】 前記樹脂被覆層上全体に前記金属管を被
覆したことを特徴とする請求項1、2または3記載の被
覆発熱体。
4. The coated heating element according to claim 1, 2 or 3, wherein the entire metal tube is coated on the resin coating layer.
【請求項5】 前記樹脂被覆層の少なくとも1層に無機
材料からなる粉体が混入されていることを特徴とする請
求項1、2、3または4記載の被覆発熱体。
5. The coated heating element according to claim 1, wherein powder of an inorganic material is mixed into at least one of the resin coating layers.
JP10693596A 1996-04-26 1996-04-26 Covered heater element Pending JPH09293582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10693596A JPH09293582A (en) 1996-04-26 1996-04-26 Covered heater element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10693596A JPH09293582A (en) 1996-04-26 1996-04-26 Covered heater element

Publications (1)

Publication Number Publication Date
JPH09293582A true JPH09293582A (en) 1997-11-11

Family

ID=14446260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10693596A Pending JPH09293582A (en) 1996-04-26 1996-04-26 Covered heater element

Country Status (1)

Country Link
JP (1) JPH09293582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189716A1 (en) * 2015-05-27 2016-12-01 オリンパス株式会社 Therapeutic energy-application structure and medical treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189716A1 (en) * 2015-05-27 2016-12-01 オリンパス株式会社 Therapeutic energy-application structure and medical treatment device

Similar Documents

Publication Publication Date Title
KR100391037B1 (en) Polymeric resistance heating element
US5835679A (en) Polymeric immersion heating element with skeletal support and optional heat transfer fins
EP1020976B1 (en) Stator insulation structure of rotary electric machine
KR101654716B1 (en) Heating equipment using the sheath heater with packing
US2116896A (en) Metal covered fluid conductor
WO2019145780A1 (en) Sheathed fiberglass heater wire
JPH09293582A (en) Covered heater element
KR101938744B1 (en) Sheath heater packing with air hole and protrusion, and sheath heater and heating equipment using the same
EP0949846B1 (en) Immersion heater for use in radiators of a heating system with hot water circulation
JP2004303648A (en) Sheet heater
JPH09167675A (en) Small tube heater
JPH0664054U (en) Antifreeze heater for water heater
JP2596522B2 (en) Insulated pipe with carbon heating element
JP2004040044A (en) Coil for electromagnetic expanded tube
JPH048637Y2 (en)
JP3289213B2 (en) Resistor
JPH09148054A (en) Coated heating body
MXPA99004325A (en) Polymeric immersion heating element with skeletal support
JPH09237671A (en) Heating roller
KR19980066311U (en) Electric heater
JP2012047332A (en) Heating device of piping