JPH0929304A - Highly formable cold rolled steel sheet excellent in resistance to galling - Google Patents

Highly formable cold rolled steel sheet excellent in resistance to galling

Info

Publication number
JPH0929304A
JPH0929304A JP18563295A JP18563295A JPH0929304A JP H0929304 A JPH0929304 A JP H0929304A JP 18563295 A JP18563295 A JP 18563295A JP 18563295 A JP18563295 A JP 18563295A JP H0929304 A JPH0929304 A JP H0929304A
Authority
JP
Japan
Prior art keywords
steel sheet
recess
rolled steel
resistance
cold rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18563295A
Other languages
Japanese (ja)
Other versions
JP3276538B2 (en
Inventor
Eiji Iizuka
塚 栄 治 飯
Takaaki Hira
良 隆 明 比
Toshiyuki Kato
藤 俊 之 加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18563295A priority Critical patent/JP3276538B2/en
Publication of JPH0929304A publication Critical patent/JPH0929304A/en
Application granted granted Critical
Publication of JP3276538B2 publication Critical patent/JP3276538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly formable cold rolled steel sheet excellent in the resistance to galling irrespective of the magnitude of a surface pressure generated on the sheet at the time of press forming. SOLUTION: In this highly formable cold rolled steel sheet having surface- roughness structure in which recessed parts having depth of >=1μm from the flat part are independently distributed in the flat part of the average roughness Ra of the surface of the steel sheet which is 0.2<Ra<=0.4μm on both sides or one side, the depth of the recessed part is 10-30μm, the area of each recessed part is 0.0001-0.01mm<2> and the area rate of the recessed part is 5-30%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼板表面の幾何学
形状を規制することにより、耐型かじり性を向上させる
ことを目的とした、高張力鋼板、軟鋼板、表面処理鋼板
を提供するものであり、これらはアルミ板、アルミ合金
板等にも適用されるものである。
TECHNICAL FIELD The present invention provides a high-strength steel sheet, a mild steel sheet, and a surface-treated steel sheet for the purpose of improving die galling resistance by regulating the geometric shape of the steel sheet surface. These are also applied to aluminum plates, aluminum alloy plates and the like.

【0002】[0002]

【従来の技術】従来から型かじり性の改善は、鋼板の硬
度を上昇させることにより改善してきたのに対し、本発
明は、鋼板の表面の幾何学形状が型かじり性改善の重要
な因子として影響を及ぼすことに着目して課題の解決を
検討した。鋼板の表面の幾何学形状は、プレス成形時の
摩擦抵抗に影響を及ぼすことが知られており、これまで
に幾何学的な表面形状を制御することにより摩擦抵抗を
低減し、プレス成形性の向上が得られた技術として、特
公平3−54006号に開示されている技術がある。ま
た、特開平2−280902号には、平坦部面積や凹部
の最近接間隔が規定されているが、これらは成形時の摩
擦抵抗を減少し、成形性を向上することを目的としてい
る。しかし、近年のプレス現場における潤滑油の低粘度
化の動き等により問題となってきた成形時の耐型かじり
性については開示されていない。また型かじりを伴うよ
うな高面圧での摩擦に適した表面構造が開示されていな
い。鋼板の型かじり現象の回避策としては、鋼板強度を
上昇することで表面硬度を上昇し、耐型かじり性を向上
させることが考えられるが、鋼板強度の上昇はプレス成
形性の劣化を招く。そこで、鋼板強度の上昇なしで、即
ちプレス成形性の劣化を極力抑えた、耐型かじり性に優
れた高成形性鋼板の要求が高まってきた。
2. Description of the Related Art Conventionally, the improvement of mold gallability has been improved by increasing the hardness of a steel sheet, whereas in the present invention, the geometric shape of the surface of the steel sheet is an important factor for improving the mold gallability. Focusing on the influence, we examined the solution of the problem. It is known that the geometrical shape of the surface of the steel sheet affects the frictional resistance during press forming, and by controlling the geometrical surface shape so far, the frictional resistance can be reduced to improve the press formability. As a technique that has been improved, there is a technique disclosed in Japanese Patent Publication No. 3-54006. Further, in Japanese Patent Laid-Open No. 2-280902, the area of the flat portion and the closest spacing of the recesses are specified, but these are intended to reduce frictional resistance during molding and improve moldability. However, it does not disclose mold galling resistance at the time of molding, which has been a problem due to the trend of lowering the viscosity of lubricating oil in the press field in recent years. Further, a surface structure suitable for friction at a high surface pressure such as accompanied by mold galling is not disclosed. As a measure for avoiding the galling phenomenon of the steel sheet, it is conceivable to increase the steel sheet strength to increase the surface hardness and improve the die galling resistance, but the increase of the steel sheet strength causes deterioration of press formability. Therefore, there has been an increasing demand for a high formability steel sheet which is excellent in die galling resistance without increasing the strength of the steel sheet, that is, suppressing deterioration of press formability as much as possible.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、鋼板
表面の幾何学形状の制御によって得られる耐型かじり性
がプレス成形時に板に生ずる面圧の大小に関係なく良好
である冷延鋼板を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cold-rolled steel sheet in which the galling resistance obtained by controlling the geometrical shape of the steel sheet surface is good regardless of the surface pressure generated in the sheet during press forming. Is to provide.

【0004】[0004]

【課題を解決するための手段】すなわち本発明は、鋼板
表面の平均あらさRaが0.2μm超0.4μm以下の
平坦部の中に平坦部からの深さが10μm以上30μm
以下の凹部を鋼板表面の両面もしくは片面に独立して備
え、個々の凹部の面積が0.0001mm2 以上0.0
1mm2 以下であり、凹部面積率が5%以上30%以下
であることを特徴とする耐型かじり性に優れた高成形性
冷延鋼板を提供する。さらに、上述の本発明の鋼板表面
の幾何学形状は鋼板の成形方向やプレス成形の形状に対
して方向性のないものが好ましい。
Means for Solving the Problems That is, according to the present invention, in a flat part having an average roughness Ra of the steel sheet surface of more than 0.2 μm and 0.4 μm or less, the depth from the flat part is 10 μm or more and 30 μm or less.
The following recesses are independently provided on both sides or one side of the steel plate surface, and the area of each recess is 0.0001 mm 2 or more and 0.0
Provided is a highly formable cold-rolled steel sheet excellent in die galling resistance, which is 1 mm 2 or less and a recess area ratio of 5% or more and 30% or less. Further, it is preferable that the above-described geometrical shape of the steel sheet surface of the present invention has no directivity with respect to the forming direction of the steel sheet or the shape of press forming.

【0005】以下に本発明をさらに詳細に説明する。冷
延鋼板の表面の幾何学形状は、従来ショットブラストに
用いるショットの粒度番号によって大体の平均粗さを管
理していたのが現状である。しかし本発明者等によれ
ば、プレス成形時における鋼板表面の耐型かじり性を向
上させプレス成形不良を回避するには、よりきめ細かい
表面の幾何学形状の制御が必要であることが判明した。
即ち、耐型かじり性に優れた鋼板表面の幾何学形状は、
鋼板の両面もしくは片面に、10μm以上30μm以下
の深さを持つ凹部をRaが0.2μm超0.4μm以下
の平坦部中に他の凹部から独立して設け、個々の凹部の
面積が0.0001mm2 以上0.01mm2 以下であ
り、凹部面積率が5%以上30%以下であることが判明
した。また、凹部の位置が、ほぼ規則的(すなわち方向
性なく均質)に配列されていることが好ましい。
The present invention will be described in more detail below. As for the geometrical shape of the surface of the cold-rolled steel sheet, the average roughness is generally controlled by the grain size number of the shot used in conventional shot blasting. However, the present inventors have found that more precise control of the surface geometrical shape is necessary in order to improve the die galling resistance of the steel sheet surface during press forming and avoid press forming defects.
That is, the geometric shape of the steel plate surface having excellent mold galling resistance is
A recess having a depth of 10 μm or more and 30 μm or less is provided in a flat part having Ra of more than 0.2 μm and 0.4 μm or less on both sides or one side of the steel sheet independently of other recesses, and the area of each recess is 0. 0001mm 2 or more 0.01 mm 2 or less, the recess area ratio is 30% or less than 5% was found. Further, it is preferable that the positions of the recesses are arranged substantially regularly (that is, uniform without directionality).

【0006】プレス成形時の型かじりは、鋼板表面の金
属の金型への凝着が起源となるが、この凝着現象を促進
する主要因に、成形中に鋼板表面に起こる油切れが挙げ
られる。従って、耐型かじり性を向上する手段には成形
中の油切れの回避が考えられる。この油切れの原因に
は、成形途中に鋼板表面の凹部が潰されそこが平坦化す
ることや、油が鋼板表面溝部を伝わって接触系外に逃げ
ることなどが考えられる。このため、成形途中で鋼板表
面が幾らか潰されても充分に凹部が残るだけの深さを付
与することや、鋼板表面が変形しにくいように平坦部面
積率を増やすことや、油が鋼板表面溝部を伝わって接触
系外に逃げないように凹部を独立させることで耐型かじ
り性は向上すると考えられる。本発明者らは、この考察
に基づき研究を重ねた結果、以下に示すように鋼板の表
面の幾何学形状を規制することで、耐型かじり性に優れ
た薄鋼板の提供が可能となることを解明した。
The die galling during press forming originates from the adhesion of metal on the surface of the steel sheet to the die, and the main factor that accelerates this adhesion phenomenon is the lack of oil that occurs on the surface of the steel sheet during forming. To be Therefore, avoiding oil shortage during molding can be considered as a means for improving mold galling resistance. The cause of this oil shortage may be that the recesses on the surface of the steel sheet are crushed and flattened during forming, or that oil travels through the groove portions on the surface of the steel sheet and escapes to the outside of the contact system. Therefore, even if the surface of the steel sheet is crushed to some extent during forming, a sufficient depth to leave recesses is provided, the flat area ratio is increased so that the surface of the steel sheet is less likely to be deformed, and oil is added to the steel sheet. It is considered that the mold galling resistance is improved by making the recesses independent so that they do not escape through the surface groove portion to the outside of the contact system. As a result of repeated studies based on this consideration, the inventors of the present invention can provide a thin steel sheet excellent in die galling resistance by regulating the geometric shape of the surface of the steel sheet as shown below. Clarified.

【0007】まず、凹部深さを変化させた材料の摩擦試
験を行った。試験装置は図2に示すような材料1の両面
を工具2(材質:SKD11)で一定面圧Pで押しつけ
た状態で材料を引き抜き、そのときの引き抜き荷重Dか
ら摩擦係数μをμ=D/(2・P)で求めた。Raが
0.2μm超〜0.4μm、独立した凹部の面積が0.
01mm2 以下、凹部面積率が5〜30%の鋼板を材料
1として実験を行い、通常用いられる潤滑油(粘度:1
5cST/40℃)を材料の両面に塗布して実験した。
図1に結果を示す。面圧は低面圧(P=1kgf/mm2 )と
高面圧(P=20kgf/mm2 )の2水準とした。引き抜き
後の材料表面観察からμが0.2を超えると線状きずが
発生しやすく、型かじり発生につながることがわかっ
た。図1のように低面圧の場合、凹部深さが小さいほど
μが小さいが、それが30μm以上になるとμが増大す
る。これは凹部が深いと面圧が小さいため、凹部にある
油に静水圧がかからず、境界部に油が供給され難いため
である。一方、高面圧の場合、逆に凹部深さが浅いほど
μが大きいが、それが10μm以上になるとμが減少す
る。これは高面圧のため、凹部が浅すぎると凹部が平坦
化され、捕獲していた油が成形途中でなくなってしまう
ためである。また、凹部が深くても高面圧のため凸部の
潰れにより凹部にある油に十分静水圧がかかり、境界部
に油が供給されμが低下する。
First, a friction test was conducted on materials having different recess depths. The test device pulls out the material 1 while pressing both surfaces of the material 1 with a tool 2 (material: SKD11) at a constant surface pressure P as shown in FIG. 2, and the friction coefficient μ is μ = D / from the pulling load D at that time. It was calculated by (2 · P). Ra is more than 0.2 μm to 0.4 μm, and the area of each independent recess is 0.
An experiment was conducted using a steel plate having a recess area ratio of 01 mm 2 or less and a concave area ratio of 5 to 30% as a material 1, and a lubricating oil (viscosity: 1
5 cST / 40 ° C.) was applied to both sides of the material for the experiment.
FIG. 1 shows the results. The surface pressure has two levels: low surface pressure (P = 1 kgf / mm 2 ) and high surface pressure (P = 20 kgf / mm 2 ). From the observation of the material surface after drawing, it was found that when μ exceeds 0.2, linear flaws are likely to occur, leading to the occurrence of mold galling. In the case of a low surface pressure as shown in FIG. 1, the smaller the recess depth is, the smaller μ is. However, when it is 30 μm or more, μ is increased. This is because if the recess is deep, the surface pressure is small, so that hydrostatic pressure is not applied to the oil in the recess, and it is difficult to supply oil to the boundary. On the other hand, in the case of high surface pressure, conversely, the smaller the depth of the recess is, the larger μ is, but when it becomes 10 μm or more, μ decreases. This is because due to the high surface pressure, if the recess is too shallow, the recess will be flattened and the trapped oil will be lost during molding. Further, even if the concave portion is deep, due to the high surface pressure, the convex portion is crushed so that the hydrostatic pressure is sufficiently applied to the oil in the concave portion, and the oil is supplied to the boundary portion to reduce μ.

【0008】図1より低面圧〜高面圧にかけてμが小さ
い条件は凹部の深さが10μm〜30μmの範囲にある
ことがわかった。これらの知見に基づき、鋼板の表面の
幾何学形状を以下のように制御すれば鋼板の耐型かじり
性が飛躍的に向上することがわかった。なお、鋼板表面
の幾何学形状の測定は、公知の2次元粗度プロファイル
から求めるか3次元粗度データを用いた鋼板表面の画像
処理解析により得られる。
From FIG. 1, it was found that the condition that μ is small from low surface pressure to high surface pressure is that the depth of the recess is in the range of 10 μm to 30 μm. Based on these findings, it was found that if the geometric shape of the surface of the steel sheet is controlled as follows, the die galling resistance of the steel sheet is dramatically improved. The geometrical shape of the steel sheet surface is obtained from a known two-dimensional roughness profile or obtained by image processing analysis of the steel sheet surface using three-dimensional roughness data.

【0009】平坦部:平坦部のRaは0.2μm超0.
4μm以下とする。0.2μm未満だと通抜時スリップ
が発生し、トラブルを生じることがある。また、0.4
μmを超えると成形時に平坦部にも接触部と非接触部が
存在することになり、凹部の独立が保たれないためであ
る。
Flat part: Ra of the flat part is more than 0.2 μm and 0.
4 μm or less. If the thickness is less than 0.2 μm, slipping may occur during passing through, which may cause trouble. Also, 0.4
This is because when the thickness exceeds μm, the flat portion has a contact portion and a non-contact portion at the time of molding, and the recesses cannot be kept independent.

【0010】凹部深さ:10μm以上30μm以下、好
ましくは15〜25μmとする。10μm以上としたの
は、10μm未満であると成形完了前に表面が潰されて
凹部が浅くなることと、鋼板の変形で表面があれ、凹部
が浅くなることの相互作用で凹部が消滅し、油切れを引
き起こすためである。30μm以下としたのは、30μ
mより大きい場合は成形中に凹部が多少浅くなっても油
に静水圧がかからず、潤滑効果が得られないためであ
る。
Depth of recess: 10 μm or more and 30 μm or less, preferably 15 to 25 μm. 10 μm or more means that when the thickness is less than 10 μm, the surface is crushed before the completion of molding to make the recess shallow, and the deformation of the steel plate causes the surface to be roughened, and the recess disappears due to the interaction of the shallow recess. This is because it runs out of oil. 30 μm or less is 30 μm
If it is larger than m, the hydrostatic pressure is not applied to the oil even if the recess becomes slightly shallower during molding, and the lubricating effect cannot be obtained.

【0011】凹部面積:個々の凹部面積は0.0001
mm2 以上0.01mm2 以下、好ましくは0.000
1〜0.007mm2 とする。0.0001mm2 以上
としたのは、これ未満は製造上困難と考えられるためで
ある。0.01mm2 以下としたのは、これより大きい
と油の封じ込め効果を得ることが困難になり、平坦部で
の接触面圧上昇をもたらすためである。
Recess area: 0.0001 for each recess area
mm 2 or more 0.01 mm 2 or less, preferably 0.000
It is set to 1 to 0.007 mm 2 . The reason why it is set to 0.0001 mm 2 or more is that it is considered that it is difficult to manufacture if it is less than 0.0001 mm 2 . The reason why it is set to 0.01 mm 2 or less is that if it is larger than this, it becomes difficult to obtain the effect of confining oil, and the contact surface pressure at the flat portion increases.

【0012】凹部面積率:5%以上30%以下、好まし
くは10〜30%とする。5%以上としたのは、これ未
満であると成形前の油の保持力が劣るためである。30
%以下としたのは、これより大きいと成形中の平坦部で
の面圧が大きくなり、凹部深さの減少量が大きくなるこ
とで、油の流出量が適正量より過大となるためである。
Recess area ratio: 5% to 30%, preferably 10 to 30%. The reason why the content is 5% or more is that if it is less than 5%, the holding power of oil before molding is poor. 30
The reason for setting it to be less than or equal to 5% is that if it is larger than this, the surface pressure in the flat portion during molding becomes large, and the amount of decrease in the depth of the recess becomes large, so that the oil outflow amount becomes excessively larger than the appropriate amount. .

【0013】[0013]

【実施例】以下に本発明を実施例に基づいて具体的に説
明する。板厚4.0mmの熱延鋼板を0.8mmに冷間
圧延し、焼鈍後0.8〜1.2%の調質圧延をレーザ加
工により表面に成形した幾何学形状の異なる種々のスキ
ンパスロールにて行い、両面に同一の幾何学的形状を有
する冷延鋼板を製造した。得られた鋼板の機械的性質を
表1に示す。
EXAMPLES The present invention will be specifically described below based on examples. Hot-rolled steel sheet having a thickness of 4.0 mm is cold-rolled to 0.8 mm, and after annealing, tempered rolling of 0.8 to 1.2% is formed on the surface by laser processing. Various skin pass rolls having different geometric shapes. The cold rolled steel sheet having the same geometrical shape on both sides was manufactured. Table 1 shows the mechanical properties of the obtained steel sheet.

【0014】 [0014]

【0015】得られた表2に示す種々の表面幾何学形状
を有する鋼板で、図3に示すポンチ径100mm、ブラ
ンク径230mm、成形高さ50mmの連続円錐台成形
を行い、50枚成形した時点の成形品を目視評価し、外
観上問題がないものを○、不良のものを×として耐型か
じり性を評価した。潤滑油は通常の防錆油(粘度16.
3cst−40℃)を1g/m2 両面塗布した。その結
果を表2に示す。本発明の鋼板は、比較例に比べて良好
な耐型かじり性を示す。なお、プレス部品により片面に
のみ型かじりが生じるような場合、片面のみに本発明の
幾何学形状を有する冷延鋼板についても良好な耐かじり
性を有することが実証された。
The steel plates having various surface geometric shapes shown in Table 2 were subjected to continuous frustoconical forming with a punch diameter of 100 mm, a blank diameter of 230 mm, and a forming height of 50 mm shown in FIG. The molded products of No. 1 were visually evaluated, and those having no external appearance problems were evaluated as ◯, and defective ones as × to evaluate the mold galling resistance. Lubricating oil is normal rust preventive oil (viscosity 16.
3 cst-40 ° C.) was applied on both sides at 1 g / m 2 . The results are shown in Table 2. The steel sheet of the present invention exhibits better mold galling resistance than the comparative example. It should be noted that in the case where die galling occurs on only one surface due to a pressed part, it has been demonstrated that the cold rolled steel sheet having the geometrical shape of the present invention on only one surface also has good galling resistance.

【0016】 [0016]

【0017】[0017]

【発明の効果】本発明によれば、冷延鋼板の表面の幾何
学形状を規制することにより同一材質の冷延鋼板におい
ても耐型かじり性が格段に向上するため、その使用範囲
は広がる。
According to the present invention, by controlling the geometrical shape of the surface of the cold rolled steel sheet, even in the cold rolled steel sheet of the same material, the die galling resistance is remarkably improved, so that the range of use thereof is expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】 凹部深さと摩擦係数との関係を示すグラフで
ある。
FIG. 1 is a graph showing a relationship between a recess depth and a friction coefficient.

【図2】 摩擦試験の試験装置を説明する模式図であ
る。
FIG. 2 is a schematic diagram illustrating a test device for a friction test.

【図3】 耐型かじり性を評価する円錐台成形の形状を
示す斜視図である(単位mm)。
FIG. 3 is a perspective view showing a shape of a truncated cone for evaluating mold galling resistance (unit: mm).

【符号の説明】[Explanation of symbols]

1 材料 2 工具 P 面圧 D 荷重 1 Material 2 Tool P Surface pressure D Load

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋼板表面の平均粗さRaが0.2μm超
0.4μm以下の平坦部の中に平坦部からの深さが10
μm以上30μm以下の凹部を鋼板表面の両面もしくは
片面に独立して備え、個々の凹部の面積が0.0001
mm2 以上0.01mm2 以下であり、凹部面積率が5
%以上30%以下であることを特徴とする耐型かじり性
に優れた高成形性冷延鋼板。
1. The average roughness Ra of the steel sheet surface is more than 0.2 μm and not more than 0.4 μm.
The steel sheet surface is provided with recesses of μm or more and 30 μm or less independently, and the area of each recess is 0.0001.
mm 2 or more 0.01 mm 2 or less, the recess area ratio is 5
% Or more and 30% or less, a high formability cold rolled steel sheet excellent in die galling resistance.
JP18563295A 1995-07-21 1995-07-21 High formability cold rolled steel sheet with excellent mold resistance Expired - Fee Related JP3276538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18563295A JP3276538B2 (en) 1995-07-21 1995-07-21 High formability cold rolled steel sheet with excellent mold resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18563295A JP3276538B2 (en) 1995-07-21 1995-07-21 High formability cold rolled steel sheet with excellent mold resistance

Publications (2)

Publication Number Publication Date
JPH0929304A true JPH0929304A (en) 1997-02-04
JP3276538B2 JP3276538B2 (en) 2002-04-22

Family

ID=16174177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18563295A Expired - Fee Related JP3276538B2 (en) 1995-07-21 1995-07-21 High formability cold rolled steel sheet with excellent mold resistance

Country Status (1)

Country Link
JP (1) JP3276538B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108044A1 (en) 2007-03-01 2008-09-12 Jfe Steel Corporation High tensile cold rolled steel plate and method for manufacturing the cold rolled steel plate
CN102003675A (en) * 2009-08-27 2011-04-06 株式会社小糸制作所 Lamp design surface member and method of manufacturing lamp design surface member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108044A1 (en) 2007-03-01 2008-09-12 Jfe Steel Corporation High tensile cold rolled steel plate and method for manufacturing the cold rolled steel plate
JP2008238268A (en) * 2007-03-01 2008-10-09 Jfe Steel Kk High-strength cold-rolled steel plate and method for manufacturing the same
CN102003675A (en) * 2009-08-27 2011-04-06 株式会社小糸制作所 Lamp design surface member and method of manufacturing lamp design surface member

Also Published As

Publication number Publication date
JP3276538B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
CA2545224A1 (en) Press-forming device, press-forming method, computer program product and storage medium
Mori et al. Cold deep drawing of commercial magnesium alloy sheets
JP2002172432A (en) Pressing die unit
WO2021186952A1 (en) Mold for press-forming, and press-forming method using same
JPH0929304A (en) Highly formable cold rolled steel sheet excellent in resistance to galling
US4634475A (en) Deep-drawable aluminum sheet or strip and method of making same
JP3892640B2 (en) Method for continuous shear deformation processing of metal plate and apparatus for the method
JP5088002B2 (en) Steel strip rolling method and high-tensile cold-rolled steel strip manufacturing method
WO2022138837A1 (en) Titanium material
JP4885038B2 (en) Manufacturing method of high-strength metal strip with excellent press formability
JPH0852501A (en) Manufacture of cold rolled steel sheet excellent in press formability
JP2855392B2 (en) Cold rolled plate
JP3069199B2 (en) High tensile strength thin steel sheet with excellent press formability
SU1084091A1 (en) Method of machining the sheet surface
WO2023148899A1 (en) Steel material, automobile component, shearing device, and manufacturing method for steel material
JPH05337560A (en) Thin plate excellent in drawing formability for press
JP3979275B2 (en) Manufacturing method of hot-dip galvanized steel sheet with excellent press formability
JP2509651B2 (en) Cold rolled steel sheet for press with good lubricity
CN114080468B (en) Production method of metal plate product and metal plate product
JP3068938B2 (en) Method for producing galvannealed steel sheet with excellent formability
JPH02251301A (en) Method for rolling thin metallic plate
JP2685576B2 (en) Thin steel sheet for press with excellent formability
JP2010194587A (en) Method for press drawing aluminum plate material
JP2003290804A (en) Galvanized steel sheet
JPH11147101A (en) Hot rolled steel sheet excellent in press formability and resistance to galling and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees