JPH09292212A - Method for measuring optical axial angle of wedge-like double refracting plate - Google Patents

Method for measuring optical axial angle of wedge-like double refracting plate

Info

Publication number
JPH09292212A
JPH09292212A JP10713096A JP10713096A JPH09292212A JP H09292212 A JPH09292212 A JP H09292212A JP 10713096 A JP10713096 A JP 10713096A JP 10713096 A JP10713096 A JP 10713096A JP H09292212 A JPH09292212 A JP H09292212A
Authority
JP
Japan
Prior art keywords
optical axis
angle
wedge
light
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10713096A
Other languages
Japanese (ja)
Other versions
JP3615864B2 (en
Inventor
Toshimitsu Inagaki
利光 稲垣
Akio Takahashi
明夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP10713096A priority Critical patent/JP3615864B2/en
Publication of JPH09292212A publication Critical patent/JPH09292212A/en
Application granted granted Critical
Publication of JP3615864B2 publication Critical patent/JP3615864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of measuring optical axial angle of a wedge-like double refracting plate in which the angle formed by a reference surface and an optical axis in the wedge-like double refracting plate can be precisely measured, whereby the quality as a part can be easily judged. SOLUTION: This measuring method comprises measuring the angle θformed by a reference surface 66 and an optical axis in a wedge-like double refracting plate 6 having the reference surface 66 parallel to the transmitting direction of light, an end surface 62 orthogonal to the transmitting direction in which the optical axis is present, and an inclined surface 64 opposed to the end surface 62 with an inclination of a prescribed angle. In this case, the double refracting plate 6 is placed on a measuring base 22 with the reference surface 66 being matched thereto, a light polarized by a rotary polarizing plate 28 is transmitted thereby, the quantity of transmitted light only of ordinary light or abnormal light after transmission is measured, the rotating position of the polarizing plate 28 where the quantity of transmitted light is minimized is determined from two direction of the end surface 62 side and the inclined surface 64 side, respectively, and the angle θ [=(π-α)/2] formed by the reference surface 66 and the optical axis is calculated from the angle difference α of both the rotating positions and measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、偏波無依存型光ア
イソレータなどの光学デバイスに用いられる楔状複屈折
板の光学軸方向を測定する方法に関する。
TECHNICAL FIELD The present invention relates to a method for measuring the optical axis direction of a wedge-shaped birefringent plate used in an optical device such as a polarization independent optical isolator.

【0002】[0002]

【従来の技術】図5は偏波無依存型光アイソレータの概
略構成とその動作原理とを説明するための斜視図であ
る。同図(a),(b)のそれぞれに示すように、偏波
無依存型光アイソレータ2はファラデー回転子4を挟ん
で一対の同形状の楔状複屈折板6を対称に配置し、さら
にその前後に一対のレンズ8を配置して光ファイバー1
0に結合させている。
2. Description of the Related Art FIG. 5 is a perspective view for explaining a schematic configuration of a polarization independent optical isolator and its operating principle. As shown in FIGS. 2A and 2B, the polarization-independent optical isolator 2 has a pair of wedge-shaped birefringent plates 6 of the same shape arranged symmetrically with the Faraday rotator 4 interposed therebetween. An optical fiber 1 with a pair of lenses 8 arranged in front and back
It is tied to 0.

【0003】ここで、上記ファラデー回転子4による偏
光面回転角は45度とされ、その前後の一対の楔状複屈
折板6は前方の第1複屈折板6aの光学軸方向に対して
後方の第2複屈折板6bの光学軸方向が上記ファラデー
回転子4による偏光面回転角に対応されて45度ずらさ
れ、かつ第1,第2複屈折板6a,6bは楔状の傾斜面
同士を外側にして平行に対称配置されている。なお、楔
状複屈折板6は光の透過方向に垂直な端面62と、この
端面62に対して所定角度傾斜して対面する傾斜面64
とを有し、光学軸は上記端面62の面内に存する。
Here, the polarization plane rotation angle by the Faraday rotator 4 is set to 45 degrees, and the pair of wedge-shaped birefringent plates 6 before and after the Faraday rotator 4 are arranged rearward with respect to the optical axis direction of the front first birefringent plate 6a. The optical axis direction of the second birefringent plate 6b is shifted by 45 degrees in correspondence with the polarization plane rotation angle by the Faraday rotator 4, and the first and second birefringent plates 6a and 6b have wedge-shaped inclined surfaces outside. And are arranged symmetrically in parallel. The wedge-shaped birefringent plate 6 has an end face 62 perpendicular to the light transmission direction, and an inclined face 64 that faces the end face 62 at a predetermined angle.
And the optical axis lies in the plane of the end face 62.

【0004】そして、このように構成される偏波無依存
型光アイソレータ2では、同図(a)に示すように、前
方の光ファイバー10aからの順方向の光は第1レンズ
8aで平行光線にされて第1複屈折板6aに入射され、
この第1複屈折板6aを透過した光は常光と異常光とに
分離される。そして、この分離された常光と異常光とは
さらにファラデー回転子4によって各々偏光面が45度
回転されて、後方の第2複屈折板6bに入射される。
In the polarization-independent optical isolator 2 constructed as described above, as shown in FIG. 3A, the light from the front optical fiber 10a in the forward direction is converted into parallel rays by the first lens 8a. And is incident on the first birefringent plate 6a,
The light transmitted through the first birefringent plate 6a is separated into ordinary light and extraordinary light. Then, the ordinary light and the extraordinary light thus separated are further rotated by 45 degrees in polarization planes by the Faraday rotator 4 and are incident on the rear second birefringent plate 6b.

【0005】このとき、第2複屈折板6bは第1複屈折
板との関係において、その光学軸方向がファラデー回転
子4による偏光面の回転角度に合わされて45度ずらさ
れており、かつ傾斜面同士を平行にして対称配置されて
いるから、この第2複屈折板6bを透過する際の常光と
異常光との関係は、第1複屈折板6aを透過したときと
変わらず、このため第2複屈折板6bを透過した常光と
異常光は平行光線に戻されて後方の第2レンズ8bに入
射する。よって当該常光と異常光は後方の光ファイバー
10bに集光されて順方向に伝播されていく。
At this time, in relation to the first birefringent plate 6 b, the optical axis direction of the second birefringent plate 6 b is adjusted by the rotation angle of the plane of polarization by the Faraday rotator 4 and shifted by 45 °, and tilted. Since the surfaces are parallel to each other and are symmetrically arranged, the relation between the ordinary ray and the extraordinary ray when passing through the second birefringent plate 6b is the same as when passing through the first birefringent plate 6a. The ordinary ray and the extraordinary ray transmitted through the second birefringent plate 6b are returned to parallel rays and enter the second lens 8b at the rear. Therefore, the ordinary light and the extraordinary light are condensed on the rear optical fiber 10b and propagated in the forward direction.

【0006】一方、同図(b)に示すように、後方の光
ファイバー10bからの逆方向の反射戻り光は、第2レ
ンズ8bで平行光線にされてから第2複屈折板6bで常
光と異常光とに分離され、さらにファラデー回転子4で
偏光面が45度回転されたのち、第1複屈折板6aに入
射される。
On the other hand, as shown in FIG. 6B, the reflected light returning in the opposite direction from the rear optical fiber 10b is made into parallel rays by the second lens 8b and then abnormal by the second birefringent plate 6b. The light is separated into light, and the plane of polarization is rotated by 45 degrees by the Faraday rotator 4, and then the light is incident on the first birefringent plate 6a.

【0007】ところが、この逆方向の場合には、第1複
屈折板6aの光学軸は第2複屈折板6bの光学軸に対し
てファラデー回転子4による回転方向と逆回転方向に4
5度ずれていることになるので、第2複屈折板6bを透
過したときに分離された常光と異常光は、当該第1複屈
折板6aを透過する際においてはそれらの関係が逆転す
ることになる。
However, in the case of this opposite direction, the optical axis of the first birefringent plate 6a is set in a direction opposite to that of the Faraday rotator 4 with respect to the optical axis of the second birefringent plate 6b.
Since they are shifted by 5 degrees, the relationship between the ordinary light and the extraordinary light separated when passing through the second birefringent plate 6b is reversed when passing through the first birefringent plate 6a. become.

【0008】従って、この第1複屈折板6aを透過して
も反射戻り光の常光と異常光とは平行光線には戻らず、
よって当該常光と異常光は第1レンズ8aによって前方
の光ファイバー10aに集光されることがなく、これ
故、反射戻り光の逆方向への伝播が阻止される。
Therefore, even though the first birefringent plate 6a is transmitted, the ordinary and extraordinary rays of the reflected return light do not return to parallel rays,
Therefore, the ordinary light and the extraordinary light are not condensed by the first lens 8a on the front optical fiber 10a, and therefore, the reflected return light is prevented from propagating in the opposite directions.

【0009】ところで、この偏波無依存型光アイソレー
タ2は上述の動作原理から明らかなように、一対の楔状
複屈折板6a,6bはその傾斜面角度を同一にするとと
もに平行に配置し、かつ光学軸の角度方向を相互に45
度ずらすことが必要であり、しかもこれらの精度はきわ
めて精密に設定しなければならない。
By the way, as is clear from the above-mentioned principle of operation, the polarization-independent optical isolator 2 has a pair of wedge-shaped birefringent plates 6a and 6b having the same inclined surface angles and arranged in parallel. The angle directions of the optical axes are 45
It is necessary to shift them, and these accuracies must be set extremely precisely.

【0010】このため、上記一対の楔状複屈折板6a,
6bは、ルチル(TiO2 )等の光学材料のブロック素
材からの切り出しから研磨による傾斜面64の形成まで
を一貫して同一の工程で同時加工し、その後に2つの複
屈折板6a,6bに切断分離して作製しており、一対に
組み合わせる2つの楔状複屈折板6a,6bは必ずペア
で同時に作製することにより加工精度の誤差レベルまで
形状が等しくなるようにしている。
Therefore, the pair of wedge-shaped birefringent plates 6a, 6a,
6b is a process in which the optical material such as rutile (TiO 2 ) is cut from the block material to the formation of the inclined surface 64 by polishing, and is simultaneously processed in the same step, and then two birefringent plates 6a and 6b are formed. The two wedge-shaped birefringent plates 6a and 6b to be combined in a pair are made at the same time without fail so that the shapes are equalized to the error level of the processing accuracy.

【0011】また、このようにペアで作製した一対の楔
状複屈折板6a,6bは、図6に拡大表示するように、
ファラデー回転子4の前後にそれぞれの傾斜面64を外
側にしてかつ平行度を精密にして対称に配置するが、そ
の際には平行度だけでなく光学軸<001>の方向も正
確に45度ずらさなければならない。
Further, the pair of wedge-shaped birefringent plates 6a and 6b thus produced in a pair as shown in FIG.
Before and after the Faraday rotator 4, the respective inclined surfaces 64 are arranged outside and symmetrically arranged with a high degree of parallelism. At that time, not only the parallelism but also the direction of the optical axis <001> is accurately 45 degrees. You have to shift it.

【0012】ここで、上述のように一対の楔状複屈折板
6a,6bは同一のブロック素材からペアで切り出され
て加工形成されるので、光学軸<001>が存する端面
62の周囲に直角に形成したある共通の周側面を基準面
66とすれば、この基準面66に対する光学軸<001
>の方向つまり角度θは等しく、この一対の楔形複屈折
板6a,6bをその各傾斜面64を平行にして対称配置
すれば両光学軸<001>のなす角度、即ち光学軸<0
01>相互のずれ角度は2θになる。よって、ずれ角度
を45度にするには上記基準面66からの光学軸角度θ
を22.5度にすれば良い。
Here, as described above, the pair of wedge-shaped birefringent plates 6a, 6b are cut out from the same block material in pairs and processed, so that they are formed at right angles to the periphery of the end face 62 where the optical axis <001> exists. If the formed common peripheral side surface is used as the reference surface 66, the optical axis <001 with respect to the reference surface 66.
>, That is, the angle θ is equal, and if the pair of wedge-shaped birefringent plates 6a and 6b are symmetrically arranged with their inclined surfaces 64 in parallel, the angle formed by both optical axes <001>, that is, the optical axis <0.
01> The mutual deviation angle is 2θ. Therefore, in order to set the shift angle to 45 degrees, the optical axis angle θ from the reference plane 66 is set.
Should be 22.5 degrees.

【0013】従って、以上のことから、従来より上記一
対の楔状複屈折板6a,6bは図7に示すようにして作
製している。即ち、先ず光学材料のブロック素材12の
光学軸<001>をX線回析により測定し、この光学軸
<001>を面内に内包する平行な2面と、この2面に
直交するとともに光学軸<001>に対して22.5度
の角度をなす平行な2面とで囲まれる角柱状体14を切
り出す。次に、光学軸<001>を内包する平行な2面
のうちの一方を研磨して所定角度傾斜させ、傾斜面64
を形成する。爾後、上記4面に直交する面で切断して、
2つの同形状の楔状複屈折板6a,6bを得ている。
Therefore, from the above, the pair of wedge-shaped birefringent plates 6a and 6b have been conventionally manufactured as shown in FIG. That is, first, the optical axis <001> of the block material 12 of the optical material is measured by X-ray diffraction, and the two parallel surfaces that include the optical axis <001> in the plane and the optical axis <001> are orthogonal to these two surfaces. A rectangular columnar body 14 surrounded by two parallel surfaces forming an angle of 22.5 degrees with respect to the axis <001> is cut out. Next, one of the two parallel surfaces including the optical axis <001> is polished and tilted at a predetermined angle to form the tilted surface 64.
To form After that, cut at a plane orthogonal to the above four planes,
Two wedge-shaped birefringent plates 6a and 6b having the same shape are obtained.

【0014】[0014]

【発明が解決しようとする課題】ところで、上記偏波無
依存型光アイソレータ2の性能を規定値以上に満足させ
るためには、楔状複屈折板6a,6bの光学軸の方向は
基準面に対して22.5度±10分程度の加工精度内に
納める必要がある。しかしながら、楔状複屈折板6にま
で加工し終わった後では、あまりにも小さすぎてその光
学軸<001>の測定はX線回析によっても正確に行う
ことができず、また従来では正確に当該光学軸<001
>の測定を行う術も他に無く、よって楔状複屈折板6は
その寸法精度管理が行えず、部品としての合否判定をす
ることが実質的にできなかった。
By the way, in order to satisfy the performance of the polarization independent optical isolator 2 above a specified value, the optical axes of the wedge-shaped birefringent plates 6a and 6b are oriented with respect to the reference plane. Therefore, it is necessary to put it within the processing accuracy of about 22.5 degrees ± 10 minutes. However, after processing up to the wedge-shaped birefringent plate 6, the measurement of the optical axis <001> of the wedge-shaped birefringent plate 6 is too small to be accurately performed by X-ray diffraction, and in the related art, the measurement is accurately performed. Optical axis <001
There is no other way to measure>, therefore the dimensional accuracy of the wedge-shaped birefringent plate 6 cannot be controlled, and it is practically impossible to make a pass / fail judgment as a component.

【0015】従って、楔状複屈折板6は加工途中のブロ
ック素材12段階でのX線回析による光学軸測定に依存
して、以後の加工精度を可及的に高めることによって便
宜的にその部品の寸法精度を保証せざるを得ず、偏波無
依存型光アイソレータ2として組立の完了した完成品の
性能試験で合否判定するしかなかった。
Therefore, the wedge-shaped birefringent plate 6 depends on the optical axis measurement by the X-ray diffraction in the step 12 of the block material in the process of processing, and for the sake of convenience, the parts are expediently improved by improving the processing accuracy thereafter. There is no choice but to guarantee the dimensional accuracy, and there is no choice but to make a pass / fail judgment in the performance test of the completed polarization-independent optical isolator 2.

【0016】このため、部品として光学軸角度が不良で
あっても、無駄に組立をおこなっており、その結果、歩
留まりを低下させて、コストの低減を阻害する要因にも
なっていた。
For this reason, even if the optical axis angle of the component is bad, the assembly is performed wastefully, resulting in a reduction in the yield and a hindrance to cost reduction.

【0017】本発明は、このような事情に鑑みてなされ
たものであって、その目的は、楔形複屈折板における基
準面と光学軸とのなす角度を正確に測定することがで
き、もって部品としての合否判定を容易に行い得る楔状
複屈折板の光学軸角度測定方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to be able to accurately measure an angle formed by a reference plane and an optical axis in a wedge-shaped birefringent plate, and thus, a component. An object of the present invention is to provide a method for measuring an optical axis angle of a wedge-shaped birefringent plate, which can easily perform pass / fail judgment as described above.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る楔状複屈折板の光学軸角度測定方法で
は、光の透過方向に平行な基準面66と、該透過方向に
直交して光学軸<001>が面内に存する端面62と、
該端面62に対して所定角度傾斜して対面する傾斜面6
4とを有する楔状複屈折板6における該基準面66と該
光学軸<001>とのなす角度θを測定するに際し、測
定台22上に該複屈折板6をその基準面66を合わせて
載置し、該載置した複屈折板6に回転式偏光板28で偏
光した光を透過させて、該透過後の常光又は異常光のみ
の透過光量を測定し、該透過光量が最小値となる該偏光
板28の回転位置を、該端面62側からと該傾斜面64
側からとの双方で求め、該両回転位置の角度差αから該
基準面66と該光学軸<001>とのなす角度を測定す
ることを特徴とする。
In order to achieve the above object, in the method of measuring the optical axis angle of a wedge-shaped birefringent plate according to the present invention, a reference plane 66 parallel to the light transmission direction and a direction orthogonal to the light transmission direction are provided. And the end face 62 in which the optical axis <001> exists in the plane,
The inclined surface 6 that faces the end surface 62 at a predetermined angle.
When measuring the angle θ formed by the reference plane 66 and the optical axis <001> in the wedge-shaped birefringence plate 6 having the reference numeral 4, the birefringence plate 6 is mounted on the measurement table 22 with the reference plane 66 thereof aligned. Then, the polarized birefringent plate 6 is caused to transmit the light polarized by the rotary polarizing plate 28, and the transmitted light amount of only the ordinary light or the extraordinary light after the transmission is measured, and the transmitted light amount becomes the minimum value. The rotating position of the polarizing plate 28 is set from the end face 62 side to the inclined surface 64.
And the angle between the reference plane 66 and the optical axis <001> is measured from the angle difference α between the two rotational positions.

【0019】ここで、上記常光又は異常光のみの透過光
量が最小値となる回転式偏光板28の回転位置は光学軸
<001>方向を正確に計測して示すものであり、端面
62側から見た場合の光学軸<001>方向と傾斜面6
4側から見た場合の光学軸<001>方向とは当然のこ
とであるが基準面66に対して逆方向に同一角度θだけ
回転した位置となる。従って、この2方向から見た場合
の各光学軸<001>方向の回転位置をそれぞれ求め
て、それらの角度差αを得れば、この角度差αは基準面
66と光学軸<001>とがなす角度θの2倍をπから
差し引いたものであるから、当該角度θは(π−α)/
2となり、容易に算出できる。また、2方向から測定し
て得られるそれぞれの光学軸方向つまり回転位置は、実
質的に光学軸<001>を直接計測するものであるか
ら、それらの角度差αはきわめて高精度に計測でき、よ
って角度θも高精度に測定できる。このため、信頼度の
高い部品精度管理が可能となり、部品の合否判定を適切
に行えるようになる。
Here, the rotational position of the rotary polarizing plate 28 where the transmitted light amount of only the ordinary light or the extraordinary light is the minimum value is shown by accurately measuring the optical axis <001> direction, and from the end face 62 side. Optical axis <001> direction and inclined surface 6 when viewed
The optical axis <001> direction when viewed from the 4 side is, of course, a position rotated by the same angle θ in the opposite direction with respect to the reference plane 66. Therefore, when the rotational positions in the respective optical axis <001> directions when viewed from these two directions are respectively obtained and the angular difference α between them is obtained, this angular difference α becomes the reference plane 66 and the optical axis <001>. The angle θ is (π−α) /
It becomes 2 and can be easily calculated. Further, since the respective optical axis directions obtained by measuring from two directions, that is, the rotational positions are substantially directly measuring the optical axis <001>, the angular difference α between them can be measured with extremely high accuracy, Therefore, the angle θ can also be measured with high accuracy. For this reason, it becomes possible to perform highly reliable component quality control, and it is possible to appropriately perform pass / fail determination of components.

【0020】[0020]

【発明の実施の形態】以下に本発明に係る楔状複屈折板
の光学軸角度測定方法について、添付図面に基づき詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An optical axis angle measuring method for a wedge-shaped birefringent plate according to the present invention will be described in detail below with reference to the accompanying drawings.

【0021】図1は本発明に係る測定方法を実施するに
あたって用いる測定系の概略構成を示す図である。同図
に示すように、測定系20は被測定物である楔状複屈折
板6を載せる測定台22と、この測定台22上に載置し
た楔状複屈折板6に向けて平行光線を照射して透過させ
る照射器24及びその光源26、測定台22と照射器2
4との間に配置されて照射される平行光線を任意な角度
の偏波面に偏光可能な回転式偏光板28、並びにこの回
転式偏光板28の回転角度を測定する角度測定手段3
0、そして楔状複屈折板6を透過した後の透過光量を計
測するディテクター32及びその電源34とからなる。
FIG. 1 is a diagram showing a schematic configuration of a measuring system used for carrying out the measuring method according to the present invention. As shown in the figure, the measurement system 20 irradiates a measuring table 22 on which the wedge-shaped birefringent plate 6 to be measured is placed and a parallel light beam toward the wedge-shaped birefringent plate 6 placed on the measuring table 22. Irradiator 24 and its light source 26 for transmitting light through the measuring table 22 and irradiator 2
4, a rotary polarizing plate 28 capable of polarizing parallel rays irradiated with the polarized light into a plane of polarization having an arbitrary angle, and an angle measuring means 3 for measuring a rotation angle of the rotary polarizing plate 28.
0, and a detector 32 for measuring the amount of transmitted light after passing through the wedge-shaped birefringent plate 6 and its power source 34.

【0022】また、楔状複屈折板6は上述の従来技術で
説明したように、光の透過方向に直角で光学軸<001
>を内包する端面62と、この端面62に対して所定角
度傾斜して対面する傾斜面64及び上記端面62に直交
して光の透過方向に平行な基準面66とを有し、具体的
には直方体の一面を傾斜面に形成した楔状をなす。
The wedge-shaped birefringent plate 6 is, as described in the above-mentioned prior art, perpendicular to the light transmission direction and the optical axis <001.
>, An inclined surface 64 that is inclined at a predetermined angle and faces the end surface 62, and a reference surface 66 that is orthogonal to the end surface 62 and is parallel to the light transmission direction. Has a wedge shape in which one surface of a rectangular parallelepiped is formed into an inclined surface.

【0023】ところで、この楔状複屈折板6の基準面6
6に対する光学軸<001>方向、つまり基準面66と
光学軸<001>とのなす角度θを測定するには、図1
及び図2に示すように、先ず、楔状複屈折板6を測定台
22上に基準面66を合わせて載置し、かつこの楔状複
屈折板6の端面62あるいは傾斜面64を照射器24に
向けて(図2(a)参照)、照射器24から平行光線を
照射して透過させる。そして、楔状複屈折板6で分離さ
れた常光又は異常光のいずれか一方の光軸上にディテク
ター32の位置を合わせ、透過後の透過光量を測定す
る。なお、本図示例では常光の光軸上にディテクター3
2を配置して、常光のみの透過光量を測定するようにし
ており、また、光学軸<001>を内包する端面62側
から見た場合の光学軸<001>方向を先に求めるべ
く、当該端面62側を照射器24側に向けている。
By the way, the reference surface 6 of the wedge-shaped birefringent plate 6
In order to measure the optical axis <001> direction with respect to 6, that is, the angle θ formed by the reference plane 66 and the optical axis <001>,
As shown in FIG. 2, first, the wedge-shaped birefringent plate 6 is placed on the measurement table 22 with the reference surface 66 aligned, and the end face 62 or the inclined surface 64 of the wedge-shaped birefringent plate 6 is placed on the irradiator 24. (See FIG. 2A), the irradiator 24 irradiates a parallel light beam and transmits it. Then, the detector 32 is positioned on the optical axis of either ordinary light or extraordinary light separated by the wedge-shaped birefringent plate 6, and the amount of transmitted light after transmission is measured. In the illustrated example, the detector 3 is placed on the optical axis of ordinary light.
2 is arranged to measure the amount of transmitted light of only ordinary light, and in order to obtain the optical axis <001> direction when viewed from the end face 62 side including the optical axis <001> in advance, The end surface 62 side faces the irradiator 24 side.

【0024】次に、回転式偏光板28を回転させて上記
透過光量の測定値が最小値となる回転位置を探して光学
軸<001>方向を求め、当該光学軸<001>方向が
求められたなら、このときの回転式偏光板28の回転位
置を角度測定開始点とし、角度測定手段30のスケール
をリセットする。
Next, the rotary polarizing plate 28 is rotated to find the rotational position where the measured value of the transmitted light amount becomes the minimum value, the optical axis <001> direction is obtained, and the optical axis <001> direction is obtained. If so, the rotational position of the rotary polarizing plate 28 at this time is set as the angle measurement starting point, and the scale of the angle measuring means 30 is reset.

【0025】次いで、載置する楔形複屈折板6の基準面
66はそのままにして当該楔状複屈折板6を180度回
転させて傾斜面64側を照射器24に向け(図2(b)
参照)、当該傾斜面64側から見た場合の光学軸<00
1>方向を上述したのと同様にして求める。そして、こ
のときの回転式偏光板28の回転角度を角度測定器30
で読みとれば、端面62側から見た場合の光学軸<00
1>の角度方向でスケールが予めリセットしてあるか
ら、その読みとり値がそのまま2方向からの見た場合の
各光学軸<001>方向の角度差αになる。そして、こ
うして求められる角度差αは、いわば2つの光学軸<0
01>間の角度を直接的に計測するのに実質的に等しい
から、その測定精度はきわめて高いものとなる。
Next, while leaving the reference surface 66 of the wedge-shaped birefringent plate 6 to be placed as it is, the wedge-shaped birefringent plate 6 is rotated 180 degrees so that the inclined surface 64 side faces the irradiator 24 (FIG. 2B).
Optical axis <00 when viewed from the inclined surface 64 side.
The 1> direction is obtained in the same manner as described above. Then, the rotation angle of the rotary polarizing plate 28 at this time is determined by the angle measuring device 30.
If read from, the optical axis <00 when viewed from the end face 62 side
Since the scale is reset in advance in the angle direction of 1>, the read value becomes the angular difference α in each optical axis <001> direction when viewed from the two directions as it is. The angular difference α thus obtained is, so to speak, two optical axes <0.
Since the angle between 01> is substantially equal to the direct measurement, the measurement accuracy is extremely high.

【0026】また、上記角度差αは基準面66と光学軸
<001>とがなす角度θの2倍をπから差し引いたも
のであるから、当該角度θは(π−α)/2であり、容
易に算出して測定でき、しかも高精度な測定値が得られ
る。
Since the angle difference α is obtained by subtracting twice the angle θ formed by the reference plane 66 and the optical axis <001> from π, the angle θ is (π-α) / 2. It is possible to easily calculate and measure, and obtain a highly accurate measured value.

【0027】なお、角度差αを求めるにあたっては、角
度測定手段30のスケール初期値を任意にしておいて、
それぞれの方向からの光学軸<001>方向を探し当て
たときの回転位置のスケール表示値をそのまま読みとっ
て、それらの読みとり値の差から角度差αを求めても良
い。このようにして算出しても、任意に設定した初期値
は減算するときに消失するので何等影響はない。つま
り、各光学軸<001>の方向を回転式偏光板28を回
転させて探し当てるにあたって、角度測定手段30のス
ケールは初期設定する必要がない。また、楔状複屈折板
6の基準面66としては傾斜面の周囲4面のいずれをも
選択し得る。
When obtaining the angle difference α, the scale initial value of the angle measuring means 30 is set to an arbitrary value,
The scale display value of the rotational position when the optical axis <001> direction from each direction is searched for may be read as it is, and the angular difference α may be obtained from the difference between the read values. Even if calculated in this manner, the arbitrarily set initial value disappears when the subtraction is performed, so that there is no effect. That is, the scale of the angle measuring means 30 does not need to be initially set when the rotary polarizing plate 28 is rotated to find the direction of each optical axis <001>. Further, as the reference surface 66 of the wedge-shaped birefringent plate 6, any of the four surfaces around the inclined surface can be selected.

【0028】また、偏波無依存型光アイソレータに組み
込む一対の楔状複屈折板6a,6bの光学軸方向を測定
する場合には、一方の楔状複屈折板6aは図2に示すよ
うに、楔状の台形断面において幅広となる長辺側の周側
面を基準面66として測定し、他方の楔状複屈折板6b
は図3に示すように楔状の台形断面において幅狭となる
短辺側の周側面を基準面66として測定するようにして
も良い。このように、基準面を分けて測定した場合にお
いて、一対の両楔状複屈折板6a,6bの光学軸<00
1>方向がともに許容寸法精度内(具体例としては2
2.5度±10分)に入って、部品として合格判定が下
されていれば、偏波無依存型光アイソレータを組み立て
るときに、当該一対の楔状複屈折板6a,6bは組立治
具台36の基準面36a上に載置するだけで光学軸方向
を相互に45度ずらすことができ、光学軸調整が不要に
なる。
When measuring the optical axis direction of a pair of wedge-shaped birefringent plates 6a and 6b incorporated in a polarization independent optical isolator, one wedge-shaped birefringent plate 6a is wedge-shaped as shown in FIG. The peripheral side surface on the long side, which is wide in the trapezoidal cross section of the above, is measured as the reference surface 66, and the other wedge-shaped birefringent plate 6b
Alternatively, as shown in FIG. 3, the peripheral side surface on the short side, which becomes narrow in the wedge-shaped trapezoidal cross section, may be measured as the reference surface 66. In this way, when the reference planes are separately measured, the optical axes <00 of the pair of wedge-shaped birefringent plates 6a and 6b are <00.
1> direction is within the allowable dimensional accuracy (as a specific example, 2
When the polarization independent optical isolator is assembled, the pair of wedge-shaped birefringent plates 6a and 6b are mounted on the assembly jig base if the acceptance judgment is made as a part after entering the temperature of 2.5 degrees ± 10 minutes). The optical axis directions can be shifted from each other by 45 degrees simply by placing them on the reference surface 36a of 36, and the optical axis adjustment becomes unnecessary.

【0029】[0029]

【発明の効果】以上、発明の実施の形態で詳細に説明し
たように、本発明に係る楔形複屈折板の光学軸角度測定
方法によれば、常光又は異常光のみの透過光量が最小値
となる回転式偏光板の回転位置から光学軸方向を正確に
探し出して、端面側から見た場合の光学軸方向と傾斜面
側から見た場合の光学軸方向との角度差αを計測でき、
この2方向から見た場合の光学軸方向の角度差αは、基
準面と光学軸とがなす角度θの2倍をπから差し引いた
もので、当該角度θは(π−α)/2であるから、求め
た角度差αから角度θを容易に算出して測定できる。
As described above in detail in the embodiments of the invention, according to the method for measuring the optical axis angle of the wedge-shaped birefringent plate according to the present invention, the transmitted light amount of only ordinary light or extraordinary light is a minimum value. Accurately find the optical axis direction from the rotation position of the rotating polarizing plate, and measure the angular difference α between the optical axis direction when viewed from the end face side and the optical axis direction when viewed from the inclined surface side,
The angle difference α in the optical axis direction when viewed from these two directions is obtained by subtracting twice the angle θ formed by the reference surface and the optical axis from π, and the angle θ is (π−α) / 2. Therefore, the angle θ can be easily calculated and measured from the calculated angle difference α.

【0030】また、2方向から測定して得られるそれぞ
れの光学軸方向の回転位置は、実質的に光学軸を直接計
測するものであるから、それらの角度差αはきわめて高
精度に計測でき、よって角度θも高精度に測定できる。
Further, since the rotational positions in the respective optical axis directions obtained by measuring from the two directions substantially directly measure the optical axis, the angular difference α between them can be measured with extremely high accuracy, Therefore, the angle θ can also be measured with high accuracy.

【0031】このため、信頼度の高い部品精度管理が可
能となり、部品の合否判定を適切に行えるようになる。
For this reason, it becomes possible to perform highly reliable component accuracy control, and it becomes possible to appropriately perform the component pass / fail judgment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る測定方法を実施するにあたって用
いる測定系の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a measurement system used for carrying out a measurement method according to the present invention.

【図2】測定台上に基準面を合わせて載置した楔状複屈
折板を示すもので、同図(a)は端面側から測定する場
合を示し、(i)はその側面図、(ii)はその正面図、
同図(b)は傾斜面側から測定する場合を示し、(i)
はその側面図、(ii)はその正面図である。
FIG. 2 shows a wedge-shaped birefringent plate placed on a measuring table with a reference surface aligned. FIG. 2 (a) shows a case of measuring from the end face side, (i) is a side view thereof, ) Is its front view,
The same figure (b) shows the case of measuring from the inclined surface side, (i)
Is a side view thereof, and (ii) is a front view thereof.

【図3】同上、測定台上に異なる基準面を合わせて載置
した楔状複屈折板を示すもので、同図(a)は端面側か
ら測定する場合を示し、(i)はその側面図、(ii)は
その正面図、同図(b)は傾斜面側から測定する場合を
示し、(i)はその側面図、(ii)はその正面図であ
る。
FIG. 3 shows a wedge-shaped birefringent plate mounted on a measuring table with different reference planes aligned. FIG. 3 (a) shows a case where measurement is performed from the end face side, and FIG. , (Ii) is a front view thereof, (b) is a case of measuring from the inclined surface side, (i) is a side view thereof, and (ii) is a front view thereof.

【図4】組立治具台上で偏波無依存型光アイソレータを
組み付ける状態を示す図である。
FIG. 4 is a diagram showing a state in which a polarization independent optical isolator is assembled on an assembly jig base.

【図5】偏波無依存型光アイソレータの概略構成とその
動作原理とを説明するための斜視図である。
FIG. 5 is a perspective view for explaining a schematic configuration of a polarization independent optical isolator and its operation principle.

【図6】偏波無依存型光アイソレータの要部を拡大して
示す斜視図である。
FIG. 6 is an enlarged perspective view showing a main part of a polarization independent optical isolator.

【図7】偏波無依存型光アイソレータに用いる楔状複屈
折板の形成手順を説明する図である。
FIG. 7 is a diagram illustrating a procedure for forming a wedge-shaped birefringent plate used in a polarization-independent optical isolator.

【符号の説明】[Explanation of symbols]

6 楔状複屈折板 22 測定台 28 回転式偏光板 62 端面 64 傾斜面 66 基準面 <001> 光学軸 6 wedge-shaped birefringent plate 22 measuring table 28 rotary polarizing plate 62 end surface 64 inclined surface 66 reference plane <001> optical axis

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光の透過方向に平行な基準面66と、該
透過方向に直交して光学軸<001>が面内に存する端
面62と、該端面62に対して所定角度傾斜して対面す
る傾斜面64とを有する楔状複屈折板6における該基準
面66と該光学軸<001>とのなす角度θを測定する
に際して、測定台22上に該複屈折板6をその基準面6
6を合わせて載置し、該載置した複屈折板6に回転式偏
光板28により偏光した光を透過させて、該透過後の常
光又は異常光のみの透過光量を測定し、該透過光量が最
小値となる該偏光板28の回転位置を、該端面62側か
らと該傾斜面64側からとの双方で求め、該両回転位置
の角度差αから該基準面66と該光学軸<001>との
なす角度θを測定することを特徴とする楔状複屈折板の
光学軸角度測定方法。
1. A reference surface 66 parallel to a light transmitting direction, an end surface 62 orthogonal to the light transmitting direction and having an optical axis <001> within the surface, and a facing surface inclined at a predetermined angle with respect to the end surface 62. When measuring the angle θ formed by the reference plane 66 and the optical axis <001> in the wedge-shaped birefringent plate 6 having the inclined surface 64, the birefringent plate 6 is placed on the measuring table 22.
6 is placed together, the birefringent plate 6 placed thereon is caused to transmit the light polarized by the rotary polarizing plate 28, and the transmitted light amount of only the ordinary or extraordinary light after the transmission is measured. The minimum rotation angle of the polarizing plate 28 is determined both from the end face 62 side and from the inclined surface 64 side, and the reference plane 66 and the optical axis < The method of measuring an optical axis angle of a wedge-shaped birefringent plate, which comprises measuring an angle θ formed by 001>.
JP10713096A 1996-04-26 1996-04-26 Measuring method of optical axis angle of wedge birefringent plate Expired - Fee Related JP3615864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10713096A JP3615864B2 (en) 1996-04-26 1996-04-26 Measuring method of optical axis angle of wedge birefringent plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10713096A JP3615864B2 (en) 1996-04-26 1996-04-26 Measuring method of optical axis angle of wedge birefringent plate

Publications (2)

Publication Number Publication Date
JPH09292212A true JPH09292212A (en) 1997-11-11
JP3615864B2 JP3615864B2 (en) 2005-02-02

Family

ID=14451271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10713096A Expired - Fee Related JP3615864B2 (en) 1996-04-26 1996-04-26 Measuring method of optical axis angle of wedge birefringent plate

Country Status (1)

Country Link
JP (1) JP3615864B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968783A (en) * 2013-01-31 2014-08-06 北京智朗芯光科技有限公司 Method for measuring optical axis deviation angle in double-wave-plate compensator
CN109855561A (en) * 2018-12-28 2019-06-07 中国科学院长春光学精密机械与物理研究所 The detection device and detection method of a kind of large caliber reflecting mirror face shape

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968783A (en) * 2013-01-31 2014-08-06 北京智朗芯光科技有限公司 Method for measuring optical axis deviation angle in double-wave-plate compensator
CN103968783B (en) * 2013-01-31 2016-08-17 北京智朗芯光科技有限公司 A kind of measure the method at optical axis deviation angle in biplate plate compensator
CN109855561A (en) * 2018-12-28 2019-06-07 中国科学院长春光学精密机械与物理研究所 The detection device and detection method of a kind of large caliber reflecting mirror face shape
CN109855561B (en) * 2018-12-28 2020-05-19 中国科学院长春光学精密机械与物理研究所 Detection device and detection method for large-aperture reflector surface shape

Also Published As

Publication number Publication date
JP3615864B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
EP0098730B1 (en) Polarization rotation compensator and optical isolator using the same
US5587793A (en) Birefringence distribution measuring method
US3177761A (en) Polariscope having simultaneously rotatable waveplates
US20060098205A1 (en) Optical connection for interferometry
TW201506377A (en) Apparatus, method, and program for measuring optical anisotropy parameter
US20070247633A1 (en) Laminated wave plate and optical pickup device using the same
US5953137A (en) Linear conoscopic holography
EP0640862A1 (en) Method for assembling optical isolator and method for measuring isolation
JPH09292212A (en) Method for measuring optical axial angle of wedge-like double refracting plate
WO2013040776A1 (en) Depolarizer
AU760050B2 (en) An anisotropy analyzing method and an anisotropy analyzing apparatus
JPH0369059B2 (en)
JP3340824B2 (en) Optical system including total reflection prism
JPS63113503A (en) Wollaston prism
JPH11174382A (en) Manufacture of polarization-independent type optical isolator
US20220317041A1 (en) Light source intensity control systems and methods for improved light scattering polarimetry measurements
JPS60104271A (en) Magnetic field sensor using polarization plane maintaining optical fiber
CN102183807A (en) Processing detecting method of ultraviolet combined zero-level wave plate
CA2320850C (en) Linear conoscopic holography
JP2003232623A (en) Non-contact type parallelism measuring device
JPH10227624A (en) Parallelism measuring method of parallel double refraction plate
JP4014541B2 (en) Inline type optical isolator
Blum An economical means for accurate azimuthal alignment of polarization optics
JPH02116736A (en) Method and apparatus for determining crystal orientation
JPH01161124A (en) Light wavelength measuring method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040628

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041005

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees