JPH09290960A - Numerical control system for wire winding apparatus - Google Patents

Numerical control system for wire winding apparatus

Info

Publication number
JPH09290960A
JPH09290960A JP10499096A JP10499096A JPH09290960A JP H09290960 A JPH09290960 A JP H09290960A JP 10499096 A JP10499096 A JP 10499096A JP 10499096 A JP10499096 A JP 10499096A JP H09290960 A JPH09290960 A JP H09290960A
Authority
JP
Japan
Prior art keywords
winding
bobbin
layer
traverse
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10499096A
Other languages
Japanese (ja)
Other versions
JP2919348B2 (en
Inventor
Minoru Sugiyama
実 杉山
Yoshio Tanabe
好夫 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAGA Manufacturing
NEC Corp
Taga Manufacturing Co Ltd
Original Assignee
TAGA Manufacturing
NEC Corp
Taga Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAGA Manufacturing, NEC Corp, Taga Manufacturing Co Ltd filed Critical TAGA Manufacturing
Priority to JP10499096A priority Critical patent/JP2919348B2/en
Publication of JPH09290960A publication Critical patent/JPH09290960A/en
Application granted granted Critical
Publication of JP2919348B2 publication Critical patent/JP2919348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To contintinuously wind a wire around a bobbin rotated at high speeds without stopping the bobbin by providing a processing part for making a program which makes an amount of shift at a start position and an end position of each layer, a processing part for changing pitch data, a processing part for changing the speed of a transverse shaft, and a processing part for calculating a transverse width. SOLUTION: A numerical control system 12 comprises an arithmetic processing part 8 having a data input part 1 for inputting NC program having parameters for shifting for a start position of winding and an end position of winding and the fifth arithmetic processing part 7 for computing the speed of a transverse shaft to transfer an amount of shift which is set to a feed pitch for one wind of the start position/the end position to an adding position, and a servo control part 9 for controlling a servo motor 10 for a bobbin and a servo motor 11 for a nozzle. The servo control part 9 controls the high speed rotation of the bobbin 14, the rotation of the servo motor 11 which is synchronously rotated with the bobbin, and the position of the nozzle 17 for feeding a wire which traverses within a setting winding width on a ball screw 16 connected to the servo motor 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、巻線機用数値制御
装置に関し、特に高速に回転するコイルボビンに等ピッ
チ間隔で多層整列巻線を行う巻線機用数値制御装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a numerical control device for a winding machine, and more particularly to a numerical control device for a winding machine that performs multi-layer aligned winding on a coil bobbin rotating at high speed at equal pitch intervals.

【0002】[0002]

【従来の技術】コイルボビンに対して等ピッチ間隔に多
層整列巻きを行う場合、トラバース軸の始端側と終端側
の位置が同じような巻幅一定の巻線であれば、トラバー
ス軸が折り返す時にボビンの回転数を落とすことなく巻
線を連続的に行うことができたが、各層毎に巻幅が異な
る等ピッチの整列巻きを必要とするボビンが出現してき
たことにより、1層毎に整列巻きを行い、一旦ボビンの
回転を停止させた後次層の巻き始め位置までトラバース
軸を移動させてから巻線を行うことで実現していた。
2. Description of the Related Art When performing multi-layer alignment winding on a coil bobbin at equal pitch intervals, if the winding width is constant at the starting end side and the ending side of the traverse shaft, the bobbin is folded back when the traverse shaft is folded back. Although the winding could be continuously performed without lowering the number of revolutions, the appearance of bobbins that require aligned winding with an equal pitch, in which the winding width differs for each layer, appeared This is accomplished by stopping the rotation of the bobbin, moving the traverse shaft to the winding start position of the next layer, and then winding.

【0003】[0003]

【発明が解決しようとする課題】従来の技術において、
第1の問題点は、各層毎に巻幅が異なるような形状の巻
線を行う場合、各層毎に整列巻きプログラムを作成する
必要がある。その理由は、巻幅が異なるような形状の整
列巻線を連続に行うことができない為、各層毎にプログ
ラムを作成しなければならないのでプログラムの作成時
間を必要としていた。
SUMMARY OF THE INVENTION In the prior art,
The first problem is that when winding is performed in a shape in which the winding width is different for each layer, it is necessary to create an aligned winding program for each layer. The reason is that since it is not possible to continuously perform aligned windings having shapes with different winding widths, it is necessary to create a program for each layer, which requires program creation time.

【0004】第2の問題は、前層の巻き終わり位置から
次の巻き始め位置へ移動するプログラムを作成する必要
がある。その理由は、ボビン回転を停止することなくピ
ッチの異なる巻線はできない為、各層毎にシフトするプ
ログラムを作成しなければならず、プログラム作成時間
を必要とした。
The second problem is that it is necessary to create a program for moving from the winding end position of the previous layer to the next winding start position. The reason is that since windings with different pitches cannot be made without stopping the bobbin rotation, it is necessary to create a program for shifting each layer, which requires program creation time.

【0005】第3の問題は、前記作成したプログラムを
順次実行する為、高速に回転するボビンをプログラム毎
に停止することである。その理由は、複数NCプログラ
ムを実行する場合プログラム毎に加減速動作が必ず生じ
る為、層が多くなればなるほど加減速時間の累積が多く
なり生産性を上げることができなかった。
A third problem is that the bobbins that rotate at high speed are stopped for each program in order to sequentially execute the created programs. The reason is that when a plurality of NC programs are executed, the acceleration / deceleration operation always occurs for each program. Therefore, as the number of layers increases, the accumulation of acceleration / deceleration time increases and the productivity cannot be increased.

【0006】本発明の目的は、等ピッチの多層整列巻線
を行う場合、各層毎に巻幅が異なるような形状に対し
て、前記問題点を解決することができる巻線機用数値制
御装置を提供することにある。
It is an object of the present invention to solve the above-mentioned problems in a winding machine having a shape in which the winding width is different for each layer when performing multi-layer aligned winding of equal pitch. To provide.

【0007】[0007]

【課題を解決するための手段】本発明の巻幅可変機能を
有する巻線機用数値制御装置は、各層毎に一定の割合で
両端の位置がシフトするような形状の巻線において、シ
フト量をパラメータとして設定することにより各層毎に
高速に回転しているボビンを停止することなく、連続に
整列巻線を行うことができるものであり、多品種の形状
の巻線を可能とし、且つ生産性を向上させることができ
る。
A numerical controller for a winding machine having a variable winding width function according to the present invention provides a shift amount in a winding having a shape in which the positions of both ends are shifted at a constant rate for each layer. By setting as a parameter, it is possible to continuously perform aligned winding without stopping the bobbin that is rotating at high speed for each layer. It is possible to improve the sex.

【0008】本発明の数値制御装置は、送りピッチと総
巻数とトラバース軸の巻幅とボビン回転速度と断線しな
いよう一定のテンション値にするためボビンが回転する
時の加減速時定数の設定と、2層目以降1層目の巻き始
め位置(始端側)と巻き終わり位置(終端側)に対して
各々シフトできるように設定できるパラメータを有する
NCプログラムを入力するデータ入力部と、前項で設定
されたデータをメモリに格納するデータ格納部と、設定
されたデータに基づき加減速時のボビンの移動量と等ピ
ッチになるようトラバース軸の速度を算出する演算第1
処理部と、ボビン定速回転時における1層あたりの巻幅
に対するボビンの移動量と等ピッチ送りする為にトラバ
ース軸の速度を算出する演算第2処理部と、設定された
シフト量に基づき2層目以降各層の巻幅を算出する演算
第3処理部と、巻幅が変わることにより各層毎に変更と
なるボビン回転の移動量を算出する演算第4処理部と、
始端側または最終端側の一巻きのみ送りピッチに設定さ
れたシフト量を加算した位置へ移動させる為に、トラバ
ース軸の速度を算出する演算第5処理部を有する演算処
理部と、演算処理部により算出されたデータに基づきボ
ビン用サーボモータと、設定された巻幅でトラバースす
る線材を送出するノズルの位置を制御するトラバース軸
用サーボモータを制御するサーボ制御部を有する。
The numerical controller according to the present invention sets the acceleration / deceleration time constant when the bobbin rotates in order to maintain a constant tension value so as not to break the feed pitch, the total number of turns, the width of the traverse shaft, and the bobbin rotation speed. The data input section for inputting the NC program having parameters that can be set so that the winding start position (start end side) and the winding end position (end end side) of the second and subsequent layers can be shifted respectively, and the settings made in the previous section A data storage unit for storing the stored data in a memory, and a calculation for calculating the speed of the traverse axis based on the set data so as to have a pitch equal to the moving amount of the bobbin during acceleration / deceleration.
A processing unit, a second processing unit that calculates the speed of the traverse axis to feed the bobbin at the same pitch as the bobbin movement amount with respect to the winding width per layer when the bobbin is rotating at a constant speed, and 2 based on the set shift amount. A calculation third processing unit that calculates the winding width of each layer and subsequent layers, and a calculation fourth processing unit that calculates the movement amount of the bobbin rotation that is changed for each layer due to the change of the winding width,
An arithmetic processing unit having an arithmetic fifth processing unit for calculating the speed of the traverse axis in order to move to a position where the shift amount set in the feed pitch of only one winding on the starting end side or the final end side is added, and an arithmetic processing unit The servo control unit controls the bobbin servo motor based on the data calculated by the above, and the traverse shaft servo motor that controls the position of the nozzle that sends the wire rod that traverses at the set winding width.

【0009】本発明の巻幅可変機能を有する巻線機用数
値制御装置は、各層毎に一定の割合で両端の位置がシフ
トするような形状の巻線において、シフト量をパラメー
タとして設定することで各層毎に高速に回転しているボ
ビンを停止することなく、連続に整列巻線を行うことに
より、多品種の形状の巻線を高速に実現することができ
る為、生産性を向上させることができる。
In the numerical controller for a winding machine having the variable winding width function of the present invention, the shift amount is set as a parameter in the winding having a shape in which the positions of both ends are shifted at a constant rate for each layer. In order to improve productivity, it is possible to realize multi-type windings at high speed by continuously performing aligned windings without stopping the bobbins that are rotating at high speed for each layer. You can

【0010】[0010]

【発明の実施の形態】次に、本発明の実施形態について
図1を参照して詳細に説明する。図で、数値制御装置1
2は、送りピッチと総巻数とトラバース軸の巻幅とボビ
ン回転速度と断線しないよう一定のテンション値にする
ためボビン回転時の加減速時定数の設定と、2層目以降
1層目の巻き始め位置(始端側)と巻き終わり位置(終
端側)に対して各々シフトできるように設定できるパラ
メータを有するNCプログラムを入力するデータ入力部
1と、前項で設定されたデータをメモリに格納するデー
タ格納部2と、設定されたデータに基づき加減速時のボ
ビンの移動量とトラバース軸の速度を算出する演算第1
処理部3と、ボビンの定速回転時における等ピッチ送り
する為にトラバース軸の速度算出と1層あたりのボビン
回転の移動量算出する演算第2処理部4と、設定された
シフト量に基づき2層目以降各層の巻幅を算出する演算
第3処理部5と、巻幅が変わることにより各層毎に変更
となるボビン回転の移動量を算出する演算第4処理部6
と、始端側または終端側の一巻きのみ送りピッチに設定
されたシフト量を加算した位置へ移動させる為に、トラ
バース軸の速度を算出し演算第1処理部並びに演算第2
処理部で算出したデータに加算する演算第5処理部7と
を有する演算処理部8と、演算処理部8により算出され
たデータに基づきボビン用サーボモータ10とノズル用
サーボモータ11を制御するサーボ制御部9とからな
る。サーボ制御部9の制御により、サーボモータ10が
回転し、これと連結している連結部13によりボビン1
4が高速に回転する。またボビンの回転に同期してサー
ボモータ11とが回転し、これと連結している連結部1
3により接続されたボールネジ16上を設定された巻幅
でトラバースする線材15を送出するノズル17の位置
を制御する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described in detail with reference to FIG. In the figure, the numerical control device 1
2 is the feed pitch, the total number of windings, the width of the traverse shaft, the bobbin rotation speed, and the bobbin rotation speed. A data input section 1 for inputting an NC program having parameters that can be set so that they can be respectively shifted to a start position (start end side) and a winding end position (end end side), and data for storing the data set in the preceding section in a memory. A storage unit 2 and a calculation for calculating the movement amount of the bobbin and the speed of the traverse axis during acceleration / deceleration based on the set data.
Based on the processing unit 3, the calculation second processing unit 4 for calculating the speed of the traverse shaft and the movement amount of the bobbin rotation per layer for feeding the bobbin at a constant speed during the constant speed rotation, based on the set shift amount. A calculation third processing unit 5 that calculates the winding width of each layer from the second layer onward, and a calculation fourth processing unit 6 that calculates the movement amount of the bobbin rotation that changes for each layer when the winding width changes.
Then, the speed of the traverse axis is calculated in order to move to the position where the shift amount set to the feed pitch of only one winding on the start end side or the end end side is added, and the calculation first processing unit and the calculation second
An arithmetic processing unit 8 having a fifth arithmetic processing unit 7 to be added to the data calculated by the processing unit, and a servo for controlling the bobbin servo motor 10 and the nozzle servo motor 11 based on the data calculated by the arithmetic processing unit 8. The control unit 9 The servo motor 10 rotates under the control of the servo control unit 9, and the bobbin 1 is rotated by the connecting unit 13 connected to the servo motor 10.
4 rotates at high speed. Further, the servomotor 11 rotates in synchronization with the rotation of the bobbin, and the connecting portion 1 connected to the servomotor 11
The position of the nozzle 17 that feeds the wire rod 15 traversing the ball screw 16 connected by 3 with a set winding width is controlled.

【0011】次に、本発明の実施形態の動作について、
図2、図3を参照して詳細に説明する。図2は本発明の
動作を示すフローチャートで、まず巻線処理で、ステッ
プ19はデータ入力部で入力されたNCプログラムに基
づき1層目のボビンの移動量算出処理で、ステップ20
は設定されたボビンの回転速度とピッチデータよりトラ
バース軸の速度算出処理で、ステップ21は加減速時定
数とボビンの回転速度よりボビンの移動量とボビン回転
に同期して動作するトラバース軸の移動量と速度を算出
する処理で、ステップ22はステップ19から21まで
で算出されたデータよりボビンの定速回転時における移
動量とボビン回転に同期して動作するトラバース軸の速
度を算出する処理である。次にステップ23と24が巻
幅可変処理で、ステップ23は入力されたNCプログラ
ムの終端側シフト量Iと終端側シフト量Jのデータチェ
ックを行い、I=0且つJ=0でなければステップ24
の巻幅可変機能処理を行い、そうでなければステップ2
5の従来の等ピッチ・巻幅一定処理を行うものである。
Next, the operation of the embodiment of the present invention will be described.
This will be described in detail with reference to FIGS. FIG. 2 is a flow chart showing the operation of the present invention. First, the winding process, step 19 is the bobbin movement amount calculation process of the first layer based on the NC program input in the data input section, and step 20
Is a speed calculation process of the traverse axis based on the set bobbin rotation speed and pitch data. Step 21 is a movement amount of the bobbin based on the acceleration / deceleration time constant and the bobbin rotation speed, and a movement of the traverse shaft that operates in synchronization with the bobbin rotation. Step 22 is a process of calculating the amount and speed, and step 22 is a process of calculating the moving amount of the bobbin at the constant speed rotation and the speed of the traverse axis that operates in synchronization with the bobbin rotation, from the data calculated in steps 19 to 21. is there. Next, Steps 23 and 24 are variable winding width processing, and Step 23 checks the data of the input side NC-side shift amount I and end-side shift amount J. If I = 0 and J = 0, the step is performed. 24
Step 2 of the variable winding width function is executed.
5, the conventional constant pitch and constant winding width processing is performed.

【0012】図3は、巻幅可変機能処理詳細で、シフト
量IとJのデータにより8種の形状パターンの巻線処理
を行う。Iは始端側のシフト量で、I>0の場合巻幅が
始端側で大きくなる形状パターンで始端側シフト量Jの
条件により形状パターンA、B、C、26、27、28
の形状パターンとなる。
FIG. 3 shows details of the winding width variable function processing, and the winding processing of eight types of shape patterns is performed by the data of the shift amounts I and J. I is a shift amount on the starting end side, and when I> 0, the shape pattern has a larger winding width on the starting end side, and the shape patterns A, B, C, 26, 27, 28 are formed depending on the condition of the starting end side shift amount J.
Shape pattern.

【0013】I<0の場合巻幅が始端側で小さくなる形
状パターンで終端側シフト量Jの条件により形状パター
ンD、E、F、29、30、31となる。
When I <0, the shape pattern has a winding width that becomes smaller on the starting end side and becomes the shape patterns D, E, F, 29, 30, and 31 depending on the condition of the end side shift amount J.

【0014】I=0の場合巻幅が始端側で変更なしの形
状パターンで終端側シフト量Jの条件により形状パター
ンG、H、32、33となる。
When I = 0, the winding width is the shape pattern on the starting end side, which is unchanged, and becomes the shape patterns G, H, 32, and 33 depending on the condition of the shift amount J on the ending side.

【0015】以上、I>0の場合偶数層の巻き終わりで
巻幅が大きくなる方向にシフトし、I<0の場合1層目
以外の奇数層の巻き始めで巻幅が小さくなる方向にシフ
トするものである。同様にJ>0の場合奇数層の巻き終
わりで巻幅が大きくなる方向にシフトし、J<0の場合
偶数層の巻き始めで巻幅が小さくなる方向にシフトする
ものである。つまりボビンの回転速度を変更することな
くI、Jの条件によって、トラバース軸の巻き始めまた
は巻き終わりの1巻きの送りピッチと速度を変更し、且
つシフトに伴い各層毎に巻幅とボビン回転の移動量を算
出することにより実現するものである。
As described above, when I> 0, the winding width shifts in the direction in which the winding width increases at the winding end of the even layer, and in the case of I <0, the winding width shifts in the direction in which the winding width decreases at the winding start of the odd layers other than the first layer. To do. Similarly, when J> 0, the winding width is shifted in the direction in which the winding width is increased at the end of winding of the odd layers, and when J <0, the winding width is shifted in the direction in which the winding width is decreased at the beginning of winding of the even layers. That is, the feed pitch and speed of one winding at the winding start or winding end of the traverse shaft are changed according to the conditions of I and J without changing the rotation speed of the bobbin, and the winding width and the bobbin rotation of each layer are changed according to the shift. It is realized by calculating the movement amount.

【0016】[0016]

【実施例】次に、本発明の実施例について、図面を参照
して詳細に説明する。図4は、図3の形状パターンB
(27)を巻線する場合の実施例である。34は巻幅可
変機能巻線固定サイクルNCプログラムであり、35か
ら41までのデータで構成される。35は専用Gコー
ド、36は1層目のトラバース軸(X軸)の巻幅X0、
37はボビンの総巻数Z0(Z軸)、36はボビン1巻
きあたりのトラバース軸送り量P0 (ピッチデータ)、
39は終端側トラバース軸シフト量iで符号付きデー
タ、40は終端側トラバース軸シフト量jで符号付きデ
ータ、41はボビン回転数(rpm)である。また、4
2はNCプログラムデータとは別に、ボビンが41で設
定された回転数に対して加速あるいは減速時の時定数で
ある。図で、43はボビン断面図であり、44は1層目
巻き始め位置、45は1層目巻き終わり位置、46は2
層目巻き始め位置で1層目の45の位置より40のj
(j>0)で設定された量だけシフトした位置に巻線
し、47は2層目巻き終わり位置で、48は2層目巻き
終わり位置47より39のiで設定された量だけシフト
した位置に巻線することを示す。
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 4 shows the shape pattern B of FIG.
This is an example of winding (27). 34 is a winding width variable function winding fixed cycle NC program, which is composed of data 35 to 41. 35 is a dedicated G code, 36 is a winding width X0 of the traverse axis (X axis) of the first layer,
37 is the total number of bobbin windings Z0 (Z axis), 36 is the traverse shaft feed amount P0 per bobbin winding (pitch data),
Reference numeral 39 is the trailing side traverse axis shift amount i with signed data, 40 is the trailing side traverse axis shift amount j with signed data, and 41 is the bobbin rotation speed (rpm). Also, 4
In addition to the NC program data, 2 is a time constant for acceleration or deceleration with respect to the rotation speed set by the bobbin 41. In the figure, 43 is a bobbin cross-sectional view, 44 is the first layer winding start position, 45 is the first layer winding end position, and 46 is 2
40 j from the position 45 of the first layer at the winding start position of the layer
The wire is wound at a position shifted by the amount set by (j> 0), 47 is the end position of the second layer winding, and 48 is shifted from the end position 47 of the second layer by the amount set by i of 39. It shows that it is wound in the position.

【0017】図5は、図4で示す形状パターンBの巻幅
可変機能処理によるトラバース軸とボビン軸の動作パタ
ーン図である。49から52はn層のうちのトラバース
軸の1層目から4層目までの巻幅(移動量)の動作図で
あり、53から56はボビンの1層目から4層目までの
巻数(回転量)であり、39は終端側シフト量iで、4
0は終端側シフト量jで、57は始端側シフト量iを動
作させる速度で、58は終端側jを動作させる速度で、
59は38のP0の送り速度である。各データは各層次
のように算出する。 (1)巻幅 Xn 1層目の場合 X1=X0 2層目の場合 X2=X0+j 3層目の場合 X3=X0+i+j 4層目の場合 X4=X0+i+2j n層目の場合 Xn=X0+(A−1)*i+A*j A=n/2 (2)巻数 Kn Kn=Xn/P0 (3)トラバース軸速度 F×(P0ピッチ送り速度) Fx=P0*Fz/60 (4)トラバース軸速度 Fsi(iシフト速度) Fsi=i*Fz/60 (5)トラバース軸速度 Fsj(jシフト速度) Fsj=j*Fz/60 (6)シフト時のトラバース速度 iシフト時 Fxi=Fx+Fsi jシフト時 Fxj=Fx+Fsj 以上最終n層まで再計算をして巻線を行うことにより、
始端位置や終端位置が各層毎にシフトするような多種の
形状巻線を1ブロックのNCデータにパラメータとして
シフト量を入力することで実現し、またシフト時にワー
ク回転速度を落とすことなく整列巻線を実現することが
できるので、プログラム作成時間や生産時間を短縮でき
る効果がある。
FIG. 5 is an operation pattern diagram of the traverse shaft and the bobbin shaft by the winding width variable function processing of the shape pattern B shown in FIG. 49 to 52 are operation diagrams of the winding width (movement amount) from the first layer to the fourth layer of the traverse axis of the n layers, and 53 to 56 are the number of windings from the first layer to the fourth layer of the bobbin ( Rotation amount), 39 is the shift amount i on the terminal side, and is 4
0 is the terminal end shift amount j, 57 is the speed at which the starting end side shift amount i is operated, and 58 is the speed at which the terminal end side j is operated,
59 is a feed rate of P0 of 38. Each data is calculated as follows for each layer. (1) Winding width Xn First layer X1 = X0 Second layer X2 = X0 + j Third layer X3 = X0 + i + j Fourth layer X4 = X0 + i + 2j Nth layer Xn = X0 + (A-1 ) * I + A * j A = n / 2 (2) Number of turns Kn Kn = Xn / P0 (3) Traverse shaft speed F × (P0 pitch feed speed) Fx = P0 * Fz / 60 (4) Traverse shaft speed Fsi (i (Shift speed) Fsi = i * Fz / 60 (5) Traverse axis speed Fsj (j shift speed) Fsj = j * Fz / 60 (6) Traverse speed during shift i Shift Fxi = Fx + Fsi j Shift Fxj = Fx + Fsj or more By recalculating and winding up to the final n layers,
Realized by inputting the shift amount as a parameter to one block of NC data for various shaped windings such that the start position and the end position are shifted for each layer, and the aligned winding without reducing the work rotation speed during the shift. Therefore, there is an effect that the program creation time and the production time can be shortened.

【0018】[0018]

【発明の効果】本発明の第1の効果は、各層毎に巻幅が
変わるような形状の巻線において、シフト量をパラメー
タとして設定することで各層毎に高速に回転しているボ
ビンを停止することなく、連続に整列巻線を行い生産性
を向上させることができる。その理由は、一層毎に高速
に回転しているボビンを停止させていた従来の技術に対
して、1ボビンあたりの生産性が向上する時間T(se
c)は加減速時定数t(sec)、層数nとすると、T
=(n−1)tとなる。
The first effect of the present invention is to stop the bobbin rotating at a high speed for each layer by setting the shift amount as a parameter in the winding having a shape in which the winding width changes for each layer. Without doing so, the aligned winding can be continuously performed to improve the productivity. The reason is that, compared to the conventional technique in which the bobbin rotating at a high speed is stopped for each layer, the time T (se
c) is the acceleration / deceleration time constant t (sec) and the number of layers is n, then T
= (N-1) t.

【0019】第2の効果は、多品種の形状の巻線に対応
することができる。その理由は、NCプログラムのパラ
メータとして入力するシフト量IとJの設定データによ
り、図3に示す形状パターンの巻線を実現することがで
きる。
The second effect is that it can be applied to windings of various types. The reason is that the winding having the shape pattern shown in FIG. 3 can be realized by the setting data of the shift amounts I and J input as the parameters of the NC program.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の巻幅可変機能を有する数値制御装置の
ブロック図である。
FIG. 1 is a block diagram of a numerical control device having a variable winding width function according to the present invention.

【図2】本発明の巻幅可変機能を含む巻線処理のフロー
チャートである。
FIG. 2 is a flowchart of a winding process including a variable winding width function of the present invention.

【図3】本発明の巻幅可変機能処理のフローチャートで
ある。
FIG. 3 is a flowchart of a winding width variable function process of the present invention.

【図4】本発明の巻幅可変機能を有する数値制御装置の
一実施の形態の動作を示すNCプログラムと整列巻線し
たボビンの断面図である。
FIG. 4 is a cross-sectional view of an NC program and an aligned winding bobbin showing an operation of an embodiment of a numerical controller having a variable winding width function of the present invention.

【図5】本発明の巻幅可変機能を有する数値制御装置の
動作パターン図である。
FIG. 5 is an operation pattern diagram of a numerical controller having a variable winding width function of the present invention.

【符号の説明】[Explanation of symbols]

1 NCプログラムを入力するデータ入力部 2 設定されたデータをメモリに格納するデータ格納
部 3 演算第1処理部 4 演算第2処理部 5 演算第3処理部 6 演算第4処理部 7 演算第5処理部 8 演算処理部 9 サーボ制御部 10 サーボモータ 11 サーボモータ 12 数値制御装置 13 連結部 14 ボビン 15 線材 16 ボールネジ 17 ノズル 19 1層目あたりのボビン軸移動量算出処理 20 トラバース軸速度算出処理 21 加減速処理 22 定速処理 23 シフト量チェック処理 24 巻幅可変機能処理 25 等ピッチ・巻幅一定処理 26 形状パターンA 27 形状パターンB 28 形状パターンC 29 形状パターンD 30 形状パターンE 31 形状パターンF 32 形状パターンG 33 形状パターンH 34 巻幅可変機能巻線固定サイクルNCプログラム 35 専用Gコード 36 1層目のトラバース軸(X軸)の巻幅X0 37 ボビンの総巻数Z0 (Z軸) 38 ボビン1巻きあたりのトラバース軸送り量P
0)ピッチデータ) 39 始端側トラバース軸シフト量iで符号付きデー
タ 40 終端側トラバース軸シフト量jで符号付きデー
タ 41 ボビン回転数(rpm) 42 加速あるいは減速時の時定数 43 ボビン断面図 44 1層目巻き始め位置 45 1層目巻き終わり位置 46 2層目巻き始め位置 47 2層目巻き終わり位置 48 1層目巻き始め位置 49 1層目巻幅 50 2層目巻幅 51 3層目巻幅 52 4層目巻幅 53 1層目巻数 54 2層目巻数 55 3層目巻数 56 4層目巻数 57 始端側シフト量iを動作させる速度 58 終端側jを動作させる速度 59 38のP0の送り速度
1 Data input section for inputting NC program 2 Data storage section for storing set data in memory 3 Operation 1st processing section 4 Operation 2nd processing section 5 Operation 3rd processing section 6 Operation 4th processing section 7 Operation 5th Processing unit 8 Arithmetic processing unit 9 Servo control unit 10 Servo motor 11 Servo motor 12 Numerical control device 13 Connecting unit 14 Bobbin 15 Wire rod 16 Ball screw 17 Nozzle 19 Bobbin shaft moving amount calculation process per first layer 20 Traverse shaft speed calculation process 21 Acceleration / deceleration processing 22 Constant speed processing 23 Shift amount check processing 24 Winding width variable function processing 25 Equal pitch / winding width constant processing 26 Shape pattern A 27 Shape pattern B 28 Shape pattern C 29 Shape pattern D 30 Shape pattern E 31 Shape pattern F 32 shape pattern G 33 shape pattern H 34 winding width variable function winding fixed Cycle NC program 35 only G code 36 1 layer of the traverse axis winding width X0 37 Total number of turns Z0 (Z-axis) 38 traverse axis feed amount P per bobbin 1 wound bobbin (X-axis)
0) Pitch data) 39 Signed data with the starting side traverse axis shift amount i 40 Signed data with the ending side traverse axis shift amount j 41 Bobbin rotation speed (rpm) 42 Time constant during acceleration or deceleration 43 Bobbin cross section 44 1 First layer winding position 45 First layer winding end position 46 Second layer winding start position 47 Second layer winding end position 48 First layer winding start position 49 1st layer winding width 50 Second layer winding width 51 3rd layer winding Width 52 4th layer winding width 53 1st layer winding number 54 2nd layer winding number 55 3rd layer winding number 56 4th layer winding number 57 Speed at which start end side shift amount i is operated 58 Speed at termination side j 59 59 Feed rate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 各層の始端側と終端側の位置のシフト量
をパラメータとして追加設定できるようにしたプログラ
ムと、設定したシフト量を始端側または終端側の1ター
ンのみピッチデータに加算してピッチデータを変更する
処理部と、ピッチデータが変わったことによってトラバ
ース軸の速度を変更する処理部と、1層目のトラバース
幅にシフトデータを加算して各層のトラバース幅を算出
する処理部とを有する巻線機用数値制御装置。
1. A program in which a shift amount between the start side and the end side of each layer can be additionally set as a parameter, and the set shift amount is added to the pitch data only for one turn on the start side or the end side to obtain a pitch. A processing unit for changing the data, a processing unit for changing the speed of the traverse axis due to the change of the pitch data, and a processing unit for adding the shift data to the traverse width of the first layer to calculate the traverse width of each layer. Numerical control device for winding machine having.
【請求項2】 前記プログラムが1層目のトラバース軸
のトラバース幅(X0)、ワークのターン数(Z0)、
ワーク1ターンあたりのトラバース軸送り量(P0)、
始端側トラバース軸シフト量(i)、終端側トラバース
軸シフト量(j)、ワークの回転数(Fz)のデータを
含むことを特徴とする請求項1の巻線機用数値制御装
置。
2. The program comprises a traverse width (X0) of the traverse axis of the first layer, the number of turns of the work (Z0),
Traverse shaft feed amount per work turn (P0),
2. The numerical controller for a winding machine according to claim 1, further comprising data of a starting end side traverse shaft shift amount (i), a trailing end side traverse shaft shift amount (j), and a work rotation speed (Fz).
【請求項3】 n層目のデータとして、 巻幅 Xn=X0+i(A−1)+j・A(A=n/
2) ターン数 Kn=Xn/P0 トラバース軸速度 Fx=P0・Fz/60 を求めることを特徴とする請求項2の巻線機用数値制御
装置。
3. The data for the nth layer includes: winding width Xn = X0 + i (A-1) + j · A (A = n /
2) The numerical controller for a winding machine according to claim 2, wherein the number of turns Kn = Xn / P0 traverse shaft speed Fx = P0 · Fz / 60 is obtained.
【請求項4】 回転するコイルボビンに等ピッチ間隔に
多層整列巻線するための数値制御装置であって、 送りピッチと総巻数とトラバース軸の巻幅とボビン回転
速度と断線しないよう一定のテンション値にするためボ
ビン回転時の加減速時定数の設定と、2層目以降1層目
の巻き始め位置(始端側)と巻き終わり位置(終端側)
に対して各々シフトを可能にすることにより多品種の形
状コイルを連続に巻線することができるように設定でき
るパラメータを有するNCプログラムと、 設定されたデータに基づき加減速時のボビンの移動量と
等ピッチになるようトラバース軸の速度を算出する第1
演算処理部と、 ボビン定速回転時における1層あたりの巻幅に対するボ
ビンの移動量と等ピッチ送りする為にトラバース軸の速
度を算出する第2演算処理部と、 設定されたシフト量に基づき2層目以降変更となる各層
の巻幅を算出する第3演算処理部と、 巻幅が変わることにより各層毎に変更となるボビンの移
動量を算出する第4演算処理部と、 シフト量が設定されている場合、始端側または最終端側
の一巻きのみ送りピッチにシフト量を加算した位置へト
ラバース軸を動作させる為に、トラバース軸の速度を算
出する第5演算処理部と、 前記演算処理部により算出されたデータに基づき巻線を
行う為にボビンを回転させるサーボ軸とトラバース軸の
サーボ軸を制御するサーボ制御部とを有する数値制御装
置。
4. A numerical control device for performing multi-layer alignment winding on a rotating coil bobbin at equal pitch intervals, wherein the feed pitch, the total number of turns, the width of the traverse shaft, the bobbin rotation speed and a constant tension value so as not to be broken. To set the acceleration / deceleration time constant when rotating the bobbin, and the winding start position (start end side) and winding end position (end side) of the second and subsequent layers.
The NC program has parameters that can be set so that various types of shape coils can be continuously wound by enabling each shift, and the amount of bobbin movement during acceleration / deceleration based on the set data. First to calculate the traverse axis speed so that the pitch becomes equal to
An arithmetic processing unit, a second arithmetic processing unit that calculates the speed of the traverse axis to feed the bobbin at the same pitch as the bobbin movement amount with respect to the winding width per layer when rotating the bobbin at a constant speed, and based on the set shift amount. A third arithmetic processing unit that calculates the winding width of each layer that is changed from the second layer onward, a fourth arithmetic processing unit that calculates the movement amount of the bobbin that is changed for each layer when the winding width changes, and a shift amount If set, a fifth arithmetic processing unit that calculates the speed of the traverse axis in order to operate the traverse axis to a position in which the shift amount is added to the feed pitch of only one winding on the starting end side or the final end side, A numerical controller having a servo axis for rotating a bobbin to perform winding based on data calculated by a processing section and a servo control section for controlling a servo axis of a traverse axis.
JP10499096A 1996-04-25 1996-04-25 Numerical controller for winding machine Expired - Fee Related JP2919348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10499096A JP2919348B2 (en) 1996-04-25 1996-04-25 Numerical controller for winding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10499096A JP2919348B2 (en) 1996-04-25 1996-04-25 Numerical controller for winding machine

Publications (2)

Publication Number Publication Date
JPH09290960A true JPH09290960A (en) 1997-11-11
JP2919348B2 JP2919348B2 (en) 1999-07-12

Family

ID=14395542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10499096A Expired - Fee Related JP2919348B2 (en) 1996-04-25 1996-04-25 Numerical controller for winding machine

Country Status (1)

Country Link
JP (1) JP2919348B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100386982B1 (en) * 2000-05-18 2003-06-09 신기현 Automatic cable winding apparatus with guider rolling system
KR100955534B1 (en) * 2009-11-17 2010-04-30 주식회사 해동산업 An automatic traverser and method for control thereof
CN103809524A (en) * 2012-11-15 2014-05-21 中国科学院沈阳计算技术研究所有限公司 Control system and method for achieving strip belt winding through numerical control system thread cutting technology
CN108190622A (en) * 2017-12-29 2018-06-22 温州新马亚电器有限公司 A kind of antiwind collection device of cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100386982B1 (en) * 2000-05-18 2003-06-09 신기현 Automatic cable winding apparatus with guider rolling system
KR100955534B1 (en) * 2009-11-17 2010-04-30 주식회사 해동산업 An automatic traverser and method for control thereof
CN103809524A (en) * 2012-11-15 2014-05-21 中国科学院沈阳计算技术研究所有限公司 Control system and method for achieving strip belt winding through numerical control system thread cutting technology
CN103809524B (en) * 2012-11-15 2016-06-15 中国科学院沈阳计算技术研究所有限公司 Digital control system screw chasing technology realizes control system and the method that belt strip is wound around
CN108190622A (en) * 2017-12-29 2018-06-22 温州新马亚电器有限公司 A kind of antiwind collection device of cable

Also Published As

Publication number Publication date
JP2919348B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
US8955789B2 (en) Method for controlling a process for winding an acentric coil former and device operating according to the method
CN103765335B (en) For method and system and the forming machine of the programming of the control of multiaxial type forming machine
CN101331567A (en) Wiring apparatus
US4771961A (en) Yarn traverse apparatus
JPH09290960A (en) Numerical control system for wire winding apparatus
JPH09300018A (en) Traverse take-up system for continuous bar
JP5181895B2 (en) Twisted wire manufacturing device, twisted wire manufacturing method, and twisted wire
JP2002132317A (en) Controller
CN114275626A (en) Wire arranging method and wire arranging system for winding machine
JP3410433B2 (en) Sample warping machine, warping method and warped yarn group
JP4433997B2 (en) Special yarn production equipment
JP7222829B2 (en) Winding device
JP5354348B2 (en) Winding method and winding apparatus
CN115924630B (en) Yarn discharge control method for improving level drop of yarn winding end face
JP2005336627A (en) Method for producing special yarn
JP4059167B2 (en) Ribbon winding prevention method and ribbon winding prevention device
CN114519780B (en) Motion simulation method for realizing winding of simulation cone yarn based on three-dimensional engine
JP3206523B2 (en) Composite winding machine with numerical controller
JP2637357B2 (en) Litz wire twisting method and litz wire twisting device
JP2001086711A (en) Concentratedly-wound coil-winding device
JP3259086B2 (en) Traverse pitch control device
JPH08225245A (en) Winding method for yarn
US5055753A (en) Programmable servomotor coil winder
CN117485970A (en) Control method for improving production efficiency of rewinder
CN114852774A (en) Winding process configuration method, device and system and electronic equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100423

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100423

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100423

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees