JPH0929074A - Liquid separation treatment method and apparatus therefor - Google Patents

Liquid separation treatment method and apparatus therefor

Info

Publication number
JPH0929074A
JPH0929074A JP20784895A JP20784895A JPH0929074A JP H0929074 A JPH0929074 A JP H0929074A JP 20784895 A JP20784895 A JP 20784895A JP 20784895 A JP20784895 A JP 20784895A JP H0929074 A JPH0929074 A JP H0929074A
Authority
JP
Japan
Prior art keywords
liquid
permeate
membrane
membrane separation
separation module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20784895A
Other languages
Japanese (ja)
Inventor
Tetsuro Adachi
哲朗 安達
Norio Ikeyama
紀男 池山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP20784895A priority Critical patent/JPH0929074A/en
Publication of JPH0929074A publication Critical patent/JPH0929074A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To sufficiently reduce the frequency of off-line washing by increasing the washing (back pressure washing) efficiency by the revolving flow of the liquid to be treated in a tank when a liquid is subjected to separation treatment by immersing a membrane separation module in an open type raw liquid tank and reducing the pressure in the membrane separation module on the side of the transmitted liquid passage thereof while washing the membrane surface with the revolving flow of the liquid to be treated in the tank. SOLUTION: In a method wherein a liquid to be treated is subjected to separation treatment by immersing a membrane separation module 2 in a tank of the liquid to be treated and reducing the pressure to the membrane separation module 2 on the side of the transmitted liquid passage thereof while washing the membrane surface of the membrane separation module 2 by the revolving flow of the liquid to be treated, the pressure reduction on the side of the transmitted liquid passage of the module by a suction pump 3 is intermittently performed and back pressure is allowed to act an the membrane surface of the module 2 by a transmitted liquid high peace storage tank 4 while washing is continued during a non-pressure reduction period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は開放式原液槽内に膜
分離モジュ−ルを浸漬し、膜分離モジュ−ルの膜面を槽
内被処理液の旋回流により洗浄しつつ膜分離モジュ−ル
の透過液通路側を減圧して液体を分離処理する場合に使
用する液体の分離処理方法及び装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separation module, which is immersed in an open type stock solution tank to wash the membrane surface of the membrane separation module with a swirling flow of a liquid to be treated in the tank. The present invention relates to a liquid separation processing method and device used when a liquid is separated and processed by depressurizing the permeated liquid passage side of the liquid.

【0002】[0002]

【従来の技術】懸濁水の分離処理に膜法を使用すること
がある。この膜法においては、原液側と透過液側との間
に膜間差圧を作用させることが不可欠であり、原液側を
加圧する方式と透過液側を減圧する方式とがある。而し
て、本出願人においては、透過液側減圧方式の膜分離装
置として、「散気装置を有し、膜面に沿い鉛直方向通路
を有する膜分離モジュ−ルを前記散気装置の直上に配設
し、該膜装置の膜体透過側を負圧とするための手段を設
けた散気式曝気槽」を既に提案した(特公平4−709
58号)。
2. Description of the Related Art Membrane methods are sometimes used to separate suspended water. In this membrane method, it is essential to apply a transmembrane pressure between the raw solution side and the permeated side, and there are a method of pressurizing the raw solution side and a method of depressurizing the permeate side. Thus, the applicant of the present invention describes, as a permeate-side depressurization type membrane separator, "a membrane separator having an air diffuser and having a vertical passage along the membrane surface is provided directly above the air diffuser. Which has been provided with a means for making a negative pressure on the permeate side of the membrane device of the membrane device "(Japanese Patent Publication No. 4-709).
No. 58).

【0003】この散気式曝気槽を使用して汚水を処理す
るには、散気装置からの噴出気泡のエア−リフト効果で
槽内原液を旋回させ、膜分離モジュ−ルの膜面に沿う気
液混合上昇流で膜面での汚泥ゲル層の生成を防止し、膜
分離モジュ−ルの透過液側を減圧して膜間差圧を発生さ
せ、この膜間差圧下で活性汚泥液から水を透過により分
離していく(以下、膜汚水処理法と称する)。この膜汚
水処理法によれば、沈殿分離槽を必要とせず、装置の小
型化を図ることができる。
In order to treat sewage using this diffuser type aeration tank, the stock solution in the tank is swirled by the air-lift effect of the bubbles ejected from the diffuser, and along the membrane surface of the membrane separation module. The sludge gel layer is prevented from being generated on the membrane surface by the gas-liquid mixed upflow, and the permeate side of the membrane separation module is decompressed to generate the transmembrane pressure difference. Water is separated by permeation (hereinafter referred to as a membrane sewage treatment method). According to this membrane sewage treatment method, it is possible to reduce the size of the apparatus without requiring a precipitation separation tank.

【0004】[0004]

【発明が解決しようとする課題】膜分離による懸濁水の
分離処理においては、経時的に膜汚染が進行し、透過流
束が低下していくので、透過流束が所定の限界値にまで
低下すると、透過・分離を中断し、膜を洗浄して透過流
束を回復させることが必要である。上記の膜汚水処理法
においては、透過・分離中でも、膜面を気液混合流によ
り洗浄しているので(インライン洗浄)、膜面汚染速度
を低速化でき、透過・分離を中断して行う膜洗浄(オフ
ライン洗浄)の頻度を少なくできる。しかしながら、や
がては透過流束が所定の限界値に達し、その時には、膜
分離モジュ−ルの減圧による透過・分離を中断のうえ、
膜分離モジュ−ルを原液槽内から引上げ、膜面の高圧水
噴射やスポンジによる洗浄及び薬液浸漬洗浄(オフライ
ン洗浄)を行うことが必要である。このオフライン洗浄
は厄介であり、かなりの高コストが余儀なくされるの
で、可及的に頻度を少なくすることが要請される。
In the separation treatment of suspended water by membrane separation, since membrane contamination progresses with time and the permeation flux decreases, the permeation flux drops to a predetermined limit value. Then, it is necessary to interrupt the permeation / separation and wash the membrane to restore the permeation flux. In the above membrane sewage treatment method, the membrane surface is cleaned by the gas-liquid mixed flow even during the permeation / separation (in-line cleaning), so the membrane surface contamination speed can be reduced and the membrane permeation / separation is interrupted. The frequency of cleaning (offline cleaning) can be reduced. However, eventually, the permeation flux reaches a predetermined limit value, and at that time, the permeation / separation by reducing the pressure of the membrane separation module is interrupted,
It is necessary to pull up the membrane separation module from the stock solution tank and perform high-pressure water jetting on the membrane surface, cleaning with a sponge, and chemical solution immersion cleaning (offline cleaning). This off-line cleaning is cumbersome and inevitably costly, so it is required to be as infrequent as possible.

【0005】本発明は目的は、開放式原液槽内に膜分離
モジュ−ルを浸漬し、膜分離モジュ−ルの膜面を槽内被
処理液の旋回流により洗浄しつつ膜分離モジュ−ルの透
過液通路側を減圧して液体を分離処理する場合、槽内被
処理液の旋回流による洗浄(インライン洗浄)の効率ア
ップにより上記オフライン洗浄の頻度を充分に軽減でき
る液体の分離処理方法及び装置を提供することにある。
The object of the present invention is to immerse a membrane separation module in an open type stock solution tank and wash the membrane surface of the membrane separation module with a swirling flow of the liquid to be treated in the tank while the membrane separation module is being washed. When the liquid is separated by depressurizing the permeate passage side of the liquid, the liquid separation treatment method capable of sufficiently reducing the frequency of the above-mentioned off-line washing by improving the efficiency of the washing (in-line washing) by the swirling flow of the liquid to be treated in the tank, To provide a device.

【0006】[0006]

【課題を解決するための手段】本発明に係る液体の分離
処理方法は、膜分離モジュ−ルを被処理液槽内に浸漬
し、膜モジュ−ルの膜面を被処理液の旋回により洗浄し
つつ膜分離モジュ−ルの透過液通路側を減圧して被処理
液を分離処理する方法において、モジュ−ルの透過液通
路側の減圧を間歇的に行い、非減圧期間に上記洗浄を続
行しつつモジュ−ルの膜面に貯水透過液により逆圧を作
用させることを特徴とする構成である。本発明に係る液
体の分離処理装置は、処理槽内に配設された膜分離モジ
ュ−ルと、膜分離モジュ−ル下方に配設された散気手段
と、膜分離モジュ−ルの透過液通路側を減圧する吸引ポ
ンプと、吸引ポンプで吸引した透過液を立上り管を経て
貯水する透過液高所貯水槽と、透過液貯水槽と膜分離モ
ジュ−ルの透過液通路側との間を連通・遮断するバルブ
を有する連通管とを備えていることを特徴とする構成で
あり、膜分離モジュ−ルと透過液高所貯水槽との高低差
は5m以内とすることが好ましい。
According to the method for separating liquid of the present invention, a membrane separation module is immersed in a liquid tank to be treated, and the membrane surface of the membrane module is washed by swirling the liquid to be treated. In the method of depressurizing the permeate passage side of the membrane separation module while separating the liquid to be treated, the permeate passage side of the module is intermittently depressurized, and the above washing is continued in the non-depressurized period. At the same time, a reverse pressure is applied to the membrane surface of the module by the stored water permeate. A liquid separation treatment apparatus according to the present invention comprises a membrane separation module arranged in a treatment tank, an air diffusing means arranged below the membrane separation module, and a permeated liquid of the membrane separation module. Between the suction pump that depressurizes the passage side, the permeate high-altitude reservoir that stores the permeate that has been sucked by the suction pump through the riser pipe, and the permeate reservoir and the permeate passage side of the membrane separation module. It is characterized in that it is provided with a communication pipe having a valve for communicating and blocking, and it is preferable that the height difference between the membrane separation module and the permeate high-altitude water storage tank is within 5 m.

【0007】[0007]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。図1は本発明に係る液体の分離
処理装置の一例を示す説明図である。図1において、1
は開放式の被処理液槽である。2は内部に透過液通路を
有する平型膜21,…を並設し、平型膜相互間に原液通
路を確保した平型膜分離モジュ−ルであり、各平型膜の
一端または両端に透過液集水管が取り付けられている
が、この透過液集水管は図示されていない。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing an example of a liquid separation processing apparatus according to the present invention. In FIG. 1, 1
Is an open type liquid tank to be treated. Reference numeral 2 denotes a flat membrane separation module in which flat membranes 21 having permeate passages are arranged side by side, and a raw liquid passage is secured between the flat membranes. One or both ends of each flat membrane are provided. Although a permeate collection tube is attached, this permeate collection tube is not shown.

【0008】31は平型膜21,…の透過液集水管に連
通した透過水取出し配管である。3はこの配管31に設
けた吸引ポンプであり、間歇駆動させるための制御回路
30を備えている。32は吸引ポンプ3の入口側に設け
たバルブである。41は立上り管、4は立上り管41の
上端に設けた透過液高所貯水槽、42は透過液高所貯水
槽4のオバ−フロ−管、5は透過液高所貯水槽4と膜分
離モジュ−ル2の透過液側とを連通せる連通管、52は
連通管5に設けたバルブである。上記制御回路30によ
り、吸引ポンプ3の間歇駆動に対し、吸引ポンプ3の作
動オン中はバルブ32が開路されると共にバルブ52が
閉路され、吸引ポンプ3の作動オフ中はバルブ32が閉
路されると共にバルブ52が開路される。61は原液供
給配管、62はこの配管61に設けた液送ポンプであ
る。7,…は平型膜分離モジュ−ル2の直下に配設した
散気管である。71は散気管7,…に接続したブロワで
ある。8は被処理液槽1の底部に接続した余剰汚泥排出
管である。
Reference numeral 31 is a permeated water take-out pipe communicating with the permeated liquid collecting pipes of the flat membranes 21 ,. Reference numeral 3 denotes a suction pump provided in the pipe 31, which is provided with a control circuit 30 for intermittent driving. Reference numeral 32 is a valve provided on the inlet side of the suction pump 3. 41 is a rising pipe, 4 is a permeate high-altitude water storage tank provided at the upper end of the rising pipe 41, 42 is an overflow pipe of the permeate high-altitude water storage tank 4, and 5 is a membrane separation from the permeate high-altitude water storage tank 4. A communication pipe that allows communication with the permeate side of the module 2 and a valve 52 provided in the communication pipe 5. By the control circuit 30, in response to the intermittent drive of the suction pump 3, the valve 32 is opened and the valve 52 is closed while the operation of the suction pump 3 is on, and the valve 32 is closed while the operation of the suction pump 3 is off. At the same time, the valve 52 is opened. Reference numeral 61 is a stock solution supply pipe, and 62 is a liquid feed pump provided in the pipe 61. Denoted at 7 are air diffusers arranged directly below the flat membrane separation module 2. Reference numeral 71 is a blower connected to the air diffusers 7, .... Reference numeral 8 denotes a surplus sludge discharge pipe connected to the bottom of the liquid tank 1 to be treated.

【0009】本発明に係る液体の分離処理方法により懸
濁水、例えば、家庭排水、工場排水等の汚水を処理する
には、この排水を貯槽に一旦貯え、図1において、この
汚水を液送ポンプ62により被処理液槽1に供給し、ブ
ロワ71の駆動により散気管7,…から空気を噴出さ
せ、この噴出気流により槽内汚水を旋回させると共に吸
引ポンプ3の間歇的駆動により平型膜分離モジュ−ル2
の透過液通路側を間歇的に減圧し、汚水中の有機物を空
気との接触下、好気性微生物により吸着・代謝分解さ
せ、有機物を減少させると共に好気性微生物を増殖さ
せ、平型膜分離モジュ−ル2の透過液側の減圧による膜
間差圧のもとで水を膜透過させ、これを透過液を立上り
管41を経て透過液貯水槽4に一旦貯え、オバ−フロ−
管42から取出していく。増殖された好気性微生物、す
なわち活性汚泥の余剰量は、余剰汚泥排出管8から排出
し、活性汚泥濃度を一定の高濃度に保持していく。
In order to treat suspended water such as domestic wastewater and factory wastewater by the liquid separation and treatment method according to the present invention, this wastewater is temporarily stored in a storage tank, and in FIG. 62 is supplied to the liquid tank 1 to be treated, air is jetted from the diffuser pipes 7, ... By driving the blower 71, the jetted air current swirls the wastewater in the tank, and the suction pump 3 is intermittently driven to cause flat membrane separation. Module 2
The permeated liquid passage side is intermittently decompressed, and the organic matter in the wastewater is adsorbed and metabolized by aerobic microorganisms in contact with air to reduce the organic matter and to grow the aerobic microorganisms. Water is permeated through the permeate on the permeate side of the permeate 2 under the pressure difference across the membrane, and the permeate is temporarily stored in the permeate reservoir 4 via the rising pipe 41, and the overflow is performed.
Take out from the pipe 42. The surplus amount of the propagated aerobic microorganisms, that is, the activated sludge is discharged from the surplus sludge discharge pipe 8 to keep the activated sludge concentration at a constant high concentration.

【0010】吸引ポンプ3の停止時には上記減圧が行わ
れず、従って、透過は行われないが、ブロワ71は連続
駆動され、散気管7,…からの噴出気流による槽内汚水
の旋回を続行したままでバルブ52を開路して膜分離モ
ジュ−ル2の透過液通路側に上記立上り管41の高低差
に基づく水頭圧の透過液圧力を作用させ、以後、吸引ポ
ンプ3の再駆動、再停止の繰返しにより、膜分離モジュ
−ル2の透過液側通路の減圧による透過、膜分離モジュ
−ル2の透過液側通路の透過液の水頭圧力による加圧を
繰り返していく。
When the suction pump 3 is stopped, the decompression is not performed and therefore the permeation is not performed, but the blower 71 is continuously driven and the swirling of the dirty water in the tank by the jet air from the diffuser pipes 7 is continued. Then, the valve 52 is opened to apply the permeate pressure of the head pressure based on the height difference of the rising pipe 41 to the permeate passage side of the membrane separation module 2, and thereafter, the suction pump 3 is restarted and stopped again. By repeating, the permeation of the permeate side passage of the membrane separation module 2 by the decompression and the permeate of the permeate side passage of the membrane separation module 2 by the head pressure are repeated.

【0011】上記において平型膜21の外側はほぼ一気
圧であり、膜分離モジュ−ル2と透過液高所貯水層4と
の高低差をhとすると、吸引ポンプ3の停止時、バルブ
52の開路によって平型膜分離モジュ−ル2の平膜に透
過液側から原液側に作用する圧力はhρg/cm2であ
って(ρは透過液の比重)、上記の高さhが高過ぎると
膜接着部の膨張破壊が惹起されるので、その高さhは5
m以下とすることが安全である。上記において、間歇駆
動吸引ポンプ3の停止期間をTとすれば、この期間T中
にバルブ32を閉路するのに要する時間t1並びに吸引
ポンプ再駆動に際してのバルブ52を開路するのに要す
る時間t2が含まれ、膜分離モジュ−ルの透過液側が高
所側透過液貯水槽の水頭圧力で加圧される期間T0は、
0=T−t1−t2である。
In the above description, the pressure outside the flat membrane 21 is about 1 atm, and when the height difference between the membrane separation module 2 and the permeate water storage layer 4 is h, the valve 52 is stopped when the suction pump 3 is stopped. The pressure acting on the flat membrane of the flat membrane separation module 2 from the permeate side to the raw solution side by the open circuit is hρg / cm 2 (ρ is the specific gravity of the permeate), and the height h is too high. Since expansion and destruction of the membrane adhesion part is caused, its height h is 5
It is safe to set it to m or less. In the above description, if the stop period of the intermittent drive suction pump 3 is T, the time t 1 required to close the valve 32 during this period T and the time t required to open the valve 52 when the suction pump is re-driven. 2, the period T 0 in which the permeate side of the membrane separation module is pressurized by the head pressure of the permeate storage tank on the high side is
T is a 0 = T-t 1 -t 2 .

【0012】上記において、吸引ポンプ3の駆動時、バ
ルブ32が開路され、膜分離モジュ−ル2の透過液側通
路が減圧されて膜間差圧が発生するから、その膜間差圧
で透過が行われ、その透過液が透過液貯水槽4に一旦貯
えられ、オバ−フロ−管42から流出されていく。吸引
ポンプ3の駆動時、膜分離モジュ−ル2の膜外面は当該
モジュ−ル2の透過液側の減圧により吸引状態にある。
而るに、吸引ポンプ3の停止時、モジュ−ル2の透過液
側の貯水槽4内透過液の水頭圧力による加圧で膜面が上
記吸引状態とは逆の吐出し状態にされ、膜面のゲル層の
付着保持が不安定となり、このゲル層に散気管7,…か
らの噴出気流による気液混合流が激しく接触するから、
ゲル層を効果的に剥離除去できる(逆圧洗浄)。
In the above, when the suction pump 3 is driven, the valve 32 is opened, and the permeate side passage of the membrane separation module 2 is depressurized to generate the transmembrane pressure difference. The permeated liquid is temporarily stored in the permeated liquid water storage tank 4 and flows out from the overflow pipe 42. When the suction pump 3 is driven, the outer surface of the membrane of the membrane separation module 2 is in a suction state due to the reduced pressure on the permeate side of the module 2.
Therefore, when the suction pump 3 is stopped, the membrane surface is made to be in a discharge state opposite to the suction state by pressurization by the head pressure of the permeate in the water reservoir 4 on the permeate side of the module 2, The adherence and retention of the gel layer on the surface becomes unstable, and the gas-liquid mixed flow due to the jet flow from the diffuser tubes 7, ...
The gel layer can be effectively peeled off (back pressure washing).

【0013】吸引ポンプの停止時に逆圧洗浄によりゲル
層が除去されても、透過液流量の確保上、又は分離速度
上、吸引ポンプの停止時間を吸引ポンプの駆動時間に較
べてかなり短くさぜるを得ないので、吸引ポンプの間歇
的駆動による透過分離と逆圧洗浄を繰り返していくうち
に、やがては透過流束が所定の下限値に達するに至る。
この状態に達すれば、膜分離モジュ−ル2を被処理液槽
1内から引上げ、膜面の高圧水噴射やスポンジによる洗
浄及び薬液浸漬洗浄(オフライン洗浄)を行い、透過流
束をほぼ初期値に回復させ、以後は、上記吸引ポンプの
間歇駆動による透過分離と逆圧洗浄の交互作動とオフラ
イン洗浄とを繰り返していく。本発明に係る液体の分離
処理方法においては、上記逆圧洗浄のために、逆圧洗浄
を行わない従来例(吸引ポンプは間歇駆動)に較べ、膜
の汚染速度(透過流束の減少速度)を充分に低速にで
き、オフライン洗浄頻度を少なくできる。この作用は、
次の実施例と比較例の対比からも確認できる。なお、本
発明に係る液体の分離処理方法においては、散気管のエ
ア−噴出による原液の旋回に代え、ポンプで原液を旋回
させることも可能である。
Even if the gel layer is removed by back pressure washing when the suction pump is stopped, the stop time of the suction pump is considerably shorter than the driving time of the suction pump in order to secure the flow rate of the permeate or the separation speed. Therefore, the permeation flux eventually reaches a predetermined lower limit value while the permeation separation by the intermittent drive of the suction pump and the back pressure washing are repeated.
When this state is reached, the membrane separation module 2 is pulled up from the inside of the liquid tank 1 to be treated, high-pressure water jetting of the membrane surface, cleaning with a sponge and chemical solution immersion cleaning (offline cleaning) are performed, and the permeation flux is almost the initial value. After that, the permeation separation by the intermittent drive of the suction pump, the alternating operation of the back pressure cleaning, and the off-line cleaning are repeated. In the liquid separation treatment method according to the present invention, due to the above-mentioned back pressure cleaning, the membrane fouling speed (permeation flux reduction speed) is higher than the conventional example in which back pressure cleaning is not performed (suction pump is intermittently driven). Can be made sufficiently slow and the frequency of off-line cleaning can be reduced. This effect is
It can be confirmed by comparing the following examples and comparative examples. In the liquid separation treatment method according to the present invention, it is possible to swirl the stock solution with a pump instead of swirling the stock solution by air-jetting of the air diffusing tube.

【0014】[0014]

【実施例】【Example】

〔実施例〕図1において、平型膜分離モジュ−ル2には
膜面積0.3m2の平型膜を15枚、相互間隔を12m
mにして積槽したものを使用し、これを有効容積0.4
3の被処理液槽1内に配設した。原液には、SS濃度
15000mg/リットルの活性汚泥混合液を調整して
使用し、散気管7,…の曝気量を100リットル/分と
し、透過液貯水槽4のモジュ−ル2を基準としての高さ
hを2mとした。吸引ポンプ3を8分吸引,2分停止を
1サイクルとして間歇駆動し、吸引ポンプ2分停止中の
1分間、バルブ52を開路して透過液貯水槽4の水頭圧
力(0.2kg/cm2)を膜分離モジュ−ル2の透過
液側に作用させた(逆圧洗浄を行った)。吸引ポンプ3
の吸引中は、透過流速を0.5m3/m2・dayに保持す
るように、吸引ポンプの回転速度(吸引圧力)を調整
し、運転経過時間に対する吸引圧力を測定したところ、
図2の曲線イの通りであり、吸引圧力が−0.35kg
/cm2に達したときにオフライン洗浄を行った。
[Embodiment] In FIG. 1, the flat membrane separation module 2 has 15 flat membranes having a membrane area of 0.3 m 2 and a mutual spacing of 12 m.
Use a tank that has been made to be m, and use this as an effective volume of 0.4
It was arranged in the liquid tank 1 to be treated of m 3 . As the stock solution, an activated sludge mixed solution having an SS concentration of 15000 mg / liter was prepared and used, the aeration amount of the air diffusers 7, ... Was set to 100 liter / min, and the module 2 of the permeate storage tank 4 was used as a reference. The height h was set to 2 m. The suction pump 3 is intermittently driven with one cycle of suction for 8 minutes and stop for 2 minutes, and the valve 52 is opened for 1 minute while the suction pump is stopped for 2 minutes to set the head pressure of the permeate storage tank 4 (0.2 kg / cm 2 ) Was made to act on the permeate side of the membrane separation module 2 (back pressure washing was performed). Suction pump 3
During suction, the rotation speed (suction pressure) of the suction pump was adjusted so that the permeation flow rate was maintained at 0.5 m 3 / m 2 · day, and the suction pressure was measured with respect to the elapsed operating time.
It is as shown by the curve a in Fig. 2, and the suction pressure is -0.35kg.
/ Cm 2 was reached and offline cleaning was performed.

【0015】〔比較例〕実施例に対し、吸引ポンプを間
歇駆動とし、逆圧洗浄は行わず、透過流速を0.5m3
/m2・dayに保持するように、吸引ポンプの回転速度
(吸引圧力)を調整し、運転経過時間に対する吸引圧力
を測定したところ、図2の曲線ロの通りであり、吸引圧
力が−0.35kg/cm2に達したときにオフライン
洗浄を行った。図2における曲線イとロとの比較から明
らかなように、本発明によれば、オフライン洗浄の頻度
を従来例に較べて充分に短縮できる(約半分)ことが明
らかである。
[Comparative Example] In contrast to the example, the suction pump was intermittently driven, back pressure washing was not performed, and the permeation flow rate was 0.5 m 3.
The rotation speed (suction pressure) of the suction pump was adjusted so that the suction pressure was maintained at / m 2 · day, and the suction pressure with respect to the elapsed operating time was measured. Off-line cleaning was performed when the pressure reached 0.35 kg / cm 2 . As is clear from the comparison between the curves a and b in FIG. 2, it is clear that the frequency of off-line cleaning can be sufficiently shortened (about half) as compared with the conventional example according to the present invention.

【0016】[0016]

【発明の効果】本発明にによれば、膜分離モジュ−ルを
被処理液槽内に浸漬し、膜モジュ−ルの膜面を被処理液
の旋回により洗浄しつつ膜分離モジュ−ルの透過液通路
側を減圧して被処理液を分離処理する場合、膜分離モジ
ュ−ルを槽外に取出して行う厄介なオフライン洗浄の頻
度を充分に少なくでき、しかも、膜の逆圧損傷の畏れも
ない。従って、本発明は、浄膜分離モジュ−ルの運転・
管理若しくは保守の簡易化にきわめて有用である。
According to the present invention, the membrane separation module is immersed in the liquid tank to be treated and the membrane surface of the membrane module is washed by swirling the liquid to be treated while the membrane separation module of the membrane separation module is being washed. When decompressing the permeate passage side to separate the liquid to be treated, it is possible to sufficiently reduce the frequency of the troublesome off-line cleaning performed by taking the membrane separation module out of the tank, and the fear of back pressure damage of the membrane. Nor. Therefore, the present invention is directed to the operation of the membrane separation module.
It is extremely useful for simplifying management or maintenance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る液体の分離処理装置の一例を示す
説明図である。
FIG. 1 is an explanatory diagram showing an example of a liquid separation processing apparatus according to the present invention.

【図2】本発明に係る液体の分離処理の実施例並びに比
較例での透過状態を示す図である。
FIG. 2 is a diagram showing a permeation state in an example and a comparative example of a liquid separation process according to the present invention.

【符号の説明】[Explanation of symbols]

1 被処理液槽 2 膜分離モジュ−ル 3 吸引ポンプ 4 透過液貯水槽 5 連通管 52 バルブ 7 散気管 1 treated liquid tank 2 membrane separation module 3 suction pump 4 permeate storage tank 5 communication pipe 52 valve 7 diffuser pipe

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年8月31日[Submission date] August 31, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】膜分離モジュ−ルを被処理液槽内に浸漬
し、膜モジュ−ルの膜面を被処理液の旋回により洗浄し
つつ膜分離モジュ−ルの透過液通路側を減圧して被処理
液を分離処理する方法において、モジュ−ルの透過液通
路側の減圧を間歇的に行い、非減圧期間に上記洗浄を続
行しつつモジュ−ルの膜面に貯水透過液により逆圧を作
用させることを特徴とする液体の分離処理方法。
1. A membrane separation module is immersed in a treatment liquid tank, and the permeate passage side of the membrane separation module is depressurized while cleaning the membrane surface of the treatment liquid by swirling the treatment liquid. In the method of separating the liquid to be treated, the pressure on the permeate passage side of the module is intermittently reduced, and while the washing is continued during the non-depressurized period, the reverse pressure of the stored permeate is applied to the membrane surface of the module. A method for separating and treating a liquid, which comprises:
【請求項2】処理槽内に配設された膜分離モジュ−ル
と、膜分離モジュ−ル下方に配設された散気手段と、膜
分離モジュ−ルの透過液通路側を減圧する真空ポンプ
と、吸引ポンプで吸引した透過液を立上り管を経て貯水
する透過液高所貯水槽と、透過液高所貯水槽と膜分離モ
ジュ−ルの透過液通路側との間を連通・遮断するバルブ
を有する連通管とを備えていることを特徴とする液体の
分離処理装置。
2. A membrane separation module arranged in a treatment tank, an air diffusing means arranged below the membrane separation module, and a vacuum for decompressing the permeate passage side of the membrane separation module. The pump, the permeate aerial reservoir for storing the permeate sucked by the suction pump through the riser pipe, and the permeate aerial reservoir and the permeate passage side of the membrane separation module are connected and disconnected. And a communication pipe having a valve.
【請求項3】膜分離モジュ−ルと透過液高所貯水槽との
高低差が5m以内である請求項2記載の液体の分離処理
装置。
3. The liquid separation treatment apparatus according to claim 2, wherein the height difference between the membrane separation module and the permeate high-altitude water storage tank is within 5 m.
JP20784895A 1995-07-22 1995-07-22 Liquid separation treatment method and apparatus therefor Pending JPH0929074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20784895A JPH0929074A (en) 1995-07-22 1995-07-22 Liquid separation treatment method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20784895A JPH0929074A (en) 1995-07-22 1995-07-22 Liquid separation treatment method and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH0929074A true JPH0929074A (en) 1997-02-04

Family

ID=16546535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20784895A Pending JPH0929074A (en) 1995-07-22 1995-07-22 Liquid separation treatment method and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0929074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107791A (en) * 1998-09-30 2000-04-18 Mitsubishi Rayon Co Ltd Apparatus for treating activated sludge
JP2005103406A (en) * 2003-09-30 2005-04-21 Kubota Corp Chemical cleaning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107791A (en) * 1998-09-30 2000-04-18 Mitsubishi Rayon Co Ltd Apparatus for treating activated sludge
JP2005103406A (en) * 2003-09-30 2005-04-21 Kubota Corp Chemical cleaning device

Similar Documents

Publication Publication Date Title
JPH02164423A (en) Method for washing hollow fiber membrane filter
JP2001190937A (en) Water purification equipment and method of cleaning membrane element
JP2001205055A (en) Method for operating membrane separation apparatus and apparatus therefor
JPH04265128A (en) Membrane separation equipment
JPH10504996A (en) Cleaning of hollow fiber membrane
WO2015156242A1 (en) Water treatment method and water treatment apparatus each using membrane
JPH04190889A (en) Operation method for sewage treating device
JP2006255567A (en) Immersion type membrane separation device and its chemical washing method
JPH0929074A (en) Liquid separation treatment method and apparatus therefor
JPH11104636A (en) Method and apparatus for washing reverse osmosis membrane module
JP3290558B2 (en) Cleaning method for immersion type membrane cartridge
JP3351037B2 (en) Cleaning method for membrane separation equipment
KR20030042133A (en) Method and system for cleaning membrane submersed in reactor
JP2015231591A (en) Remote supervisory control system
JP3773360B2 (en) Septic tank with membrane separation
JPH04225805A (en) Method for solid-liquid separation and apparatus therefor
JPH02268890A (en) Device for treating sewage by hollow-fiber membrane
JPH01104309A (en) Washing method for membrane module
JP2000254674A (en) Water treatment and the device
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JPH02268889A (en) Treatment of sewage by hollow-fiber membrane
JPH0999226A (en) Washing method of membrane
JP2723244B2 (en) Cleaning method in liquid processing equipment
JPS63302910A (en) Method for washing porous filter
JPH11267474A (en) Separation membrane cleaner