JPH0929045A - Gas separation device - Google Patents

Gas separation device

Info

Publication number
JPH0929045A
JPH0929045A JP7179948A JP17994895A JPH0929045A JP H0929045 A JPH0929045 A JP H0929045A JP 7179948 A JP7179948 A JP 7179948A JP 17994895 A JP17994895 A JP 17994895A JP H0929045 A JPH0929045 A JP H0929045A
Authority
JP
Japan
Prior art keywords
gas separation
gas
separation part
metal
metal porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7179948A
Other languages
Japanese (ja)
Inventor
Ryutaro Motoki
龍太郎 元木
Atsushi Funakoshi
淳 船越
Shigemitsu Shin
重光 新
Takashi Nishi
隆 西
Akira Kosaka
晃 小阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7179948A priority Critical patent/JPH0929045A/en
Publication of JPH0929045A publication Critical patent/JPH0929045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas separation device of such a structure that uses a metal porous form, obtained by treatment including a hot hydrostatic pressure treatment and equipped with an electrode so that a voltage is applicable, formed on a gas separation part, and which has such advantages that the heat resistance strength and the gas permeability are superb and no separate heating device is required. SOLUTION: A gas separation part 2 is composed of a metal porous form which is obtained through a molding treatment process including a hot hydrostatic pressure treatment for sintering a metal powder material under a hydrostatic pressure in a heated condition, and has numerous pores, generated in the molding treatment process, penetrating through the rear surface from the front surface. Therefore, the gas separation part 2 can store a perovskite compound 4. In addition, the metal porous form making up the gas separation part 2 is equipped with a pair of electrodes 3, so that the metal porous form can be heated by itself. For this purpose, this gas separation device is equipped with a voltage application device 7 and, at the same time, a temperature control device 8 for switching an applied voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、異なった温度域におい
て、分離対象ガスに対する吸着能を異にするペロブスカ
イト化合物を収容するガス分離部を備え、前記ガス分離
部の温度を所定の温度域に設定可能な加熱手段を備える
とともに、前記ガス分離部に原料ガスを供給する原料ガ
ス供給路と前記ガス分離部から送出されてくる分離済ガ
スが流れる製品ガス路とを備えたガス分離装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is provided with a gas separation section for accommodating perovskite compounds having different adsorption capacities for gases to be separated in different temperature ranges, and the temperature of the gas separation section is set to a predetermined temperature range. The present invention relates to a gas separation device that includes a settable heating means and that includes a raw material gas supply passage that supplies a raw material gas to the gas separation portion and a product gas passage through which the separated gas sent from the gas separation portion flows.

【0002】[0002]

【従来の技術】このようなガス分離装置の構成を図3に
示した。装置は、ペロブスカイト化合物4を収容するガ
ス分離部2を、一対のセラミック多孔体15で区画され
た気体流路特定部位として備え、さらに、この気体流路
特定部位を少なくとも2段階の異なった温度域に設定可
能な加熱手段としての加温装置16を備えて構成されて
いた。ガス分離部2の上流側には、先ず、原料ガスある
いは搬送ガスを択一的に前記ガス分離部2に供給可能な
原料ガス供給路5を備えるとともに、その下流側に、前
記ガス分離部2から送出されてくる分離済ガスが流れる
製品ガス路6を備えていた。この装置の運転状況を説明
すると、先ず、ガス分離部内に収納されているペロブス
カイト化合物の温度域を高温状態(例えば1000℃程
度)に設定して、酸素の価数が低い状態にペロブスカイ
ト化合物をする。例えば、ペロブスカイト化合物が鉄酸
ストロンチウム(SrFeOx)である場合は、このx
が2.5程度まで低下する。この状態から化合物温度域
を低温状態(例えば300℃程度)に設定するとととも
に、原料ガス供給路から例えば空気を供給すると、空気
中の酸素がペロブスカイト化合物に吸着され、製品ガス
路には窒素リッチなガスを得ることができる。即ち、こ
のような低温の温度域にあっては、例えば、ペロブスカ
イト化合物が鉄酸ストロンチウム(SrFeOx)であ
る場合は、このxが2.8程度まで上昇する。次に、こ
の低温状態から、原料ガス供給路からの空気の供給を停
止するとともに、搬送ガスとしての例えば酸素リッチな
ガスを供給し、さらに、ガス分離部を前記の高温状態と
すると、化合物に吸着されていた酸素が脱離されて搬送
ガスとともに送りだされ、製品ガス路側に、酸素リッチ
なガスを得ることができる。このような装置にあって
は、ガス分離部の温度が、その内部に収納されるペロブ
スカイト化合物に必要とされる所定の異なった温度域
に、交互に設定される。従って、この部位は大きな熱衝
撃を受けることとなる。従来、このようなガス分離部
は、管路を構成する耐熱性金属部材と多孔のセラミック
フィルター15から構成されていた。
2. Description of the Related Art The structure of such a gas separator is shown in FIG. The apparatus is provided with a gas separation part 2 containing a perovskite compound 4 as a gas flow passage specific portion partitioned by a pair of ceramic porous bodies 15, and further, the gas flow passage specific portion is provided in at least two different temperature ranges. The heating device 16 is provided as a heating unit that can be set to. On the upstream side of the gas separation section 2, first, a source gas supply path 5 capable of selectively supplying a source gas or a carrier gas to the gas separation section 2 is provided, and on the downstream side thereof, the gas separation section 2 is provided. It was equipped with a product gas path 6 through which the separated gas delivered from Explaining the operating conditions of this device, first, the temperature range of the perovskite compound contained in the gas separation section is set to a high temperature state (for example, about 1000 ° C.), and the perovskite compound is made into a state where the valence of oxygen is low. . For example, when the perovskite compound is strontium ferrate (SrFeO x ), this x
Is reduced to about 2.5. When the compound temperature range is set to a low temperature state (for example, about 300 ° C.) from this state and, for example, air is supplied from the raw material gas supply passage, oxygen in the air is adsorbed by the perovskite compound, and the product gas passage is rich in nitrogen. Gas can be obtained. That is, in such a low temperature range, for example, when the perovskite compound is strontium ferrate (SrFeO x ), this x increases to about 2.8. Next, from this low temperature state, the supply of air from the raw material gas supply path is stopped, and, for example, an oxygen-rich gas as a carrier gas is supplied, and when the gas separation section is brought to the high temperature state, the compound is formed. The adsorbed oxygen is desorbed and sent out together with the carrier gas, so that an oxygen-rich gas can be obtained on the product gas path side. In such an apparatus, the temperature of the gas separation section is alternately set to different predetermined temperature ranges required for the perovskite compound contained therein. Therefore, this portion is subjected to a large thermal shock. Conventionally, such a gas separation unit has been formed of a heat-resistant metal member forming a pipe and a porous ceramic filter 15.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うなセラミックフィルターを使用する場合は、セラミッ
クが熱衝撃に対応できないため、割れ、欠け等が発生し
易いという問題があった。さらに、管路を構成する金属
配管との馴染みが取りにくく、加熱装置16を、ガス分
離部2を構成する部材とは別体として備える必要があっ
た。従って、本発明の目的は、耐熱強度、通気性の点で
共に優れているガス分離部を備えたガス分離装置を得る
ことにある。
However, when such a ceramic filter is used, there is a problem that cracks and chips are likely to occur because the ceramic cannot withstand thermal shock. Further, it is difficult to get familiar with the metal pipe forming the pipe line, and the heating device 16 needs to be provided as a separate body from the member forming the gas separation unit 2. Therefore, it is an object of the present invention to obtain a gas separation device having a gas separation portion which is excellent in both heat resistance and air permeability.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めの請求項1に係わるガス分離装置の特徴構成は、加熱
状態で、静水圧加圧下で金属粉末の焼結を行う熱間静水
圧加圧焼結処理を含む成形処理過程を経て得られ、且つ
その処理過程で生じた表裏両面間に貫通する孔を多数備
えた金属多孔体にて、前記ガス分離部を構成し、前記金
属多孔体に一対の電極を備えて、前記金属多孔体を電圧
印加可能に構成したことにある。そして、その作用・効
果は次の通りである。
To achieve the above object, the gas separator according to claim 1 is characterized in that hot isostatic pressure is used for sintering metal powder under hydrostatic pressure in a heated state. The gas separation part is constituted by a metal porous body obtained through a molding process including a pressure sintering process and provided with a large number of holes penetrating between the front and back surfaces generated in the process. The body is provided with a pair of electrodes so that the metal porous body can be applied with a voltage. The operation and effect are as follows.

【0005】[0005]

【作用】請求項1に係わるガス分離装置にあっては、ガ
ス分離部に、所謂、HIP焼結法(熱間静水圧加圧焼結
処理)を含む処理で得られる金属多孔体が使用される。
このような金属多孔体は、例えば、従来のセラミック製
の多孔体より強度的に優れているため、形状保持、耐久
性の点で優れたものとなっている。また、このような金
属多孔体は、その耐熱温度が高く、本願のガス分離装置
のように、異なった温度に、交互に設定されて過酷な熱
衝撃を受ける場合にあっても、従来のセラミックのよう
に、割れ、欠け等を生じ、装置として機能しなくなる等
の事故を起こすこともない。さらに、このようなHIP
焼結処理を経て得られる金属多孔体にあっては、従来の
一般的な焼結体と比較して成形体の表裏面間で連通した
孔が形成されやすい。この理由は、例えば、従来の焼結
処理においては、焼結に伴って所定の強度を得るために
は、粒子形状が不揃いで、且つ球形状からは程遠い形状
の金属粉末を使用する必要があったのに対して、HIP
焼結処理においては、その焼結が効果的であるため、比
較的粒子形状が一定で、且つ球形に近い粒子を焼結して
所定の強度を得ることができ、粒子間に形成される孔
が、材料表裏間で連続して形成されるためである。従っ
て、このような金属多孔体においては、開気孔率が高い
(材料の外表面に連通され、例えばガス流通用の孔とし
て使用できる孔の割合が高い)ものを容易に得ることが
可能であるとともに、形成される孔の径も均一化できる
ため、均一且つ通気性に優れたガス分離部を得て、少な
い駆動圧でガスの分離をおこなうことができる。さら
に、このガス分離部は、HIP焼結処理を経て得られる
金属多孔体であるため、複雑な形状に設定することも可
能となる。また、この金属多孔体には電極を備えて電圧
印加可能な構造とするため、この金属多孔体を通電状態
として発熱させることにより、従来の加熱手段の役割を
果たすことが可能となり、別途加熱装置等を備える必要
もない。
In the gas separation device according to the first aspect, the metal separation body obtained by a process including a so-called HIP sintering method (hot isostatic pressing under pressure) is used in the gas separation section. It
Since such a porous metal body is superior in strength to, for example, a conventional ceramic porous body, it is excellent in shape retention and durability. In addition, such a porous metal body has a high heat resistance temperature, and even when it is subjected to a severe thermal shock by being alternately set to different temperatures as in the gas separation device of the present application, the conventional ceramics can be used. As described above, there is no possibility of causing an accident such as cracking, chipping, or the like, resulting in the device not functioning. Furthermore, such a HIP
In the porous metal body obtained through the sintering treatment, pores communicating between the front and back surfaces of the molded body are more likely to be formed than in the conventional general sintered body. The reason for this is that, for example, in the conventional sintering process, in order to obtain a predetermined strength along with the sintering, it is necessary to use a metal powder having a nonuniform particle shape and a shape far from a spherical shape. On the other hand, HIP
Since the sintering is effective in the sintering process, it is possible to sinter particles having a relatively constant particle shape and a nearly spherical shape to obtain a predetermined strength, and the pores formed between the particles. However, it is formed continuously between the front and back of the material. Therefore, it is possible to easily obtain such a metal porous body having a high open porosity (a high proportion of pores which are communicated with the outer surface of the material and can be used as, for example, pores for gas flow). At the same time, the diameters of the holes formed can be made uniform, so that it is possible to obtain a gas separation part that is uniform and has excellent gas permeability, and to separate the gas with a small driving pressure. Furthermore, since this gas separation portion is a porous metal body obtained through the HIP sintering process, it can be set in a complicated shape. In addition, since the metal porous body is provided with an electrode and has a structure capable of applying a voltage, it becomes possible to function as a conventional heating means by heating the metal porous body in an energized state to generate heat. There is no need to equip them.

【0006】[0006]

【発明の効果】請求項1に係わるガス分離装置にあって
は、強度、耐熱衝撃性、通気性の点で共に優れている信
頼性の高く、別途加熱装置が必要ないガス分離部を備え
たガス分離装置を得ることができる。
The gas separation device according to the first aspect of the present invention is provided with a gas separation portion which is excellent in strength, thermal shock resistance, and air permeability, has high reliability, and does not require a separate heating device. A gas separation device can be obtained.

【0007】[0007]

【実施例】本願の実施例を図面に基づいて説明する。図
1には、本願のガス分離装置1の構造が示されている。
装置構造は、従来のものとほぼ同様であるが、先に説明
したガス分離部2が本願の特徴構成である熱間静水圧加
圧焼結処理を含む成形処理過程を経て得られる金属多孔
体から成っていること、及び、この金属多孔体に電圧印
加をおこなうことが可能な電極3が備えられており、金
属多孔体からなるガス分離部2自体が、自己加熱型に形
成されている点で異なっている。
Embodiments of the present application will be described with reference to the drawings. FIG. 1 shows the structure of a gas separation device 1 of the present application.
The structure of the apparatus is almost the same as that of the conventional one, but the above-described gas separation unit 2 is a metal porous body obtained through a forming process including a hot isostatic pressing process which is a characteristic configuration of the present application. And that the metal porous body is provided with an electrode 3 capable of applying a voltage, and the gas separation portion 2 itself made of the metal porous body is formed in a self-heating type. It's different.

【0008】装置1は、ペロブスカイト化合物4を収容
するガス分離部2を、気体流路に備えて構成されてい
る。ガス分離部2の上流側には、原料ガスあるいは搬送
ガスを択一的にガス分離部2に供給可能な原料ガス供給
路5を備えるとともに、その下流側に、ガス分離部2か
ら送出されてくる分離済ガスが流れる製品ガス路6を備
えて構成されている。
The apparatus 1 comprises a gas separation section 2 containing a perovskite compound 4 in a gas flow path. A raw material gas supply path 5 capable of selectively supplying a raw material gas or a carrier gas to the gas separation portion 2 is provided on the upstream side of the gas separation portion 2, and is delivered from the gas separation portion 2 on the downstream side thereof. It is provided with a product gas passage 6 through which the separated separated gas comes.

【0009】ガス分離部2は、加熱状態で、静水圧加圧
下に金属粉末材料の焼結を行う熱間静水圧加圧焼結処理
(HIP焼結処理)を含む成形処理過程を経て得られ、
且つその処理過程で生じ、表裏面間を貫通する孔を多数
備えた金属多孔体にて、ペロブスカイト化合物4を収容
可能に構成されている。
The gas separating section 2 is obtained through a molding process including a hot isostatic pressing process (HIP sintering process) in which a metal powder material is sintered under a hydrostatic pressure in a heated state. ,
In addition, the perovskite compound 4 can be accommodated in a porous metal body having a large number of holes which are generated in the process of treatment and penetrate between the front and back surfaces.

【0010】前記ガス分離部2を構成する前記金属多孔
体には、一対の電極3が備えられ、この電極3間に電圧
を印加して、前記金属多孔体自体を自己加熱可能に構成
されている。この目的のために、電圧印加装置7を備え
るとともに、印加電圧を調節して、前記のペロブスカイ
ト化合物4が例えば酸素を分離し易い温度である高温
(例えば1000℃)と酸素を吸着し易い温度である低
温(例えば300℃)とに、ガス分離部2が設定される
ように、印加電圧を切り換える温度制御装置8を備えて
いる。そして、この温度制御装置8は原料ガス供給路5
から供給されるガス種の切り換え、製品ガス路6から送
出されるガス種に依存した貯蔵部9の切り換えを行う切
り換え機構10とも連動するように構成されている。
The metal porous body which constitutes the gas separation part 2 is provided with a pair of electrodes 3, and a voltage is applied between the electrodes 3 so that the metal porous body itself can be heated. There is. For this purpose, a voltage applying device 7 is provided, and the applied voltage is adjusted so that the perovskite compound 4 has a high temperature (for example, 1000 ° C.) at which oxygen is easily separated and a temperature at which oxygen is easily absorbed. A temperature control device 8 for switching the applied voltage is provided so that the gas separation unit 2 is set to a certain low temperature (for example, 300 ° C.). The temperature control device 8 is connected to the raw material gas supply passage 5
It is also configured to interlock with a switching mechanism 10 that switches the type of gas supplied from the storage unit 9 and switches the storage unit 9 depending on the type of gas delivered from the product gas passage 6.

【0011】ガス分離装置1の運転状況を説明すると、
装置1の始動にあたっては、ガス分離部2内に収納され
ているペロブスカイト化合物4の温度域を高温状態(例
えば1000℃程度)に設定して、酸素の価数が低い状
態にペロブスカイト化合物4をする。この状態から化合
物温度域を低温状態(例えば300℃程度)に設定する
ととともに、原料ガス供給路5から例えば空気を供給す
る。この操作をすると、空気中の酸素がペロブスカイト
化合物4に吸着され、製品ガス路6に窒素リッチなガス
を得ることができる。次に、この低温状態から、原料ガ
ス供給路5からの空気の供給を停止するとともに、搬送
ガスとしての例えば酸素リッチなガスを供給し、さら
に、ガス分離部2を前記の高温状態とすると、化合物4
に吸着されていた酸素が脱離されて搬送ガスとともに送
りだされ、製品ガス路6側に、酸素リッチなガスを得る
ことができる。以上の工程で、前記の温度制御装置8、
切り換え機構10が連動して働く。
Explaining the operating conditions of the gas separation device 1,
When the apparatus 1 is started, the temperature range of the perovskite compound 4 stored in the gas separation unit 2 is set to a high temperature state (for example, about 1000 ° C.), and the perovskite compound 4 is made to have a low oxygen valence. . From this state, the compound temperature range is set to a low temperature state (for example, about 300 ° C.), and, for example, air is supplied from the raw material gas supply passage 5. By this operation, oxygen in the air is adsorbed by the perovskite compound 4, and a nitrogen-rich gas can be obtained in the product gas passage 6. Next, from this low temperature state, the supply of air from the raw material gas supply path 5 is stopped, and, for example, an oxygen-rich gas as a carrier gas is supplied, and further the gas separation unit 2 is set to the high temperature state, Compound 4
Oxygen adsorbed on is desorbed and sent out together with the carrier gas, and an oxygen-rich gas can be obtained on the product gas passage 6 side. Through the above steps, the temperature control device 8,
The switching mechanism 10 works together.

【0012】前述のように、ガス分離部2は、所謂、熱
間静水圧加圧焼結処理(HIP焼結処理)によって製造
されるため、従来の金属焼結手法より強度的に強く、同
一の強度のものにおいては、材料の表面間に渡って連通
した開気孔の多い、通気性、耐熱性、耐熱衝撃性の良好
な特性を備える。
As described above, since the gas separation section 2 is manufactured by so-called hot isostatic pressing sintering (HIP sintering), the gas separating section 2 is stronger and has the same strength as the conventional metal sintering method. The one having the strength of (1) has a large number of open pores communicating between the surfaces of the material, and has excellent characteristics of air permeability, heat resistance, and thermal shock resistance.

【0013】以下、ガス分離部2を構成する金属多孔体
として適した供試体について説明する。供試体は、その
製造手法において、二つの群に分けることができる。以
下、第1群と第2群、夫々について別個に説明する。 1 第1群 この群に属する供試体は、2工程を経て製造される。製
造にあたっては、所謂、CIPと呼ばれる手法で代表さ
れる工程である、金属粉末材料を加圧成形して粉末予備
成形体を得る第1工程と、第1工程で得られる粉末予備
成形体に対して熱間静水圧加圧焼結処理を行う第2工程
を経て製造する。そして、この第2工程においては、粉
末予備成形体を裸のままで静水圧媒体の中に投入して処
理をおこなう。従って、この工程においては、粉末予備
成形体内に存し、且つ粉末予備成形体の表裏を貫通する
孔内に、静水圧媒体の侵入が許容され、処理が進む。こ
のような孔は、その開口状態を維持でき、結果的に開気
孔率の高い金属焼結体を得ることができる。この群に属
する供試体の製造条件、物性を表1に示した。以下に、
各供試体について説明する。下記の金属粉末を原料と
し、ゴム型に封入してCIP成形により、粉末予備成形
体を形成する(第1工程)。ついで、粉末予備成形体を
HIP装置に装入し、焼結処理を行って(第2工程)金
属多孔体No. 1〜5を得た。 ステンレス鋼粉末:SUS 310S相当、アトマイズ粉末(C:
0.02,Si:1.0,Mn:0.1,Cr:18.3,Ni:10.8.%) 合金工具鋼粉末:SKD 61相当、アトマイズ粉末(C:0.3
8,Si:0.9,Mn:0.01,Cr:5.25,Ni:1.20,V:1.0.%) 供試体No. 1〜5は発明例であり、No. 11は粉末予備
成形体を真空雰囲気中で加熱焼結してして得られた比較
例である。表中、「孔径分布」欄の数値は最大気孔径
(μm)、「ガス抜き性」欄の数値は、エアの透過に必
要な圧力(Kgf/cm2)であり、「曲げ強度」欄は、JIS B
1601の曲げ試験法(スパン距離:30mm)による3点曲
げ強度(Kgf/mm2)の測定結果を示している。粉末予備
成形体をHIP処理して得られる金属多孔体は、No. 1
〜3に示されるように、比較例の金属多孔体No. 11に
比べ、高いガス抜き性を有すると同時に、No. 11を大
きく凌ぐ強度を備えている。特にNo. 2は格段の高強度
化を達成している。No. 4は、比較例No. 11と同等の
強度を維持しながら、大孔径、高開気孔率を有し、より
高いガス透過性を備えており、またNo. 5は、金属材種
を異にするが、高い開気孔率・ガス抜き性と改良された
強度を具備し、比較例No.11との差異は歴然である。
Hereinafter, a sample suitable as a porous metal body constituting the gas separation section 2 will be described. Specimens can be divided into two groups according to their manufacturing method. Hereinafter, the first group and the second group will be separately described. 1 First group Specimens belonging to this group are manufactured through two steps. In manufacturing, the first step, which is a step typified by a so-called CIP method, for pressure-molding a metal powder material to obtain a powder preform, and the powder preform obtained in the first step It is manufactured through a second step in which hot isostatic pressing is performed. Then, in this second step, the powder preform is left naked and placed in the hydrostatic medium for treatment. Therefore, in this step, the hydrostatic medium is allowed to enter the holes existing in the powder preform and penetrating the front and back of the powder preform, and the process proceeds. Such a hole can maintain its open state, and as a result, a metal sintered body having a high open porosity can be obtained. Table 1 shows the production conditions and physical properties of the specimens belonging to this group. less than,
Each sample will be described. Using the following metal powder as a raw material, it is enclosed in a rubber mold and CIP-molded to form a powder preform (first step). Then, the powder preform was placed in a HIP device and subjected to a sintering treatment (second step) to obtain porous metal bodies Nos. 1 to 5. Stainless steel powder: SUS 310S equivalent, atomized powder (C:
0.02, Si: 1.0, Mn: 0.1, Cr: 18.3, Ni: 10.8.%) Alloy tool steel powder: SKD 61 equivalent, atomized powder (C: 0.3
8, Si: 0.9, Mn: 0.01, Cr: 5.25, Ni: 1.20, V: 1.0.%) Specimen Nos. 1 to 5 are invention examples, and No. 11 is a powder preform in a vacuum atmosphere. It is a comparative example obtained by heating and sintering. In the table, the value in the "Pore size distribution" column is the maximum pore size (μm), the value in the "Degassing property" column is the pressure (Kgf / cm 2 ) required for air permeation, and the "Bending strength" column is , JIS B
The measurement results of three-point bending strength (Kgf / mm 2 ) by the bending test method of 1601 (span distance: 30 mm) are shown. The metal porous body obtained by HIPing the powder preform is No. 1
As shown in Nos. 3 to 3, as compared with the porous metal body No. 11 of the comparative example, the porous body has high degassing property and, at the same time, has a strength far exceeding that of No. 11. In particular, No. 2 has achieved extremely high strength. No. 4 has a large pore size, a high open porosity, and higher gas permeability while maintaining the same strength as Comparative Example No. 11, and No. 5 is a metal material type. Although different, it has a high open porosity, degassing properties, and improved strength. The difference from 11 is obvious.

【0014】[0014]

【表1】 供試体1〜5において、材料表裏面間に渡る貫通孔が多
いことは、開気孔率/気孔率の割合が、比較例よりも高
いことからも明らかである。
[Table 1] In Samples 1 to 5, it is clear from the fact that the ratio of open porosity / porosity is higher than that in Comparative Examples, that there are many through holes between the front and back surfaces of the material.

【0015】2 第2群 この群に属する供試体もまた、2工程を経て製造され
る。製造にあたっては、前述の第2工程に相当する熱間
静水圧加圧焼結処理を最初におこない、さらに、この処
理によって得られたものを熱処理して、所望のものを得
る。この群に属する熱間静水圧加圧焼結処理にあって
は、軟鋼製カプセル内に金属粉末を脱気密封して処理を
おこなう。この手法における熱間静水圧加圧焼結処理の
特徴は、前述の第1群に属するものを得る場合と比較し
て、その処理時間を短く選択して、この処理のみに関し
ては、処理を甘くおこなっていることにある。この群に
属する供試体の製造条件、物性を表2に示した。以下
に、各供試体について説明する。下記金属粉末を原料と
し、軟鋼製カプセルに充填し、脱気密封(1×10-2To
rr)したうえ、HIP装置に入れ予備成形する。つい
で、カプセルのまま、加熱炉に装入し、加熱処理する。
処理後、カプセルを機械加工により除去して金属多孔体
を得る。 ステンレス鋼粉末:SUS 310S相当、アトマイズ粉末(C:
0.02,Si:1.0,Mn:0.1,Cr:18.3,Ni:10.8.%) 合金工具鋼粉末:SKD 61相当、アトマイズ粉末(C:0.3
8,Si:0.9,Mn:0.01,Cr:5.25,Mo:1.20,V:1.0.%)
2 Second Group Specimens belonging to this group are also manufactured through two steps. In the production, a hot isostatic pressing sintering process corresponding to the above-mentioned second step is first performed, and the product obtained by this process is heat-treated to obtain a desired product. In the hot isostatic pressing sintering process belonging to this group, the metal powder is deaerated and hermetically sealed in a mild steel capsule. The feature of the hot isostatic pressing sintering process in this method is that the process time is selected to be shorter than that in the case where the above-mentioned one belonging to the first group is obtained, and the process is performed only for this process. There is something happening. Table 2 shows the production conditions and physical properties of the specimens belonging to this group. Below, each sample is demonstrated. The following metal powder is used as a raw material, filled in a mild steel capsule, and degassed and sealed (1 × 10 -2
rr), and then put in a HIP device for preforming. Then, the capsules, as they are, are placed in a heating furnace and heat-treated.
After the treatment, the capsule is removed by machining to obtain a porous metal body. Stainless steel powder: SUS 310S equivalent, atomized powder (C:
0.02, Si: 1.0, Mn: 0.1, Cr: 18.3, Ni: 10.8.%) Alloy tool steel powder: SKD 61 equivalent, atomized powder (C: 0.3
8, Si: 0.9, Mn: 0.01, Cr: 5.25, Mo: 1.20, V: 1.0.%)

【0016】供試体No. 6〜10は発明例であり、No.
12は、粉末成形体を真空雰囲気中で加熱焼結して得ら
れた比較例である。表中、「孔径分布」欄の数値は最大
気孔径(μm)、「ガス抜き性」欄の数値は、エアの透
過に必要な圧力(Kgf/cm2)であり、「曲げ強度」欄は、
JIS B 1601の曲げ試験法(スパン距離:30mm)による
3点曲げ強度(Kgf/mm2)の測定結果を示している。発
明例の金属多孔体は、No. 6〜8に示されるように、比
較例の金属多孔体No. 12と平均孔径等はほぼ同等であ
りながら、高い開気孔率を有し、ガス透過性に優れてい
ると同時に、比較例No. 12を大きく超える高強度を具
備しており、また、No. 9,No. 10のように、比較例
No. 12と同等の機械強度を保持しながら、気孔径を大
きく、開気孔率の高い気孔分布とすることも可能であ
り、従来材との差異は歴然である。
Specimen Nos. 6 to 10 are inventive examples, and No.
12 is a comparative example obtained by heating and sintering a powder compact in a vacuum atmosphere. In the table, the value in the "Pore size distribution" column is the maximum pore size (μm), the value in the "Degassing property" column is the pressure (Kgf / cm 2 ) required for air permeation, and the "Bending strength" column is ,
The measurement results of three-point bending strength (Kgf / mm 2 ) by the bending test method of JIS B 1601 (span distance: 30 mm) are shown. As shown in Nos. 6 to 8, the metal porous body of the invention example has a high open porosity and a high gas permeability, although the average pore diameter and the like of the metal porous body No. 12 of the comparative example are almost the same. In addition to being excellent in strength, it possesses high strength that greatly exceeds that of Comparative Example No. 12, and as in No. 9 and No.
While maintaining the mechanical strength equivalent to No. 12, it is possible to make the pore size large and the pore distribution with high open porosity, and the difference from the conventional material is obvious.

【0017】[0017]

【表2】 供試体6〜10において、材料表裏面間に渡る貫通孔が
多いことは、開気孔率/気孔率の割合が、比較例よりも
高いことからも明らかである。結果、このようにして製
造される金属多孔体を、ガス分離部2として採用するガ
ス分離装置1は、耐熱衝撃性、強度の点で優れ、通気性
の良好な非常に使用勝手の良いものであった。
[Table 2] It is clear from Samples 6 to 10 that there are many through-holes extending between the front and back surfaces of the material because the ratio of open porosity / porosity is higher than that of the comparative example. As a result, the gas separation device 1 which employs the metal porous body produced in this way as the gas separation part 2 is excellent in thermal shock resistance and strength, and has excellent air permeability and is very easy to use. there were.

【0018】〔別実施例〕上記の実施例においては、単
一のガス分離部2を備え、この分離部2に対して、原料
ガスもしくは搬送ガスを択一的に供給する原料ガス供給
路5を備えるとともに、このガス分離部2から出てくる
ガスを、その状態に従って、貯蔵部4に択一的に回収で
きる製品ガス路6を備えて構成したが、図2に示すよう
な装置構成を取る場合は、連続的に別種のガスの分離を
おこなうことができる。この装置構成について説明す
る。この装置100にあっては、ペロブスカイト化合物
4が、所定の温度域に維持されたままで、一定の循環路
101を循環される。循環路101は、低温部101a
と高温部101bとに分離された構造となっており、こ
の部位101a、101b間に渡って化合物4が循環さ
れて、ガスの分離が行われる。装置100は、原料ガス
もしくは搬送ガスが供給される原料ガス供給路50、送
出されてくるガスの回収が行われる製品ガス路60を夫
々備えた一対のガス分離部20と、これらのガス分離部
20とを化合物が循環する形態で接続する一対の接続路
30から構成されている。そして、これらの接続路30
は、夫々、起点側のガス分離部20の温度に維持される
構成が取られている。これらのガス分離部20は、先の
実施例と同様に、本願特有の金属多孔体から構成されて
いる。以下に、ペロブスカイト化合物が鉄酸ストロンチ
ウム(SrFeOx)である場合について説明する。図
面上、左側に備えられるガス分離部20が低温側ガス分
離部20aであり、この部位20aにあっては、原料ガ
ス供給路50aを経て供給される空気からの酸素の化合
物4への吸着が行われて、窒素リッチな製品ガスが製品
ガス路60aに排出される。酸素を吸着した状態にある
ペロブスカイト化合物4は、この温度を維持したまま
で、図面上右側にある高温側ガス分離部20bまで移動
され、この部位20bで昇温される。従って、この高温
側ガス分離部20bで酸素は脱離され、原料ガス供給路
50bを介して供給される搬送ガスとしての酸素リッチ
ガスに供給され、製品ガスとして、製品ガス路60bに
酸素リッチなガスを得ることができる。これまで説明し
てきた実施例においては、ペロブスカイト化合物として
は、鉄酸ストロンチウム(SrFeOx)の例を示した
が、この他に、BaFeOx、SrNiOx、SrCoO
x等、温度や酸素分厚によって酸素不定比性を示す化合
物なら、どのような化学組成の化合物でも使用すること
ができる。上記の実施例では、本願の金属多孔体とし
て、ステンレス鋼、合金工具鋼、アトマイズ粉末の例を
示したが、耐熱、耐熱衝撃性を得られる材料としては、
インコネル、チタン、クロム等を含有する金属材料を使
用して、金属多孔体を得ることが好ましい。
[Other Embodiment] In the above embodiment, a single gas separation unit 2 is provided, and a raw material gas supply passage 5 for selectively supplying a raw material gas or a carrier gas to the separation unit 2. In addition to the above, the product gas passage 6 that can selectively collect the gas coming out of the gas separation unit 2 into the storage unit 4 according to its state is provided. When taking, another kind of gas can be continuously separated. This device configuration will be described. In this device 100, the perovskite compound 4 is circulated in a constant circulation path 101 while being maintained in a predetermined temperature range. The circulation path 101 includes the low temperature section 101a.
And the high temperature part 101b are separated, and the compound 4 is circulated between the parts 101a and 101b to separate the gas. The apparatus 100 includes a pair of gas separation units 20 each including a raw material gas supply passage 50 for supplying a raw material gas or a carrier gas, a product gas passage 60 for collecting the delivered gas, and these gas separation portions. It is composed of a pair of connecting passages 30 that connect 20 and 20 in a circulating form of the compound. And these connection paths 30
Are configured to be maintained at the temperature of the gas separation unit 20 on the starting side, respectively. These gas separation parts 20 are made of a metal porous body peculiar to the present invention, as in the previous embodiment. The case where the perovskite compound is strontium iron oxide (SrFeO x ) will be described below. In the drawing, the gas separation section 20 provided on the left side is the low temperature side gas separation section 20a, and in this section 20a, adsorption of oxygen from the air supplied via the raw material gas supply passage 50a to the compound 4 is prevented. Then, the nitrogen-rich product gas is discharged to the product gas passage 60a. The perovskite compound 4 in the state of adsorbing oxygen is moved to the high temperature side gas separation section 20b on the right side of the drawing while maintaining this temperature, and is heated at this site 20b. Therefore, oxygen is desorbed in the high temperature side gas separation unit 20b and is supplied to the oxygen-rich gas as the carrier gas supplied through the raw material gas supply passage 50b, and as the product gas, the oxygen-rich gas is supplied to the product gas passage 60b. Can be obtained. In the examples described so far, an example of strontium iron oxide (SrFeO x ) was shown as the perovskite compound, but in addition to this, BaFeO x , SrNiO x , SrCoO 3
A compound having any chemical composition, such as x , can be used as long as it exhibits oxygen nonstoichiometry depending on temperature and oxygen concentration. In the above examples, as the metal porous body of the present application, examples of stainless steel, alloy tool steel, and atomized powder are shown, but as a material that can obtain heat resistance and thermal shock resistance,
It is preferable to obtain a metal porous body by using a metal material containing Inconel, titanium, chromium or the like.

【0019】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願のガス分離装置の構成を示す図FIG. 1 is a diagram showing a configuration of a gas separation device of the present application.

【図2】本願のガス分離装置の別実施例を示す図FIG. 2 is a diagram showing another embodiment of the gas separation device of the present application.

【図3】従来のガス分離装置の構成を示す図FIG. 3 is a diagram showing a configuration of a conventional gas separation device.

【符号の説明】 2 ガス分離部 3 電極 4 ペロブスカイト化合物 6 製品ガス路[Explanation of symbols] 2 gas separation part 3 electrode 4 perovskite compound 6 product gas path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西 隆 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 (72)発明者 小阪 晃 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Nishi Nishi 1-1-1, Nakamiya Oike, Hirakata-shi, Osaka Prefecture Kubota Hirakata Manufacturing Company (72) Inventor Akira Kosaka 1-1-1, Nakamiya Oike, Hirakata-shi, Osaka No. 1 stock company Kubota Hirakata Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 異なった温度域において、分離対象ガス
に対する吸着能を異にするペロブスカイト化合物(4)
を収容するガス分離部(2)を備え、前記ガス分離部
(2)の温度を所定の温度域に設定可能な加熱手段を備
えるとともに、前記ガス分離部(2)に原料ガスを供給
する原料ガス供給路(5)と前記ガス分離部(2)から
送出されてくる分離済ガスが流れる製品ガス路(6)と
を備えたガス分離装置であって、加熱状態で、静水圧加
圧下で金属粉末の焼結を行う熱間静水圧加圧焼結処理を
含む成形処理過程を経て得られ、且つその処理過程で生
じた表裏両面間に貫通する孔を多数備えた金属多孔体に
て、前記ガス分離部(2)を構成し、前記金属多孔体に
一対の電極(3)を備えて、前記金属多孔体を電圧印加
可能に構成したガス分離装置。
1. A perovskite compound (4) having different adsorption capacities for gases to be separated in different temperature regions.
A raw material for supplying a raw material gas to the gas separation part (2), the gas separation part (2) for accommodating the gas, the heating means capable of setting the temperature of the gas separation part (2) in a predetermined temperature range, A gas separation device comprising a gas supply path (5) and a product gas path (6) through which a separated gas sent from the gas separation section (2) flows, which is heated and under hydrostatic pressure. A metal porous body having a large number of pores penetrating between the front and back surfaces, which is obtained through a molding treatment process including a hot isostatic pressing sintering process for sintering a metal powder, and which is generated in the treatment process. A gas separation device, which constitutes the gas separation part (2), is provided with a pair of electrodes (3) on the porous metal body, and is capable of applying a voltage to the porous metal body.
JP7179948A 1995-07-17 1995-07-17 Gas separation device Pending JPH0929045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7179948A JPH0929045A (en) 1995-07-17 1995-07-17 Gas separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7179948A JPH0929045A (en) 1995-07-17 1995-07-17 Gas separation device

Publications (1)

Publication Number Publication Date
JPH0929045A true JPH0929045A (en) 1997-02-04

Family

ID=16074754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7179948A Pending JPH0929045A (en) 1995-07-17 1995-07-17 Gas separation device

Country Status (1)

Country Link
JP (1) JPH0929045A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128507A (en) * 1998-10-20 2000-05-09 Boc Group Inc:The Partial oxidation of hydrocarbon
JP2000335903A (en) * 1999-04-13 2000-12-05 Boc Group Inc:The Partial oxidation of hydrocarbon
JP2006169070A (en) * 2004-12-17 2006-06-29 Ngk Spark Plug Co Ltd Oxygen manufacturing unit
JP2006176346A (en) * 2004-12-21 2006-07-06 Dowa Mining Co Ltd Oxygen storage material
JP2013013837A (en) * 2011-07-01 2013-01-24 Sumitomo Electric Ind Ltd Device and method for sorption and recovery of gas
JP2013094761A (en) * 2011-11-04 2013-05-20 Sumitomo Electric Ind Ltd Gas sorption and recovery element, method of manufacturing gas sorption and recovery element, and gas sorption and recovery device
WO2018079174A1 (en) * 2016-10-31 2018-05-03 パナソニック株式会社 Chemical substance concentrator and chemical substance detection device
JP2018087119A (en) * 2016-11-30 2018-06-07 大陽日酸株式会社 Oxygen removing method and oxygen removing device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128507A (en) * 1998-10-20 2000-05-09 Boc Group Inc:The Partial oxidation of hydrocarbon
JP2000335903A (en) * 1999-04-13 2000-12-05 Boc Group Inc:The Partial oxidation of hydrocarbon
JP2006169070A (en) * 2004-12-17 2006-06-29 Ngk Spark Plug Co Ltd Oxygen manufacturing unit
JP2006176346A (en) * 2004-12-21 2006-07-06 Dowa Mining Co Ltd Oxygen storage material
JP2013013837A (en) * 2011-07-01 2013-01-24 Sumitomo Electric Ind Ltd Device and method for sorption and recovery of gas
JP2013094761A (en) * 2011-11-04 2013-05-20 Sumitomo Electric Ind Ltd Gas sorption and recovery element, method of manufacturing gas sorption and recovery element, and gas sorption and recovery device
WO2018079174A1 (en) * 2016-10-31 2018-05-03 パナソニック株式会社 Chemical substance concentrator and chemical substance detection device
JPWO2018079174A1 (en) * 2016-10-31 2019-09-12 パナソニック株式会社 Chemical substance concentrator and chemical substance detection device
US11169059B2 (en) 2016-10-31 2021-11-09 Panasonic Corporation Chemical substance concentrator and chemical substance detection device
JP2018087119A (en) * 2016-11-30 2018-06-07 大陽日酸株式会社 Oxygen removing method and oxygen removing device

Similar Documents

Publication Publication Date Title
US6309546B1 (en) Micro and ultrafilters with controlled pore sizes and pore size distribution and methods for making
EP0336569B1 (en) Hot isostatic pressing of powders to form high density contacts
US4836978A (en) Method for making vacuum circuit breaker electrodes
US20030054154A1 (en) Method of making a porous green form and oxygen transport membrane
WO1997005083A1 (en) Method for manufacturing intermetallic/ceramic/metal composites
JPH0929045A (en) Gas separation device
JPH04505985A (en) Manufacturing method of CuCr contact piece for vacuum switch and attached contact piece
CN101273152B (en) Method for the alloying of aluminum to form components
CA1219441A (en) Porous ceramic filter body and a method to fabricate such a body
EP0107919A1 (en) Silicon nitride ceramic bodies
US4431605A (en) Metallurgical process
WO1993005190A1 (en) Process for producing porous metallic body
WO1998019812A1 (en) Multi-channel structures and processes for making such structures
JPH0368708A (en) Method for reforming porous body having opened pores
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
JPS61214424A (en) Heat-resisting jig and its manufacture
US4575449A (en) Metallurgical process
JP3174820B2 (en) Method for producing porous body having through pores
DE4041514C2 (en) Process for producing dense sintered workpieces
JP2005320581A (en) Method for manufacturing porous metal body
JPH08312925A (en) Burner
US3844830A (en) Sintering process for metallizing non-metal substrates
JP3547179B2 (en) Method for producing porous sintered metal material
SU1183297A1 (en) Method of producing porous sintered material
JPH02258946A (en) Composite sintered alloy, heat-resistant member and steel material supporting member in heating furnace