JPH09287692A - Helmholtz type pulsation reducing device - Google Patents

Helmholtz type pulsation reducing device

Info

Publication number
JPH09287692A
JPH09287692A JP10130896A JP10130896A JPH09287692A JP H09287692 A JPH09287692 A JP H09287692A JP 10130896 A JP10130896 A JP 10130896A JP 10130896 A JP10130896 A JP 10130896A JP H09287692 A JPH09287692 A JP H09287692A
Authority
JP
Japan
Prior art keywords
pulsation reducing
pulsation
reducing device
helmholtz
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10130896A
Other languages
Japanese (ja)
Inventor
Yukihiro Motosawa
幸裕 本澤
Seiichiro Takeshita
清一郎 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP10130896A priority Critical patent/JPH09287692A/en
Publication of JPH09287692A publication Critical patent/JPH09287692A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/04Devices damping pulsations or vibrations in fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pipe Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a pulsation reducing effect without increasing the size of a device. SOLUTION: A Helmholtz type pulsation reducing device 10 comprises a coupling part 22 of which a connection part with a piping 1 consists; a neck part 23 coupled to the coupling part and having a through-hole 231; a rubber hose casing 25 for an oil pressure; a metallic casing 26; and a caulking member 27. To increase the pulsation reducing effect of the Helmholtz type pulsation reducing device, the spring factor of an oil spring when the Helmholtz type pulsation reducing device is modeled may be decreased. Since the spring factor proportions to a square of an acoustic velocity, by using a rubber hose (low acoustic velocity) for an oil pressure as the casing 25 instead of a conventional metal (a high acoustic velocity), the spring factor is decreased and a pulsation reducing effect is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流体を圧送し、こ
の圧送流体により種々の仕事を行う装置において、圧送
流体が通る配管又は流体圧力機器に生じる流体の脈動を
減少させるヘルムホルツ型脈動低減装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Helmholtz-type pulsation reducing device for reducing the pulsation of fluid generated in piping or fluid pressure equipment through which the fluid is pumped, in a device for pumping fluid and performing various tasks by this fluid. Regarding

【0002】[0002]

【従来の技術】流体、例えば油、水等の液体や空気等の
気体を圧送し、その圧力を用いて各種の仕事を行う装置
が多くの分野で使用されている。その代表的な装置が油
圧ショベル等、油圧により作業を行う油圧機器である。
以下、流体として油を例示して説明する。油圧機器で
は、油圧ポンプを駆動して圧油を吐出し、この吐出され
た圧油を配管を介して油圧シリンダや油圧モータ等の油
圧アクチュエータへ圧送し、これを駆動して所期の作業
を行う。
2. Description of the Related Art An apparatus for pumping a fluid, for example, a liquid such as oil or water, or a gas such as air, and performing various works by using the pressure is used in many fields. A typical device is a hydraulic device such as a hydraulic excavator that performs work by hydraulic pressure.
Hereinafter, oil will be described as an example of the fluid. In hydraulic equipment, a hydraulic pump is driven to discharge pressure oil, and the discharged pressure oil is pressure-fed to a hydraulic actuator such as a hydraulic cylinder or a hydraulic motor via a pipe, and is driven to perform an intended operation. Do.

【0003】このような油圧機器では、油圧ポンプ(ピ
ストンポンプ)から吐出される圧油に脈動が生じる。こ
の脈動の周波数f(Hz)は、ピストン本数をn、油圧
ポンプの回転数をN(RPM)とすると、次式で表わさ
れる。 f=n×N×i/60(ただし、i=1、2、3、…………)…………(1) 上記(1)式で、i=1 は基本周波数、i=1、2、3、……
……は高次の周波数である。
In such a hydraulic device, pulsation occurs in the pressure oil discharged from the hydraulic pump (piston pump). The pulsation frequency f (Hz) is represented by the following equation, where n is the number of pistons and N (RPM) is the rotation speed of the hydraulic pump. f = n × N × i / 60 (where i = 1, 2, 3,...) (1) In the above equation (1), i = 1 is the fundamental frequency, i = 1, 2, 3, ...
... are higher frequencies.

【0004】上記の脈動は騒音の原因となるばかりでな
く、場合によっては共振を生じて油圧機器の配管や各種
構成要素を損傷するおそれもあるので、当該脈動は極力
低減する必要がある。従来、脈動低減の1つの手段とし
てヘルムホルツ型脈動低減装置が用いられている。この
ヘルムホルツ型脈動低減装置を図3および図4により説
明する。
[0004] The above-mentioned pulsation not only causes noise, but also may cause resonance and damage piping and various components of the hydraulic equipment. Therefore, it is necessary to reduce the pulsation as much as possible. Conventionally, a Helmholtz type pulsation reducing device has been used as one means for reducing pulsation. This Helmholtz pulsation reducing device will be described with reference to FIGS.

【0005】図3は従来のヘルムホルツ型脈動低減装置
の断面図、図4の(a)は図3に示す線IVa−IVaに沿
う断面図、図4の(b)は図3に示す線IVb−IVbに沿
う断面図である。これらの図で、1は圧油が通る配管、
2は配管1に適宜の手段で連結されたヘルムホルツ型脈
動低減装置を示す。このヘルムホルツ型脈動低減装置2
は、金属製のケーシング21、配管1との連結部分を構
成する結合部22、この結合部22に形成された貫通孔
231より成るネック部23およびケーシング21の内
部の容積部24で構成されている。なお、結合部22は
図示されていないが、溶接、ねじ込み式、フランジ式等
の方法が適用される。
FIG. 3 is a sectional view of a conventional Helmholtz pulsation reducing device, FIG. 4 (a) is a sectional view taken along line IVa-IVa shown in FIG. 3, and FIG. 4 (b) is line IVb shown in FIG. FIG. 11 is a cross-sectional view taken along the line −IVb. In these figures, 1 is a pipe through which pressure oil passes,
Reference numeral 2 denotes a Helmholtz type pulsation reducing device connected to the pipe 1 by an appropriate means. This Helmholtz pulsation reduction device 2
Is composed of a metal casing 21, a connecting portion 22 that forms a connecting portion with the pipe 1, a neck portion 23 formed of a through hole 231 formed in the connecting portion 22, and a volume portion 24 inside the casing 21. There is. Although not shown, the joining portion 22 may be welded, screwed, or flanged.

【0006】上記ホルムヘルツ型脈動低減装置2の脈動
低減中心周波数f0 は、容積部24内部の油の音速を
C、ネック部23の断面積(貫通孔231の断面積)を
A、ネック部23の長さ(貫通孔231の長さ)をL
0 、容積部24の内容積をVとすると次式で表わされる
ことが知られている。 f0 =(C/2 π)・√(A/(L0 ・V))…………(2) ここで、上記ヘルムホルツ型脈動低減装置2の動作原理
を図5を参照して説明する。ヘルムホルツの古典理論に
よれば、ヘルムホルツ型脈動低減装置2のネック部23
の油は全て一様に運動するので、質量Mのピストンとし
て仮定されている。このピストンは油の密度ρと同一密
度であり、その断面積および長さはネック部23の断面
積および長さと同一である。したがって、ピストンの質
量Mは次式で表わされる。 M=ρ・L0 ・A…………(3) 又、容積部24の中の油はばね係数Kの油ばねとして仮
定されている。したがって、ヘルムホルツ型脈動低減装
置2は図5に示すような、減衰のない1自由度のばね1
0と質点11としてモデル化される。なお、図5で矢印
Bは質点11の変位を表わす。
The pulsation-reducing center frequency f 0 of the Holmhertz-type pulsation reducing device 2 has a sonic velocity of oil C in the volume 24, a cross-sectional area of the neck portion 23 (cross-sectional area of the through hole 231) of A, and a neck portion 23. The length (length of through hole 231) is L
It is known that the following equation is given, where 0 is the internal volume of the volume section 24. f 0 = (C / 2 π) · √ (A / (L 0 · V)) (2) Here, the operating principle of the Helmholtz pulsation reducing device 2 will be described with reference to FIG. 5. . According to the Helmholtz classical theory, the neck portion 23 of the Helmholtz pulsation reducing device 2 is
Is assumed to be a piston of mass M, because all of the oil moves uniformly. This piston has the same density as the oil density ρ, and its cross-sectional area and length are the same as the cross-sectional area and length of the neck portion 23. Therefore, the mass M of the piston is expressed by the following equation. M = ρ · L 0 · A (3) The oil in the volume 24 is assumed to be an oil spring having a spring coefficient K. Therefore, the Helmholtz-type pulsation reducing device 2 has a spring 1 with one degree of freedom without damping, as shown in FIG.
It is modeled as 0 and a mass point 11. The arrow B in FIG. 5 represents the displacement of the mass point 11.

【0007】今、質点11の変位をxとすると、図5に
示すモデルの運動方程式は、次式で表わされる。 M(d2x/dt2)=−K・x…………(4) 又、質点11は次式の固有振動数fで振動することが明
らかである。 f=(1/2 π)・√(K/M)…………(5) 次に、上記油ばね10のバネ係数Kについて考察する。
図5に示す仮想ピストンが距離xだけ変位したとき、即
ち、容積部24の内容積VがΔVだけ変化したとき、容
積部24の油の圧力がΔPだけ変化するとすると、内容
積の変化分ΔVは次式で表わされる。 ΔV=A・x…………(6) 又、上記圧力の変化ΔPは、体積弾性係数をkとする
と、この体積弾性係数の定義式と上記(6)式により次
式で表わされる。 ΔP=−k・ΔV=−k・A・x/V…………(7) さらに、上記体積弾性係数kは、音速の定義式をkにつ
いて解くことにより、油の密度ρと油の音速Cを用いて
次式で表わすことができる。 k=ρ・C2 …………(8) ところで、上記(4)式の右辺は仮想ピストンが距離X
だけ変位したときのピストンに作用する力であるので、
ピストンの断面積Aと、このときの圧力変化分ΔPで表
わすことができる。即ち、上記運動方程式(4)は次式
のように表わされる。 M(d2x/dt2)=ΔP・A…………(9) 上記(9)式に上記(7)式および(8)式を代入する
と ρ・L0 ・A・(d2x/dt2)=−ρ・C2・(A2/V)・x……(10) となるので、、ばね係数Kは上記(10)式と上記
(4)式とを比較することにより次式として得られる。 K=ρ・C2・(A2/V)…………(11) なお、(10)式から、固有振動数f0 は上記(2)式
で表わされるのは明らかである。
Now, assuming that the displacement of the mass point 11 is x, the equation of motion of the model shown in FIG. 5 is expressed by the following equation. M (d 2 x / dt 2 ) = − K · x (4) It is clear that the mass point 11 vibrates at the natural frequency f of the following equation. f = (1/2 π) · √ (K / M) (5) Next, the spring coefficient K of the oil spring 10 will be considered.
When the virtual piston shown in FIG. 5 is displaced by the distance x, that is, when the internal volume V of the volume section 24 changes by ΔV, and the oil pressure in the volume section 24 changes by ΔP, the change amount of the internal volume ΔV Is expressed by the following equation. ΔV = A · x (6) The pressure change ΔP is expressed by the following equation based on the definition equation of the bulk elastic coefficient and the equation (6), where the bulk elastic coefficient is k. ΔP = −k · ΔV = −k · A · x / V (7) Further, the bulk elastic coefficient k is obtained by solving the definition equation of the sound velocity for k to obtain the density ρ of the oil and the sound velocity of the oil. It can be expressed by the following equation using C. k = ρ · C 2 (8) By the way, on the right side of the above equation (4), the virtual piston is the distance X.
Because it is the force that acts on the piston when displaced,
It can be represented by the sectional area A of the piston and the pressure change amount ΔP at this time. That is, the above equation of motion (4) is expressed by the following equation. M (d 2 x / dt 2 ) = ΔP · A (9) Substituting equations (7) and (8) into equation (9) gives ρ · L 0 · A · (d 2 x / Dt 2 ) = − ρ · C 2 · (A 2 / V) · x (10) Therefore, the spring coefficient K can be calculated by comparing the above equation (10) with the above equation (4). It is obtained as the following formula. K = ρ · C 2 · (A 2 / V) ... (11) From the equation (10), it is clear that the natural frequency f 0 is represented by the equation (2).

【0008】以上述べたように、ヘルムホルツ型脈動低
減装置2では、ネック部23の断面積A、ネック部23
の長さL0 、容積部24の内容積Vを適宜選択して固有
振動数f0 を油圧の脈動の周波数に一致させ、外力、即
ち油の脈動によってネック部23の油を共振させること
により油圧の脈動を低減している。
As described above, in the Helmholtz pulsation reducing device 2, the neck portion 23 has a sectional area A and a neck portion 23.
By appropriately selecting the length L 0 and the internal volume V of the volume portion 24 to match the natural frequency f 0 with the frequency of the pulsation of the hydraulic pressure and resonate the oil in the neck portion 23 by the external force, that is, the pulsation of the oil. The pulsation of hydraulic pressure is reduced.

【0009】[0009]

【発明が解決しようとする課題】上記従来のヘルムホル
ツ型脈動低減装置2において、脈動の低減効果を大きく
するためには上記(11)式で表わされる油ばね10の
ばね係数Kを小さくすればよい。このように、ばね係数
Kを小さくするために、従来装置では容積部24の内容
積Vを大きくすることにより対応していた。しかし、こ
のような対応では、低減効果を大きくしようとすると装
置が大きくなるという問題があった。又、上記(11)
式から、ばね係数Kを小さくするためにはネック部23
の断面積Aを小さくすることも考えられるが、ヘルムホ
ルツ型脈動低減装置では、断面積Aは既に充分小さくさ
れており、これ以上に断面積を小さくしてゆくと、かえ
って脈動低減効果が小さくなることが知られている。
In the conventional Helmholtz pulsation reducing apparatus 2 described above, in order to increase the pulsation reducing effect, the spring coefficient K of the oil spring 10 represented by the above equation (11) may be reduced. . As described above, in order to reduce the spring coefficient K, the conventional device has dealt with it by increasing the internal volume V of the volume portion 24. However, in such a measure, there is a problem that the device becomes large when an attempt is made to increase the reduction effect. Also, (11) above
From the formula, in order to reduce the spring coefficient K, the neck portion 23
Although it is possible to reduce the cross-sectional area A of the above, in the Helmholtz-type pulsation reducing device, the cross-sectional area A has already been made sufficiently small, and if the cross-sectional area is further reduced, the pulsation reducing effect is rather reduced. It is known.

【0010】本発明の目的は、上記従来技術における課
題を解決し、装置を大きくすることなく脈動低減効果を
大きくすることができるヘルムホルツ型脈動低減装置を
提供することにある。
An object of the present invention is to solve the above problems in the prior art and to provide a Helmholtz type pulsation reducing device which can increase the pulsation reducing effect without increasing the size of the device.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、ケーシング内に圧送流体を導入して当該
圧送流体の脈動を抑えるヘルムホルツ型脈動低減装置に
おいて、前記ケーシングの一部又は全部を弾性体で構成
したことを特徴とする。
In order to achieve the above object, the present invention relates to a Helmholtz pulsation reducing device for introducing a pumping fluid into a casing to suppress the pulsation of the pumping fluid. It is characterized in that it is entirely made of an elastic body.

【0012】[0012]

【発明の実施の形態】以下、本発明を図示の実施の形態
に基づいて説明する。図1は本発明の実施の形態に係る
ヘルムホルツ型脈動低減装置の断面図である。この図
で、1は配管、10は本実施の形態のヘルムホルツ型脈
動低減装置を示す。22は配管1との連結部分を構成す
る結合部、23はこの結合部22に形成され、貫通孔2
31を有するネック部であり、これらは図3に示す結合
部およびネック部と同じである。25は油圧用ゴムホー
スより成るケーシング、26はネック部23と対向する
側に配置された金属ケーシング、27はネック部23と
油圧用ゴムホースケーシング25、および、油圧用ゴム
ホースケーシング25と金属ケーシング26とを結合す
るカシメ部材である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a sectional view of a Helmholtz pulsation reducing device according to an embodiment of the present invention. In this figure, 1 is a pipe and 10 is a Helmholtz pulsation reducing device of the present embodiment. Reference numeral 22 denotes a connecting portion that constitutes a connecting portion with the pipe 1, and 23 is formed in the connecting portion 22 and the through hole 2
And a neck having 31 which are the same as the joint and neck shown in FIG. Reference numeral 25 is a casing made of a hydraulic rubber hose, 26 is a metal casing arranged on the side facing the neck portion 23, 27 is a neck portion 23 and a hydraulic rubber hose casing 25, and a hydraulic rubber hose casing 25 and a metal casing 26. It is a caulking member to be joined.

【0013】ところで、一般に、油の中の音速Cは配管
の剛性によって変化することが知られており、例えば、
銅管中の油の音速は約1400m/sであり、油圧用ゴムホ
ース中の油の音速は約1000m/sであることが知られて
いる。
By the way, it is generally known that the sound velocity C in oil changes depending on the rigidity of the pipe.
It is known that the speed of sound of oil in the copper pipe is about 1400 m / s, and the speed of sound of oil in the hydraulic rubber hose is about 1000 m / s.

【0014】ここで、図3に示す従来のヘルムホルツ型
脈動低減装置2の容積部24を構成するケーシング21
には鉄等の金属が用いられているので、上記(11)式
中の音速Cは約1400m/sである。ところが、本実施の
形態における容積部24は油圧用ゴムホース25で構成
されているので、上記(11)式中の音速Cは約1000m
/sである。したがって、他の条件、即ち、密度ρ、ネ
ック部23の断面積A、容積部24の容積Vが同じであ
れば、本実施の形態のばね係数Kは従来装置のばね係数
に比較して0.51倍(10002/14002)となる。結局、本実
施の形態におけるネック部23の油(仮想ピストン)の
変位は、従来装置の約2倍になり、これにより、油の脈
動の低減効果が2倍になることとなる。
Here, the casing 21 constituting the volume portion 24 of the conventional Helmholtz pulsation reducing device 2 shown in FIG.
Since a metal such as iron is used for, the sound velocity C in the above equation (11) is about 1400 m / s. However, since the volume portion 24 in the present embodiment is composed of the hydraulic rubber hose 25, the sound velocity C in the above formula (11) is about 1000 m.
/ S. Therefore, under other conditions, that is, the density ρ, the cross-sectional area A of the neck portion 23, and the volume V of the volume portion 24 are the same, the spring coefficient K of the present embodiment is 0.51 as compared with the spring coefficient of the conventional device. and made double (1000 2/1400 2). After all, the displacement of the oil (virtual piston) of the neck portion 23 in the present embodiment is about double that of the conventional device, and the pulsation reduction effect of the oil is doubled.

【0015】図2は本実施の形態の効果を説明する図で
あり、横軸に周波数、縦軸に脈動低減率がとってある。
0 は前述の脈動低減中心周波数、E1 (破線で示され
ている)は従来装置の脈動低減率、E2 は本実施の形態
により得られる脈動低減率を示す。従来装置に比較して
本実施の形態の脈動低減率は約2倍となる。
FIG. 2 is a diagram for explaining the effect of this embodiment, in which the horizontal axis represents frequency and the vertical axis represents pulsation reduction rate.
f 0 is the above-described pulsation reduction center frequency, E 1 (indicated by a broken line) is the pulsation reduction rate of the conventional device, and E 2 is the pulsation reduction rate obtained by the present embodiment. The pulsation reduction rate of the present embodiment is about twice that of the conventional device.

【0016】このように、本実施の形態では、ケーシン
グ25を油圧用ゴムホースで構成したので、従来装置と
同一の脈動低減効果を得る場合には装置のサイズを約1
/2に減少させることができ、逆に、従来装置と同一サ
イズであれば約2倍の脈動低減効果を得ることができ、
結局、装置を大きくすることなく脈動低減効果を大きく
することができる。
As described above, in this embodiment, since the casing 25 is constituted by the rubber hose for hydraulic pressure, when the same pulsation reduction effect as the conventional device is obtained, the size of the device is about 1.
/ 2, on the contrary, if the same size as the conventional device, it is possible to obtain a pulsation reduction effect of about twice,
After all, the pulsation reducing effect can be enhanced without enlarging the device.

【0017】なお、上記実施の形態の説明では、ケーシ
ングに油圧用ゴムホースを使用する例について説明した
が、これに限ることなく、他の弾性部材を用いることが
でき、又、ケーシングの一部を金属ケーシング(図1に
示す金属ケーシング26)とする必要はなく全体を弾性
部材で構成することもでき、逆に金属ケーシング26に
連続してケーシング25の一部を金属ケーシングとする
こともできる。さらに、適用流体は油に限ることはな
く、本発明は他の流体にも適用可能である。
In the description of the above embodiment, an example in which a hydraulic rubber hose is used for the casing has been described, but the present invention is not limited to this, and other elastic members can be used, or a part of the casing can be used. It is not necessary to use the metal casing (the metal casing 26 shown in FIG. 1), and the entire structure can be made of an elastic member. Conversely, a part of the casing 25 that is continuous with the metal casing 26 can be used as the metal casing. Further, the applied fluid is not limited to oil, and the present invention can be applied to other fluids.

【0018】[0018]

【発明の効果】以上述べたように、本発明では、ケーシ
ングの一部又は全部を弾性体で構成したので、従来装置
と同一の脈動低減効果を得る場合には装置のサイズを約
1/2に減少させることができ、逆に、従来装置と同一
サイズであれば約2倍の脈動低減効果を得ることがで
き、結局、装置を大きくすることなく脈動低減効果を大
きくすることができる。
As described above, in the present invention, a part or all of the casing is made of an elastic body. Therefore, in order to obtain the same pulsation reducing effect as the conventional device, the size of the device is reduced to about 1/2. On the contrary, if the size is the same as that of the conventional device, the pulsation reducing effect can be approximately doubled, and eventually, the pulsation reducing effect can be increased without increasing the size of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係るヘルムホルツ型脈動
低減装置の断面図である。
FIG. 1 is a cross-sectional view of a Helmholtz pulsation reducing device according to an embodiment of the present invention.

【図2】脈動減衰率を示す図である。FIG. 2 is a diagram showing a pulsation damping rate.

【図3】従来のヘルムホルツ型の脈動低減装置の断面図
である。
FIG. 3 is a sectional view of a conventional Helmholtz pulsation reducing device.

【図4】図3に示す線IVa−IVa、線IVb−IVbに沿う
断面図である。
4 is a cross-sectional view taken along line IVa-IVa and line IVb-IVb shown in FIG.

【図5】脈動低減装置のモデルを示す図である。FIG. 5 is a diagram showing a model of a pulsation reducing device.

【符号の説明】[Explanation of symbols]

1 配管 10 脈動低減装置 23 ネック部 24 容積部 25 油圧用ゴムホースケーシング 26 金属ケーシング 27 カシメ部材 1 Piping 10 Pulsation Reduction Device 23 Neck Part 24 Volume Part 25 Hydraulic Rubber Hose Casing 26 Metal Casing 27 Caulking Member

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ケーシング内に圧送流体を導入して当該
圧送流体の脈動を抑えるヘルムホルツ型脈動低減装置に
おいて、前記ケーシングの一部又は全部を弾性体で構成
したことを特徴とするヘルムホルツ型脈動低減装置。
1. A Helmholtz-type pulsation reducing device for introducing a pressure-feeding fluid into a casing to suppress pulsation of the pressure-feeding fluid, characterized in that part or all of the casing is made of an elastic body. apparatus.
【請求項2】 請求項1において、前記弾性体は、油圧
用ゴムホースであることを特徴とするヘルムホルツ型脈
動低減装置。
2. The Helmholtz pulsation reducing device according to claim 1, wherein the elastic body is a hydraulic rubber hose.
JP10130896A 1996-04-23 1996-04-23 Helmholtz type pulsation reducing device Pending JPH09287692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10130896A JPH09287692A (en) 1996-04-23 1996-04-23 Helmholtz type pulsation reducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10130896A JPH09287692A (en) 1996-04-23 1996-04-23 Helmholtz type pulsation reducing device

Publications (1)

Publication Number Publication Date
JPH09287692A true JPH09287692A (en) 1997-11-04

Family

ID=14297189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10130896A Pending JPH09287692A (en) 1996-04-23 1996-04-23 Helmholtz type pulsation reducing device

Country Status (1)

Country Link
JP (1) JPH09287692A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056052A1 (en) * 1998-04-24 1999-11-04 Hitachi Construction Machinery Co., Ltd. Fluid pulsation reduction device
JP2006153869A (en) * 2004-11-05 2006-06-15 Hitachi Ltd Boiling water reactor and its acoustic vibration suppression method
JP2009113733A (en) * 2007-11-09 2009-05-28 Hitachi Ltd Power steering device
CN110500341A (en) * 2019-08-30 2019-11-26 中航力源液压股份有限公司 A kind of bindiny mechanism of the surge flask applied to aerospace hydraulic pump and installation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056052A1 (en) * 1998-04-24 1999-11-04 Hitachi Construction Machinery Co., Ltd. Fluid pulsation reduction device
JP2006153869A (en) * 2004-11-05 2006-06-15 Hitachi Ltd Boiling water reactor and its acoustic vibration suppression method
JP4607736B2 (en) * 2004-11-05 2011-01-05 株式会社日立製作所 Boiling water reactor
JP2009113733A (en) * 2007-11-09 2009-05-28 Hitachi Ltd Power steering device
CN110500341A (en) * 2019-08-30 2019-11-26 中航力源液压股份有限公司 A kind of bindiny mechanism of the surge flask applied to aerospace hydraulic pump and installation method

Similar Documents

Publication Publication Date Title
US6415888B2 (en) Muffler
CA2764332C (en) Fluid disc pump
US6547032B2 (en) Suction muffler of reciprocating compressor
US8821134B2 (en) Fluid disc pump
WO2015087086A1 (en) Acoustic-resonance fluid pump
JPH09505913A (en) Resonant macrosonic synthesis
US2680485A (en) Apparatus for augmenting the flow of oil from pumped wells
CN105864556A (en) Air flow pulsation attenuator and attenuation method
JPH09287692A (en) Helmholtz type pulsation reducing device
JP3604402B2 (en) Pulsation reduction device
JP3392879B2 (en) Fluid pulsation reduction device
US2918127A (en) Method of cleaning out well pump tubing and the like
KR20100122297A (en) Apparatus reducing pulsation using helmholtz resonator
US20130302182A1 (en) Pumping apparatus and methods
CN107905982B (en) Diaphragm type active airflow pulsation attenuation device for large reciprocating compressor
McKee et al. Acoustics in Pumping Systems
RU207508U1 (en) Device for damping pressure pulsations in the pipeline
Blodgett Reciprocating pump dynamic concepts for improved pump operations
CN109780361A (en) A kind of pipeline wideband fluid pressure pulse damper
JP3331515B2 (en) Floating drainage station and vibration damping method of drainage station
JPH11230103A (en) Piston accumulator type pulsation reducing device
Wang et al. Sound reduction of rotary compressor using topology optimization
KR100608699B1 (en) Device of reciprocating compressor for reducing vibration
RU2241169C1 (en) Pressure stabilizer
SU800436A1 (en) Vibrator pump