JPH09286084A - Polythylenic resin laminate and large-scale clean container formed therefrom - Google Patents

Polythylenic resin laminate and large-scale clean container formed therefrom

Info

Publication number
JPH09286084A
JPH09286084A JP12404796A JP12404796A JPH09286084A JP H09286084 A JPH09286084 A JP H09286084A JP 12404796 A JP12404796 A JP 12404796A JP 12404796 A JP12404796 A JP 12404796A JP H09286084 A JPH09286084 A JP H09286084A
Authority
JP
Japan
Prior art keywords
container
laminate
polyethylene
resin laminate
clean container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12404796A
Other languages
Japanese (ja)
Inventor
Yukio Imai
幸男 今井
Kenji Ichiyanagi
憲滋 一柳
Masayuki Yamazaki
昌幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Tonen Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK, Tonen Chemical Corp filed Critical Tonen Sekiyu Kagaku KK
Priority to JP12404796A priority Critical patent/JPH09286084A/en
Publication of JPH09286084A publication Critical patent/JPH09286084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a poleythylenic resin laminate obtaining lamination integrality generating no ply separation even if an adhesive layer is not provided and having high imaact resistance and high cleaning properties and a large-scale clean container composed of said laminate. SOLUTION: This polyethylenic resin laminate consists of at least two layers constituted of a material A composed of a specific high density polyethylene and a material B composed of a polyethylenic resin and the materials A and B characterized by that the difference (▵A-▵B) between the shrinkage factor ▵A (%) calculated from a volume ratio of 200 deg.C/one atmospheric pressure and 50 deg.C/one atmospheric pressure of the material A and the shrinkage factor ▵B calculated from a vol. ratio (%) of 200 deg.C/one atmospheric pressure and 50 deg.C/one atmospheric pressure of the material B is 4.5% or less are laminated in a thickness ratio of 1:4-2:1. Further, the material A of the polyethylenic resin laminate is set to an inner layer and the material B thereof is set to an outer layer to obtain a large-scale clean container.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特定の高密度ポリ
エチレンと収縮率差が特定される値以下のポリエチレン
系樹脂とを積層してなるポリエチレン系樹脂積層体およ
びそれからなる大型クリーン容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyethylene-based resin laminate formed by laminating a specific high-density polyethylene and a polyethylene-based resin having a difference in shrinkage ratio of a specified value or less, and a large clean container comprising the same.

【0002】[0002]

【従来の技術】従来、容積20〜5000リットルの合
成樹脂製クリーン容器、例えば医療分野における薬液容
器、食品保存容器、理化学実験容器、半導体洗浄薬液容
器等は、樹脂成分が低溶出性の高密度ポリエチレンを使
用してブロー成形法や回転成形法等で成形されている。
2. Description of the Related Art Conventionally, a clean container made of synthetic resin having a volume of 20 to 5000 liters, for example, a chemical solution container in the medical field, a food storage container, a physics and chemistry experiment container, a semiconductor cleaning chemical solution container, etc., has a resin component of low elution and high density. It is molded by blow molding or rotational molding using polyethylene.

【0003】しかし、この高密度ポリエチレンの単層か
らなる成形では、容器をより大型化するためにメルトイ
ンデックスの小さいもの(例えば0.01g/10分程
度)を使用すると製品表面は種々のメルトフラクチャー
により荒れたものとなりクリーン容器の用途には適さな
い。メルトインデックスの大きなもの(例えば3g/1
0分程度以上)を使用した場合には耐ドローダウン性や
耐衝撃性が低くなり、落下強度などの要求を満たせな
い。また、耐衝撃性を有する他の樹脂では、低溶出性に
問題があった。このために、高密度ポリエチレンと異な
る材料、例えばその他のポリエチレン、ポリプロピレン
またはポリアミド等を組み合わせた積層体やポリマーブ
レンドしたものが使用されている。
However, in molding of a single layer of high-density polyethylene, if a material having a small melt index (for example, 0.01 g / 10 minutes) is used in order to make the container larger, the product surface will have various melt fractures. It becomes rough and is not suitable for use in clean containers. Large melt index (eg 3g / 1
If it is used for about 0 minutes or more), the drawdown resistance and impact resistance are low, and the requirements such as drop strength cannot be satisfied. In addition, other resins having impact resistance have a problem of low elution property. For this purpose, a material different from high-density polyethylene, for example, a laminate obtained by combining other polyethylene, polypropylene, polyamide or the like, or a polymer blend is used.

【0004】[0004]

【発明が解決しようとする課題】従来の積層体は、各樹
脂の性能が十分に発揮できるためにポリマーブレンドし
たものより有利である。しかし、この積層体は、各材料
間(層間)に剥離が生じやすいという問題があり、層間
に接着材層等を設けることが行われているが、長期的に
は中間層(接着材層)から接着材の溶出や中間層の変質
による剥離の発生、さらにはその材料(接着材)、製造
工程、その設備等がコストの増加につながることなどか
ら改善が求められている。
Conventional laminates are advantageous over polymer blends because the performance of each resin can be fully exhibited. However, this laminate has a problem that peeling easily occurs between the materials (interlayers), and an adhesive layer or the like is provided between the layers, but in the long term, an intermediate layer (adhesive layer). Therefore, there is a demand for improvement because the adhesive material elutes and peeling occurs due to the alteration of the intermediate layer, and the material (adhesive material), the manufacturing process, the equipment, and the like lead to an increase in cost.

【0005】また、ブロー形成法では、500リットル
以上の大型容器は、成形が困難であるため、回転成形法
等により成形されていたが、積層体間の層間剥離が発生
するという問題が起きていた。
Further, in the blow molding method, a large container of 500 liters or more is difficult to mold, and therefore, it has been molded by the rotational molding method or the like, but there is a problem that delamination occurs between the laminated bodies. It was

【0006】従って、本発明の課題は、接着材層を設け
なくても層間剥離のない積層一体化が得られ、耐衝撃性
が高く、かつ高いクリーン性を有するポリエチレン系樹
脂積層体およびそれからなる大型クリーン容器を提供す
ることである。
Therefore, an object of the present invention is to provide a polyethylene-based resin laminate which has a laminated structure without delamination even if an adhesive layer is not provided, has high impact resistance, and has high cleanliness, and the same. It is to provide a large clean container.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究の結果、特定の高密度ポリエ
チレンとポリエチレン系樹脂とを積層する際に、その組
み合わせにおいて、その収縮率差が4.5%以下のもの
を積層することにより、本発明の課題が解決し得ること
を見出し、本発明を完成した。
Means for Solving the Problems As a result of intensive research to solve the above problems, the present inventors have found that when a specific high-density polyethylene and a polyethylene-based resin are laminated, the shrinkage ratio thereof in the combination is increased. The inventors have found that the problem of the present invention can be solved by stacking layers having a difference of 4.5% or less, and completed the present invention.

【0008】すなわち、本発明のポリエチレン系樹脂積
層体は、A材が密度0.94〜0.97g/cm3 、メ
ルトインデックス1〜9g/10分、添加剤無添加また
は添加剤量が0.05重量%以下の低溶出性高密度ポリ
エチレンで、B材がポリエチレン系樹脂であり、かつ、
次の式(I)、(II)および(III):
That is, in the polyethylene resin laminate of the present invention, the A material has a density of 0.94 to 0.97 g / cm 3 , a melt index of 1 to 9 g / 10 minutes, no additive or an additive amount of 0.1. Low elution high density polyethylene of less than 05% by weight, the material B is a polyethylene resin, and
The following formulas (I), (II) and (III):

【0009】[0009]

【数4】 △A =(V200A−V50A )/(V200A)×100 (I)[Number 4] △ A = (V 200A -V 50A ) / (V 200A) × 100 (I)

【0010】[0010]

【数5】 △B =(V200B−V50B )/(V200B)×100 (II)[Number 5] △ B = (V 200B -V 50B ) / (V 200B) × 100 (II)

【0011】[0011]

【数6】 △A −△B ≦<4.5(%) (III) [上記式の(I)、(II)および(III)中、△A
はA材の収縮率(%)、V200Aは200℃1気圧下のA
材の比容積(cm3 /g)、V50A は50℃1気圧下の
A材の比容積(cm3 /g)であり、また△B はB材の
収縮率(%)、V 200Bは200℃1気圧下のB材の比容
積(cm3 /g)、V50B は50℃1気圧下のB材の比
容積(cm3 /g)である]を満たす前記A材とB材を
厚み比(A材:B材)1:4〜2:1に積層した少なく
とも2層からなるポリエチレン系樹脂積層体。
[Equation 6] △A -△B ≦ <4.5 (%) (III) [In the formulas (I), (II) and (III), ΔA 
Is the shrinkage rate (%) of material A, V200AIs A at 200 ° C and 1 atmosphere
Specific volume of material (cmThree / G), V50A At 50 ° C and 1 atmosphere
Specific volume of material A (cmThree / G) and also △B Is B material
Shrinkage (%), V 200BIs the specific volume of material B at 200 ° C and 1 atmosphere
Product (cmThree / G), V50B Is the ratio of material B at 50 ° C and 1 atmosphere
Volume (cmThree / G)], the materials A and B satisfying
Thickness ratio (A material: B material) 1: 4 to 2: 1
Both are polyethylene resin laminates consisting of two layers.

【0012】また、本発明の大型クリーン容器は、上記
ポリエチレン系樹脂積層体のA材を内層とし、B材を外
層としてなるものである。
Further, the large-sized clean container of the present invention comprises the polyethylene resin laminate having the material A as the inner layer and the material B as the outer layer.

【0013】[0013]

【発明の実施の形態】本発明で使用する積層体のA材ま
たは容器の内層材である高密度ポリエチレンは、密度が
0.94〜0.97g/cm3 のものである。密度が
0.94g/cm3 未満では結晶性が不十分であり、成
形容器の低溶出性や剛性が不足し、一方密度が0.97
g/cm3 を超えるとポリエチレンの特性である環境応
力亀裂性(ESC)が劣り、洗浄液容器の用途の場合に
は、容器に割れが発生し易く好ましくない。また、メル
トインデックス(JIS K6760に準拠、温度19
0℃、荷重2.16kgで測定、以下MIという)は、
1〜9g/10分のものである。MIが1g/10分未
満では大型容器の成形が難かしくなると共に成形時の押
出量が劣り、一方9g/10分を超えると耐衝撃性が低
下し、また溶融粘度が低下し、成形品(容器)に偏肉を
生じるために好ましくない。さらに、低溶出性であるた
めに上記高密度ポリエチレンは、各種添加剤が無添加の
ものかまたは中和剤の添加剤量が0.05重量%以下の
ものを使用することが必要である。
BEST MODE FOR CARRYING OUT THE INVENTION The high density polyethylene as the material A of the laminate or the inner layer material of the container used in the present invention has a density of 0.94 to 0.97 g / cm 3 . When the density is less than 0.94 g / cm 3 , the crystallinity is insufficient, and the low elution property and rigidity of the molding container are insufficient, while the density is 0.97.
When it exceeds g / cm 3 , the environmental stress cracking property (ESC), which is a characteristic of polyethylene, is inferior, and in the case of use as a cleaning liquid container, the container tends to crack, which is not preferable. In addition, melt index (according to JIS K6760, temperature 19
Measured at 0 ° C and a load of 2.16 kg, hereinafter referred to as MI),
It is from 1 to 9 g / 10 minutes. If the MI is less than 1 g / 10 min, it becomes difficult to mold a large container and the extrusion amount at the time of molding is poor. On the other hand, if it exceeds 9 g / 10 min, the impact resistance is lowered, and the melt viscosity is lowered. It is not preferable because it causes uneven thickness in the container). Further, since the high-density polyethylene has a low elution property, it is necessary to use the above-mentioned high-density polyethylene without addition of various additives or with the additive amount of the neutralizing agent being 0.05% by weight or less.

【0014】次に、本発明で使用する積層体のB材また
は容器の外層材としてのポリエチレン系樹脂は、例えば
低密度ポリエチレン、直鎖状低密度ポリエチレン、エチ
レン−酢酸ビニル共重合体等があげられる。
Next, examples of the polyethylene resin as the material B of the laminate or the outer layer material of the container used in the present invention include low density polyethylene, linear low density polyethylene, ethylene-vinyl acetate copolymer and the like. To be

【0015】ポリエチレン系樹脂のうち低密度ポリエチ
レンは、密度0.91〜0.93g/cm3 、MI2.
0〜20g/10分のものが好ましい。また、直鎖状低
密度ポリエチレンは、密度0.91〜0.95g/cm
3 、MI2.0〜20g/10分、コモノマーがブテン
−1、ヘキセン−1、4−メチル−ペンテン−1または
オクテン−1等で含有量1〜10重量%のものが好まし
い。また、エチレン−酢酸ビニル共重合体は、密度0.
91〜0.93g/cm3 、MI2.0〜20g/10
分、酢酸ビニル含有量1〜20重量%のものが好まし
い。このようなポリエチレン系樹脂は、成形性や耐衝撃
性を向上させるうえから上記の範囲が好ましく、これら
のうちでは、機械的強度と耐久性に優れる直鎖状低度ポ
リエチレンが耐衝撃性向上のうえから好ましい。
Among the polyethylene resins, low density polyethylene has a density of 0.91 to 0.93 g / cm 3 , MI 2.
It is preferably from 0 to 20 g / 10 minutes. The linear low-density polyethylene has a density of 0.91 to 0.95 g / cm.
3 , MI 2.0 to 20 g / 10 min, and the comonomer is preferably butene-1, hexene-1, 4-methyl-pentene-1 or octene-1, etc., with a content of 1 to 10% by weight. The ethylene-vinyl acetate copolymer has a density of 0.
91 to 0.93 g / cm 3 , MI 2.0 to 20 g / 10
Those having a vinyl acetate content of 1 to 20% by weight are preferable. Such a polyethylene-based resin preferably has the above-mentioned range from the viewpoint of improving moldability and impact resistance, and among these, a linear low-grade polyethylene having excellent mechanical strength and durability improves impact resistance. It is preferable from the top.

【0016】また、ポリエチレン系樹脂は、B材が複層
となるように2種以上を使用してもよい。
Two or more polyethylene resins may be used so that the material B has a multi-layer structure.

【0017】次に、本発明における積層体またはそれか
らなる大型クリーン容器は、A材または容器の内層材と
して前記特定の高密度ポリエチレンを使用し、B材また
は容器の外層材としてポリエチレン系樹脂を使用する
が、次の式(I)、(II)および(III)を満たす
組み合わせでなければならない。
Next, in the laminated body or the large-sized clean container comprising the same in the present invention, the above-mentioned specific high-density polyethylene is used as the material A or the inner layer material of the container, and the polyethylene resin is used as the material B or the outer layer material of the container. However, the combination must satisfy the following formulas (I), (II) and (III).

【0018】[0018]

【数7】 △A =(V200A−V50A )/(V200A)×100 (I)[Equation 7] △ A = (V 200A -V 50A ) / (V 200A) × 100 (I)

【0019】[0019]

【数8】 △B =(V200B−V50B )/(V200B)×100 (II)[Equation 8] △ B = (V 200B -V 50B ) / (V 200B) × 100 (II)

【0020】[0020]

【数9】 △A −△B ≦4.5(%) (III) 上記式の(I)、(II)および(III)中、△A
積層体のA材または容器の内層材の高密度ポリエチレン
の収縮率(%)で、V200Aは200℃1気圧下のA材ま
たは容器の内層材の高密度ポリエチレンの比容積(cm
3 /g)で、V50A は50℃1気圧下の積層体のA材ま
たは容器の外層材の高密度ポリエチレンの比容積(cm
3 /g)であり、また△B は積層体のB材または容器の
外層材のポリエチレン系樹脂の収縮率(%)で、V200B
は200℃1気圧下の積層体のB材または容器の外層材
のポリエチレン系樹脂の比容積(cm3 /g)で、V
50Bは50℃1気圧下の積層体のB材または容器の外層
材のポリエチレン系樹脂の比容積(cm3 /g)であ
る。
[Formula 9] Δ A −Δ B ≦ 4.5 (%) (III) In the above formulas (I), (II) and (III), Δ A is the height of the A material of the laminate or the inner layer material of the container. The shrinkage rate (%) of the density polyethylene, V 200A is the specific volume (cm) of the high density polyethylene of the A material or the inner layer material of the container at 200 ° C and 1 atmosphere
3 / g), V 50A is the specific volume (cm) of the material A of the laminated body or the high-density polyethylene of the outer layer material of the container at 50 ° C. and 1 atmospheric pressure.
3 / g), and △ B is the shrinkage rate (%) of the B material of the laminate or the polyethylene resin of the outer layer material of the container, which is V 200B
Is the specific volume (cm 3 / g) of the B material of the laminate or the polyethylene resin of the outer layer material of the container at 200 ° C. and 1 atmosphere, and V
50B is the specific volume (cm 3 / g) of the B material of the laminated body or the polyethylene resin of the outer layer material of the container under 50 ° C. and 1 atm.

【0021】すなわち、積層体のA材または容器の内層
材の高密度ポリエチレンと、積層体のB材または容器の
外層材のポリエチレン系樹脂との積層における組み合わ
せにおいては、収縮率差[△A (%)−△B (%)、以
下同じ]は、4.5%以下でなければならない。さら
に、層間剥離や、そりをより改善するためには、各収縮
率差が3.0%以下の組み合わせによる積層体が好まし
い。各収縮率差が4.5%を超えるA材とB材との組み
合わせによる積層体は、層間剥離が発生したり、そりが
大きくなる。また、容器の耐衝撃性が低下し、変形が発
生する。なお、積層体のB材のポリエチレン系樹脂が複
層となる場合においても各収縮率差は、上記と同じ値と
なる組み合わせの積層が必要である。
That is, in the combination of the material A of the laminate or the high density polyethylene of the inner layer material of the container and the polyethylene B of the material B of the laminate or the polyethylene resin of the outer layer material of the container, the shrinkage difference [Δ A ( %) - △ B (%) , hereinafter the same] shall not exceed 4.5%. Further, in order to further improve delamination and warpage, it is preferable to use a laminate having a combination in which each shrinkage difference is 3.0% or less. The layered product including the combination of the materials A and B having a difference in shrinkage ratio of more than 4.5% causes delamination or warpage. In addition, the impact resistance of the container is reduced and deformation occurs. Even when the polyethylene resin as the material B of the laminate has a multi-layer structure, it is necessary to use a combination of layers having the same shrinkage ratio difference.

【0022】なお、前記A材の高密度ポリエチレンとB
材のポリエチレン系樹脂の各温度における各比容積は、
PVT特性を測定することによて求めることができる。
The high density polyethylene of material A and B
The specific volume of the polyethylene resin of the material at each temperature is
It can be determined by measuring PVT characteristics.

【0023】ここで、PVT特性とは、熱可塑性材料の
固相から溶融相にいたる広い温度領域での圧力(P)−
容積(V)−温度(T)の相互関係をいい、その定量化
には状態方程式が用いられる。本発明においては、PV
T試験機により測定した。次に、本発明のポリエチレン
系樹脂積層体は、A材の高密度ポリエチレンとB材のポ
リエチレン系樹脂の少なくとも1種とを、前記条件の組
み合わせにおいて積層することによって得られる。その
積層の方法は、2台あるいはそれ以上の押出機を用いて
A材およびB材を一組の共通ダイに導き内部あるいはダ
イ開口部においてA材およびB材を接触させ、単一の積
層体とする共押出成形、またこの共押出しを筒状のパリ
ソンとした後に気体を吹き込むブロー成形、また予めシ
ート状に成形したA材とB材のシートを予熱後に加熱加
圧するプレス成形あるいは予めシート状に成形したA材
またはB材の上に対応するペレット、パウダーまたはそ
の粉砕品を置き、それらを予熱後に加熱加圧するプレス
成形、さらにはA材およびB材の粉末を順次回転成形に
より積層することもでき、これらの中では回転成形に好
ましく用いることができる。上記の各成形時の温度は、
150〜300℃で行うことが好ましい。
Here, the PVT characteristic means the pressure (P) -in a wide temperature range from the solid phase of the thermoplastic material to the molten phase.
It refers to the interrelationship of volume (V) -temperature (T), and the equation of state is used for its quantification. In the present invention, PV
It was measured by a T tester. Next, the polyethylene resin laminate of the present invention is obtained by laminating the high density polyethylene of material A and at least one polyethylene resin of material B under the combination of the above conditions. The laminating method is to guide the A material and the B material to a set of common dies by using two or more extruders and bring the A material and the B material into contact with each other in the inside or the die opening to form a single laminated body. Co-extrusion molding, blow molding in which a gas is blown after forming this co-extrusion into a cylindrical parison, press molding in which a sheet of material A and material B that has been previously molded into a sheet shape is preheated and then heated or pressed, or a sheet shape in advance Placing the corresponding pellets, powders or crushed products on the A material or B material molded in 1., press-molding by heating them after preheating, and further laminating the powders of A material and B material in sequence by rotational molding. Of these, it can be preferably used for rotational molding. The temperature during each of the above molding is
It is preferably carried out at 150 to 300 ° C.

【0024】また、前記積層体のA材とB材との各厚み
比は、低溶出性(溶出パーティクルを減少させる)と耐
衝撃性を改善するうえからA材とB材の厚み比は、A
材:B材=1:4〜2:1である。また、積層体の厚み
は、用途に応じて適宜選択しうるが、一般には0.5〜
30mmであり、好ましくは1.0〜30mmとするこ
とができる。
Further, the thickness ratios of the A material and the B material of the laminated body are as follows, in order to improve the low elution property (reduce the elution particles) and the impact resistance. A
Material: B material = 1: 4 to 2: 1. The thickness of the laminate can be appropriately selected depending on the application, but is generally 0.5 to
It is 30 mm, and preferably 1.0 to 30 mm.

【0025】本発明の大型クリーン容器は、ブロー成形
法、回転成形法等によって製造できる。例えば、前記の
内層用A材と外層用B材との2種2層のブロー成形法
は、2台の押出機に各材料を供給して温度150〜30
0℃で溶融し、A材が内層、B材が外層となるように筒
状のパリソンに押出し、押出されたパリソンを金型で挟
んでブローピンより加圧ガスを吹き込み、冷却して成形
する。なお、外層用B材を2層とする場合は、押出機を
さらに1台追加して同様に溶融押出しして3種3層のパ
リソンに押出し同様に成形すればよい。
The large clean container of the present invention can be manufactured by a blow molding method, a rotational molding method, or the like. For example, in the above-described blow molding method of two kinds and two layers of the material A for the inner layer and the material B for the outer layer, each material is supplied to two extruders and the temperature is 150 to 30.
It is melted at 0 ° C. and extruded into a cylindrical parison so that the material A is the inner layer and the material B is the outer layer, and the extruded parison is sandwiched between molds and blown with a pressurized gas from a blow pin to cool and mold. When the outer layer B material has two layers, one more extruder may be added and melt extruded in the same manner to extrude into a parison of three types and three layers, and the parison is molded in the same manner.

【0026】また、回転成形法により前記の内層A材と
外層B材との2種2層の成形を行う場合、例えば、金型
に外層用B材を投入し回転遠心力により金型内壁に均一
に付着させ、金型を1〜30rpmで回転させながら1
50〜350℃の温度で樹脂を加熱溶融させたのち、金
型外面に水を噴霧し100℃以下に冷却後、金型内に内
層用A材を投入する。これを外層B材の場合と同様に加
熱冷却し内層を成形すれば良い。
Further, in the case of molding the two kinds of two layers of the material A for the inner layer and the material B for the outer layer by the rotational molding method, for example, the material B for the outer layer is put into the mold and the inner wall of the mold is rotated by the centrifugal force. Apply evenly and rotate the mold at 1-30 rpm 1
After heating and melting the resin at a temperature of 50 to 350 ° C., water is sprayed on the outer surface of the mold and cooled to 100 ° C. or lower, and then the A material for the inner layer is put into the mold. This may be heated and cooled as in the case of the outer layer B material to form the inner layer.

【0027】本発明の大型クリーン容器は、前記特定の
積層体からなるために大容量のものが成形可能である
が、特に容積500〜5000リットル等の超大型の容
器については、本発明の方法により回転成形による積層
体とすることが好ましい。その容器の内層用A材と外層
用B材の積層体における各層の厚み比は、低溶出性(保
存液体中への溶出パーティクルを減少させる)と溶器の
耐衝撃性(落下強度等)を改善するうえから内層:外層
=1:4〜2:1である。また、容器の平均肉厚は、容
量によって適宜選択しうるが一般には0.5〜30mm
で、特に500リットル以上の容器では5〜30mmが
好ましい。
The large-sized clean container of the present invention can be molded into a large capacity because it is made of the above-mentioned specific laminated body. Particularly, for the super-large container having a volume of 500 to 5000 liters, the method of the present invention. Therefore, it is preferable to obtain a laminated body by rotational molding. The thickness ratio of each layer in the laminated body of the material A for the inner layer and the material B for the outer layer of the container is low elution property (reduces elution particles in the storage liquid) and impact resistance (falling strength etc.) of the vessel. From the viewpoint of improvement, the inner layer: outer layer = 1: 4 to 2: 1. The average wall thickness of the container can be appropriately selected depending on the volume, but is generally 0.5 to 30 mm.
In particular, 5 to 30 mm is preferable for a container of 500 liters or more.

【0028】[0028]

【実施例】以下、本発明の実施例を詳細に説明する。な
お、原材料となる積層体のA材の高密度ポリエチレン
(HDPE)および積層体のB材の直鎖状低密度ポリエ
チレン(L−LDPE)は、表1に示すものを使用し
た。
Embodiments of the present invention will be described below in detail. The high density polyethylene (HDPE) of material A of the laminate and the linear low density polyethylene (L-LDPE) of material B of the laminate, which are the raw materials, were those shown in Table 1.

【0029】[0029]

【表1】 (注) 比容積Aは1気圧、200℃の比容積で、比容積Bは1気圧、50℃の 容積比である。また、比容積の測定は、表2に示すPVT試験機と測定条件で行 った。また、収縮率△(%)=[比容積A(cm3 /g)−比容積B(cm3 / g)]/[比容積A(cm3 /g)]×100で求めた。[Table 1] (Note) The specific volume A is the specific volume of 1 atm and 200 ° C, and the specific volume B is the volume ratio of 1 atm and 50 ° C. The specific volume was measured under the PVT tester and measurement conditions shown in Table 2. The shrinkage ratio Δ (%) = [specific volume A (cm 3 / g) -specific volume B (cm 3 / g)] / [specific volume A (cm 3 / g)] × 100.

【0030】[0030]

【表2】 [Table 2]

【0031】実施例1〜4、比較例1、2 サンプル作成法−1[変形(反り)評価用] 表1に示した積層体用A材(HDPE)及び積層体用B
材(L−LDPE)それぞれについて、射出成形機(型
締力150ton、射出容量8オンス、樹脂温度250
℃、金型温度80℃)により幅100mm、長さ350
mm、厚さ3mmのシートを成形し、これより長さ20
0mmの試験片を取り出し、プレス機(30ton)、
プレス板の上側下側共250℃に加熱した後、A材及び
B材の前記試験片を5分間プレス板上で予熱した後、1
分間3kgf/cm2 の圧力をかけて一体化させ室温冷
却し、変形(反り)評価用試験片を得た。
Examples 1 to 4, Comparative Examples 1 and 2 Sample Preparation Method-1 [For Deformation (Warp) Evaluation] A material for laminate (HDPE) and B for laminate shown in Table 1
For each material (L-LDPE), injection molding machine (mold clamping force 150 ton, injection capacity 8 oz, resin temperature 250
℃, mold temperature 80 ℃) width 100mm, length 350
mm, thickness 3mm sheet is formed, length 20 from this
Take out the 0 mm test piece, press machine (30 ton),
After heating both the upper and lower sides of the press plate to 250 ° C., the test pieces of material A and material B were preheated on the press plate for 5 minutes, and then 1
A test piece for deformation (warpage) evaluation was obtained by applying a pressure of 3 kgf / cm 2 for one minute to integrate them and cooling at room temperature.

【0032】サンプル作成法−2[層間剥離用試験片] B材について、射出成形機(型締力150ton、射出
容量8オンス、樹脂温度250℃、金型温度80℃)に
より幅100mm、長さ350mm、厚さ3mmのシー
トを成形し、これより長さ200mmの試験片を取り出
し、プレス機(30ton)、プレス板の上側を250
℃に、下側を30℃にした後、プレス板下側に前記B材
の射出成形シートを置きその上にA材のペレットを均一
に置き上側プレス板を近接させ5分間予熱した後、1分
間3kgf/cm2 の圧力をかけて一体化させ室温冷却
し層間剥離用試験片を得た。
Sample Preparation Method-2 [Test Piece for Delamination] About material B, width 100 mm, length by injection molding machine (mold clamping force 150 ton, injection capacity 8 ounce, resin temperature 250 ° C., mold temperature 80 ° C.) A sheet having a length of 350 mm and a thickness of 3 mm is formed, and a test piece having a length of 200 mm is taken out from the sheet.
After the temperature is lowered to 30 ° C. and the lower side is set to 30 ° C., the injection-molded sheet of the material B is placed on the lower side of the press plate, the pellets of the material A are evenly placed thereon, and the upper press plate is brought close to it and preheated for 5 minutes. A test piece for delamination was obtained by applying a pressure of 3 kgf / cm 2 for one minute to integrate them and cooling at room temperature.

【0033】これらの試験片を用いて以下の基準により
物性を評価し、その結果を表3に示す。
The physical properties of these test pieces were evaluated according to the following criteria, and the results are shown in Table 3.

【0034】[0034]

【表3】 [Table 3]

【0035】実施例5〜8、比較例3〜7 サンプル作成法−3[−18℃落球試験による割れ試験
及び溶出パーティクル試験用] 表1に示した積層体用A材(HDPE)と積層体用B材
(L−LDPE)を表4に示す組み合せで、回転成形法
により次の方法で、容器断面寸法300mm×200m
m、肉厚10mm、容量20リットルの角形断面を有す
る2種2層の中空容器及び試験片を成形した。
Examples 5 to 8 and Comparative Examples 3 to 7 Sample preparation method-3 [for cracking test by elevating ball test at -18 ° C. and elution particle test] A material for laminate (HDPE) and laminate shown in Table 1 B material (L-LDPE) for use in a combination as shown in Table 4 and by the following method by the rotational molding method, the cross-sectional dimension of the container 300 mm × 200 m
A two-kind two-layer hollow container and a test piece having a square cross-section of m, a wall thickness of 10 mm, and a volume of 20 liters were molded.

【0036】まず、金型内に外層材(B材)を投入し、
金型加熱温度を300℃にて外層成形後、20℃の冷却
水により金型が100℃となるまで冷却した。これに内
層材(A材)を投入し金型加熱温度を300℃とし内層
成形後、再度20℃の冷却水により金型が100℃とな
るまで冷却した後、成形品を取り出し室温で冷却した。
この時内層(A材)/外層(B材)比を表4に示す割合
とし、かつ容器の肉厚が10mmとなるよう外層材(B
材)用及び内層材(A材)用樹脂の投入量を調整し中空
容器を作成した。また得られた中空容器から幅160m
m×長さ240mm、肉厚10mmのシート状試験片を
切り出し、切り出しシートのそり防止のため錘を乗せ7
2時間静置させそりのない試験片を作成した。
First, the outer layer material (material B) is put into the mold,
After molding the outer layer at a mold heating temperature of 300 ° C., the mold was cooled with cooling water at 20 ° C. until the mold reached 100 ° C. The inner layer material (A material) was added to this, the mold heating temperature was set to 300 ° C., the inner layer was molded, the mold was cooled again to 20 ° C. until the mold reached 100 ° C., and then the molded product was taken out and cooled at room temperature. .
At this time, the ratio of the inner layer (A material) / outer layer (B material) is set to the ratio shown in Table 4, and the outer layer material (B
A hollow container was prepared by adjusting the input amounts of the resin for the material) and the resin for the inner layer material (the material A). 160m width from the obtained hollow container
A sheet-like test piece of m × length 240 mm, wall thickness 10 mm was cut out, and a weight was put on it to prevent the cut sheet from warping.
A test piece having no sled was prepared by allowing it to stand for 2 hours.

【0037】これらの試験片及び容器を用いて以下の基
準により物性を評価し、その結果を表4に示す。
The physical properties of these test pieces and containers were evaluated according to the following criteria, and the results are shown in Table 4.

【0038】[0038]

【表4】 [Table 4]

【0039】(注) (1)変形(そり):各A材B材を射出成形及びプレス
成形して得られた積層試験片の長辺端部を成形直後に定
盤上に固定し、23℃恒温室で72時間静置した後、残
る長辺片端部の反り上り具合を測定した。評価の基準
は、反り上り量が、5mm以上を「大」、5mm未満1
mm以上を「中」、1mm未満を「小」とした。 (2)層間剥離:各A材B材を射出成形及びプレス成形
して得られた試験片を、成形後72時間23℃恒温室で
24時間静置した後、接合面に直交する方向に切断し、
切断面を顕微鏡を用いて100倍に拡大して接合部の剥
離発生の有無を観察した。 (3)−18℃落球試験による割れ試験:中空容器から
切り出した幅160mm×長さ240mm、肉厚10m
mのシート状試験片を−18℃にて24時間放置後、同
雰囲気下において、質量1Kgの鋼球を高さ100cm
から試験片中央に落下させ、割れの有無を目視により観
察した。同様の試験を10回行い割れの発生したものは
割れ有りとした。 (4)溶出パーティクル試験:回転成形法によい作成し
た容器断面寸法300mm×200mm、肉厚10m
m、容量20リットルの角形断面を有する2種2層の中
空容器に超純水を10リットル入れ10秒間振盪させ容
器内壁の洗浄を行い水を捨てる。次いでこの容器に超純
水を10リットル入れ30秒間振盪後の洗浄水をリオン
製パーティクルカウンターにより1ミリリットル中に存
在するφ0.2μm以上の粒子数を10回測定しその平
均値により算出した。
(Note) (1) Deformation (warpage): The long side ends of the laminated test pieces obtained by injection-molding and press-molding each material A and material B were fixed on the surface plate immediately after molding, and 23 After standing still in a thermostatic chamber at a temperature of 72 ° C. for 72 hours, the degree of warpage of one end of the remaining long side was measured. The criterion for evaluation is that the amount of warp is “large” when 5 mm or more, and less than 5 mm 1
mm or more was "medium", and less than 1 mm was "small". (2) Delamination: A test piece obtained by injection-molding and press-molding each material A and material B was allowed to stand for 72 hours at 23 ° C. in a constant temperature room for 24 hours after molding, and then cut in a direction orthogonal to the joint surface. Then
The cross section was magnified 100 times using a microscope and observed for the occurrence of peeling of the joint. (3) Cracking test by -18 ° C falling ball test: width 160 mm x length 240 mm cut out from hollow container, wall thickness 10 m
After the sheet-shaped test piece of m was left at -18 ° C for 24 hours, a steel ball with a mass of 1 kg was placed at a height of 100 cm in the same atmosphere.
Was dropped to the center of the test piece, and the presence or absence of cracks was visually observed. The same test was carried out 10 times, and when a crack occurred, it was determined to have a crack. (4) Elution particle test: good cross-section of container made by rotational molding method 300 mm x 200 mm, wall thickness 10 m
10 liters of ultrapure water was placed in a 2-kind 2-layer hollow container having a square cross section with a volume of 20 liters and shaken for 10 seconds to wash the inner wall of the container and discard the water. Next, 10 liters of ultrapure water was placed in this container, and washing water after shaking for 30 seconds was subjected to 10 times measurement of the number of particles of φ0.2 μm or more present in 1 ml by a particle counter made by Rion, and the average value was calculated.

【0040】比較例1〜2からわかるように同一肉厚比
において熱収縮率差が本発明の範囲外では成形後冷却時
の層間剥離が発生し、変形(そり)も増大する事となり
好ましくない。肉厚比が本発明の範囲外(比較例3〜
7)では溶出パーティクル数が高くクリーン性が不十分
(比較例3〜5)、あるいは−18℃落球試験による割
れが発生(比較例6〜7)し耐衝撃性が不十分となり好
ましくない。これに対して本発明の実施例1〜8では、
成形後冷却時の層間剥離が発生せず変形(そり)が少な
く耐衝撃性も優れ、かつ溶出パーティクルも少なく高い
クリーン性を有するものである。また容器としても耐衝
撃性が良好であり溶出パーティクルも少なく良好なもの
である。
As can be seen from Comparative Examples 1 and 2, if the difference in heat shrinkage ratio is out of the range of the present invention at the same wall thickness ratio, delamination occurs during cooling after molding and deformation (warpage) also increases, which is not preferable. . The wall thickness ratio is outside the range of the present invention (Comparative Example 3 to
In 7), the number of eluted particles is high and the cleanliness is insufficient (Comparative Examples 3 to 5), or cracking occurs in the -18 ° C falling ball test (Comparative Examples 6 to 7), which is not preferable because the impact resistance is insufficient. On the other hand, in Examples 1 to 8 of the present invention,
It does not cause delamination during cooling after molding, has little deformation (warpage), is excellent in impact resistance, has few elution particles, and has high cleanliness. Further, the container is also good in impact resistance and has few eluted particles.

【0041】[0041]

【発明の効果】以上、本発明の積層体は、接着材層を設
けることなく層間剥離がなく、耐変形、耐衝撃性に優
れ、かつ低溶出性であり、各種の用途に用いることがで
きるが、特に容器用として有用である。また、その容器
は、耐衝撃性と低溶出性を両立させることができるた
め、特に高いクリーン性を有する大型容器を提供するこ
とができる。さらに、接着材層を使用しないために、3
層以上の多層化による材料、製造工程、設備上のコスト
が不要となる。
INDUSTRIAL APPLICABILITY As described above, the laminate of the present invention has no delamination without providing an adhesive layer, is excellent in deformation resistance and impact resistance, and has low elution property, and can be used in various applications. However, it is particularly useful for containers. Further, since the container can have both impact resistance and low elution property, it is possible to provide a large container having particularly high cleanliness. Furthermore, since no adhesive layer is used, 3
There is no need for material, manufacturing process, and equipment costs due to the number of layers or more.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 A材が密度0.94〜0.97g/cm
3 、メルトインデックス1〜9g/10分、添加剤無添
加または添加剤量が0.05重量%以下の低溶出性高密
度ポリエチレンで、B材がポリエチレン系樹脂であり、
かつ、次の式(I)、(II)および(III): 【数1】 △A =(V200A−V50A )/(V200A)×100 (I) 【数2】 △B =(V200B−V50B )/(V200B)×100 (II) 【数3】 △A −△B ≦4.5(%) (III) [上記式の(I)、(II)および(III)中、△A
はA材の収縮率(%)、V200Aは200℃1気圧下のA
材の比容積(cm3 /g)、V50A は50℃1気圧下の
A材の比容積(cm3 /g)であり、また△B はB材の
収縮率(%)、V200Bは200℃1気圧下のB材の比容
積(cm3 /g)、V50B は50℃1気圧下のB材の比
容積(cm3 /g)である]を満たすA材とB材を厚み
比(A材:B材)1:4〜2:1に積層した少なくとも
2層からなるポリエチレン系樹脂積層体。
1. The material A has a density of 0.94 to 0.97 g / cm.
3 , melt index 1-9 g / 10 min, low elution high density polyethylene with no additive or additive amount of 0.05 wt% or less, B material is polyethylene resin,
And the following formulas (I), (II) and (III): [Formula 1] Δ A = (V 200A −V 50A ) / (V 200A ) × 100 (I) [Formula 2] Δ B = (V 200B -V 50B) / (V 200B ) × 100 (II) [expression 3] △ a - △ B ≦ 4.5 ( %) (III) [ the above formula (I), in (II) and (III) , △ A
Is the contraction rate (%) of material A, V 200A is A at 200 ° C and 1 atmosphere
The specific volume of the material (cm 3 / g), V 50A is the specific volume of the material A (cm 3 / g) at 50 ° C. and 1 atmosphere, ΔB is the shrinkage rate of the material B (%), and V 200B is The specific volume of material B (cm 3 / g) at 200 ° C. and 1 atmosphere, V 50B is the specific volume of material B (cm 3 / g) at 50 ° C. and 1 atmosphere] A polyethylene resin laminate comprising at least two layers laminated at a ratio (A material: B material) of 1: 4 to 2: 1.
【請求項2】 請求項1に記載のポリエチレン系樹脂積
層体において、前記ポリエチレン系樹脂が、直鎖状低密
度ポリエチレンであるポリエチレン系樹脂積層体。
2. The polyethylene resin laminate according to claim 1, wherein the polyethylene resin is linear low-density polyethylene.
【請求項3】 請求項1または2に記載のポリエチレン
系樹脂積層体のA材を内層とし、B材を外層としてなる
大型クリーン容器。
3. A large clean container in which the material A of the polyethylene resin laminate according to claim 1 or 2 is an inner layer and the material B is an outer layer.
JP12404796A 1996-04-22 1996-04-22 Polythylenic resin laminate and large-scale clean container formed therefrom Pending JPH09286084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12404796A JPH09286084A (en) 1996-04-22 1996-04-22 Polythylenic resin laminate and large-scale clean container formed therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12404796A JPH09286084A (en) 1996-04-22 1996-04-22 Polythylenic resin laminate and large-scale clean container formed therefrom

Publications (1)

Publication Number Publication Date
JPH09286084A true JPH09286084A (en) 1997-11-04

Family

ID=14875684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12404796A Pending JPH09286084A (en) 1996-04-22 1996-04-22 Polythylenic resin laminate and large-scale clean container formed therefrom

Country Status (1)

Country Link
JP (1) JPH09286084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505573A (en) * 1999-07-23 2003-02-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Ethylene-acid copolymer with enhanced adhesion
WO2009004927A1 (en) * 2007-06-29 2009-01-08 Yoshino Kogyosho Co., Ltd. Double container of synthetic resin by direct blow molding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505573A (en) * 1999-07-23 2003-02-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Ethylene-acid copolymer with enhanced adhesion
WO2009004927A1 (en) * 2007-06-29 2009-01-08 Yoshino Kogyosho Co., Ltd. Double container of synthetic resin by direct blow molding method
JP2009007060A (en) * 2007-06-29 2009-01-15 Yoshino Kogyosho Co Ltd Double container made of synthetic resin by direct blow-molding method
US9067709B2 (en) 2007-06-29 2015-06-30 Yoshino Kogyosho Co., Ltd. Synthetic resin double container molded by direct blow molding process

Similar Documents

Publication Publication Date Title
EP0144642B1 (en) A multi-layer film or sheet material
US5346950A (en) Resin composition
US4511609A (en) Multilayer trash bag film
EP0289494B1 (en) Plastic composite barrier structures
EP2483350B1 (en) Multi-layered article
MXPA03008153A (en) Packaging films containing coextruded polyester and nylon layers.
US20030055191A1 (en) Sealing resin composition sealing films and use thereof
JP5782895B2 (en) Foamed laminate, foamed paper, and insulated container
EP0570222A1 (en) Polypropylene foam trays having a barrier layer
WO2021152969A1 (en) Laminate, packaging bag, and method for manufacturing same
CN111819237B (en) Sealing resin composition, multilayer film for sealing, heat-sealable laminate film, and package
JPH09286084A (en) Polythylenic resin laminate and large-scale clean container formed therefrom
US20230092236A1 (en) Recyclable, High Barrier Sheet And Tray
JP6206552B2 (en) Foamed laminate, foamed paper, and heat insulating container using the same
JPS63237924A (en) Manufacture of multi-layer vessel
JP3782164B2 (en) Coextruded composite film for deep drawing
EP1950028B1 (en) Use of an anhydride functionalized polymer to broaden the processing window of polypropylene
CN111629898B (en) Laminate and liquid packaging bag
JP5966478B2 (en) Foamed laminate, foamed paper, and heat insulating container using the same
WO2016204210A1 (en) Direct blow-molded container having excellent surface gloss
JPS60129256A (en) Multilayer structure
JP4125083B2 (en) Laminated sheet and molded container using the same
KR100500681B1 (en) Highly oriented fluoropolymer films
SE2230251A1 (en) A recyclable thermoplastic material blend comprising poly(ethylene terephthalate)
KR19990061856A (en) Resin laminate for recyclable polyethylene packaging material