JPH09285032A - Battery charger - Google Patents

Battery charger

Info

Publication number
JPH09285032A
JPH09285032A JP8083482A JP8348296A JPH09285032A JP H09285032 A JPH09285032 A JP H09285032A JP 8083482 A JP8083482 A JP 8083482A JP 8348296 A JP8348296 A JP 8348296A JP H09285032 A JPH09285032 A JP H09285032A
Authority
JP
Japan
Prior art keywords
battery
temperature
inactive
full charge
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8083482A
Other languages
Japanese (ja)
Other versions
JP3484867B2 (en
Inventor
Nobuhiro Takano
信宏 高野
Toshio Mizoguchi
利夫 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP08348296A priority Critical patent/JP3484867B2/en
Publication of JPH09285032A publication Critical patent/JPH09285032A/en
Application granted granted Critical
Publication of JP3484867B2 publication Critical patent/JP3484867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To detect the full-charge of a battery securely regardless of the activeness or inactiveness of the battery by a method wherein an active battery full-charge detecting means which uses the battery voltage detection and an inactive battery full-charge detecting means which uses the battery temperature detection are provided. SOLUTION: A plurality of rechargeable unit cells are connected in series to each other. A battery temperature detecting means 2A which is so provided as to be brought into contacts with the unit cells and a battery voltage detecting means 40 consisting of resistors 41 and 42 are provided. The initial values of a voltage comparison value for the active battery full-charge detection in a memory means, a comparing battery voltage, the minimum battery temperature of a battery temperature memory and a temperature rise comparison value ΔTia for the inactive battery full-charge detection are set. A voltage before sampling is deducted from the battery voltage by an arithmetic means 51 to obtain ΔV. The newest battery temperature is received from the detecting means 2A and the minimum battery temperature is deducted from it to obtain ΔT. The values of ΔT and ΔTia are compared with each other. If ΔT is larger than ΔTia, it is judged that a battery assembly 2 is fully charged. Consequently, the full-charge can be detected securely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明はニッケル・カドミウ
ム電池(以下ニカド電池という)等のアルカリ電解液系
2次電池の充電装置に関するものである。
TECHNICAL FIELD The present invention relates to a charging device for an alkaline electrolyte secondary battery such as a nickel-cadmium battery (hereinafter referred to as a nicad battery).

【0002】[0002]

【従来の技術】ニカド電池を充電する充電器の満充電検
出法として、定電流充電で充電末期のピーク値からの降
下電圧により検出する−ΔV検出法、電池のサイクル寿
命を向上させるため、−ΔV検出法より過充電となる恐
れが少ない充電時の電池電圧の2階微分値が負になるの
を検出する2階微分検出法、被充電電池の電池温度が所
定温度上昇するのを検出するΔT検出法等がある。
2. Description of the Related Art As a full charge detection method for a charger for charging a NiCd battery, constant current charging is used to detect a voltage drop from a peak value at the end of charging, a ΔV detection method, and to improve the cycle life of the battery, A second-order differential detection method that detects a negative second-order differential value of a battery voltage during charging, which is less likely to be overcharged than the ΔV detection method, and detects that the battery temperature of a battery to be charged rises by a predetermined temperature. There is a ΔT detection method and the like.

【0003】[0003]

【発明が解決しようとする課題】しかし、新品の電池や
長期放置された電池のような不活性電池では、前記−Δ
V検出法や2階微分検出法では過充電になり、電解液の
漏れ等を引き起こし、電池のサイクル寿命特性を低減さ
せる。またΔT検出法では、不活性電池は活性な電池に
比べ電池の温度上昇は大きくなるので、逆に満充電前に
充電が停止し容量不足を引き起こす。これは、図3に示
す充電特性から分かるように、不活性電池の電池電圧
(実線)の経時変化は活性電池の電池電圧(破線)に比
べ緩やかな電圧上昇となり、充電末期の電池電圧のピー
クの出現が鈍くなり−ΔV検出法では過充電になり、2
階微分検出法では電池電圧の変化量が小さいため、A/
Dコンバータを介して周期的にマイコンに取り込む場
合、電池電圧の変化量が確実に検出できない。またΔT
検出法では、不活性電池は電池内部の正極活物質が結晶
性の高い状態になり、化学的に安定した状態になり、こ
れにより充電時の電池の内部インピーダンスは高くな
り、温度上昇は活性電池に比べ大きくなるため、満充電
になる前に充電が停止してしまうという問題がある。本
発明の目的は、上記した従来技術の欠点をなくし、電池
の活性、不活性にかかわりなく満充電を確実に検出でき
るようにすることである。
However, in the case of an inactive battery such as a new battery or a battery that has been left for a long time, the above-mentioned -Δ
The V detection method and the second-order differential detection method result in overcharge, which causes electrolyte leakage and the like, and reduces the cycle life characteristics of the battery. In addition, in the ΔT detection method, the temperature rise of the inactive battery becomes larger than that of the active battery, and conversely, the charging is stopped before the full charge and the capacity becomes insufficient. This is because, as can be seen from the charging characteristics shown in FIG. 3, the time-dependent change in the battery voltage (solid line) of the inactive battery becomes a gradual voltage increase compared to the battery voltage of the active battery (broken line), and the peak of the battery voltage at the end of charging. The occurrence of-becomes overcharged in the -ΔV detection method, and 2
Since the amount of change in the battery voltage is small in the differential detection method, A /
If the microcomputer is periodically loaded via the D converter, the amount of change in battery voltage cannot be reliably detected. Also ΔT
In the detection method, in the case of an inactive battery, the positive electrode active material inside the battery is in a highly crystalline state and is in a chemically stable state, which increases the internal impedance of the battery during charging and raises the temperature due to the active battery. However, there is a problem that charging is stopped before the battery is fully charged. An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to make it possible to reliably detect a full charge regardless of whether the battery is active or inactive.

【0004】[0004]

【課題を解決するための手段】上記目的は、電池電圧検
出による活性電池満充電検出手段と、電池温度検出によ
る不活性満充電検出手段を設けることにより達成され
る。
The above object can be achieved by providing active battery full charge detection means for detecting battery voltage and inactive full charge detection means for detecting battery temperature.

【0005】[0005]

【発明の実施の形態】図1は本発明の一実施例を示す回
路図である。図において、1は交流電源、2は再充電可
能な複数の素電池を直列に接続し、素電池に接触または
近接して配置され電池温度を検出する電池温度検出手段
2Aからなる電池組、3は電池組2に流れる充電電流を
検出する電流検出手段、4は充電の開始及び停止を制御
する信号を伝達する充電制御信号伝達手段、5は充電電
流の信号をPWM制御IC23に帰還する充電電流信号
伝達手段である。充電制御伝達信号手段4及び充電電流
信号伝達手段5は例えばホトカプラ等から構成される。
10は全波整流回路11、平滑用コンデンサ12からな
る整流平滑回路、20は高周波トランス21、MOSF
ET22、PWM制御IC23からなるスイッチング回
路である。PWM制御IC23はMOSFET22の駆
動パルス幅を変えて整流平滑回路10の出力電圧を調整
するスイッチング電源ICである。30はダイオード3
1、32、チョークコイル33、平滑用コンデンサ34
からなる整流平滑回路、40は抵抗41、42からなる
電池電圧検出手段で、電池組2の電池電圧を分圧する。
50は演算手段(CPU)51、ROM52、RAM5
3、タイマ54、A/Dコンバータ55、出力ポート5
6、リセット入力ポート57からなるマイコンである。
RAM53はサンプリングした電池電圧及び電池温度を
記憶する電池電圧記憶手段531及び電池温度記憶手段
532を内蔵する。60は演算増幅器61、62、抵抗
63〜66からなる充電電流制御手段、70は電源トラ
ンス71、全波整流回路72、平滑コンデンサ73、3
端子レギュレータ74、リセットIC75からなる定電
圧電源で、マイコン50、充電電流制御手段60等の電
源となる。リセットIC75はマイコン50を初期状態
にするためにリセット入力ポート75にリセット信号を
出力する。80はLED81、抵抗82からなり、充電
されている電池組2が不活性電池であると表示する不活
性電池表示手段である。90は充電電流を設定する充電
電流設定手段である。
1 is a circuit diagram showing an embodiment of the present invention. In the figure, 1 is an AC power source, 2 is a battery set including a battery temperature detecting means 2A for connecting a plurality of rechargeable unit cells in series and arranged in contact with or close to the unit cells to detect the battery temperature, 3 Is a current detecting means for detecting a charging current flowing through the battery set 2, 4 is a charging control signal transmitting means for transmitting a signal for controlling the start and stop of charging, and 5 is a charging current for feeding back a signal of the charging current to the PWM control IC 23. It is a signal transmission means. The charging control transmission signal means 4 and the charging current signal transmission means 5 are composed of, for example, a photocoupler.
10 is a rectifying / smoothing circuit including a full-wave rectifying circuit 11 and a smoothing capacitor 12, 20 is a high frequency transformer 21, a MOSF.
A switching circuit including an ET 22 and a PWM control IC 23. The PWM control IC 23 is a switching power supply IC that adjusts the output voltage of the rectifying and smoothing circuit 10 by changing the drive pulse width of the MOSFET 22. 30 is a diode 3
1, 32, choke coil 33, smoothing capacitor 34
The rectifying and smoothing circuit 40 is composed of resistors 41 and 42, and the battery voltage detecting means 40 divides the battery voltage of the battery group 2.
Reference numeral 50 denotes an arithmetic means (CPU) 51, a ROM 52, a RAM 5
3, timer 54, A / D converter 55, output port 5
6, a reset input port 57.
The RAM 53 incorporates a battery voltage storage unit 531 and a battery temperature storage unit 532 that store the sampled battery voltage and battery temperature. Reference numeral 60 is a charge current control means including operational amplifiers 61 and 62 and resistors 63 to 66, 70 is a power transformer 71, a full-wave rectifier circuit 72, smoothing capacitors 73 and 3.
A constant voltage power supply including a terminal regulator 74 and a reset IC 75, which serves as a power supply for the microcomputer 50, the charging current control means 60, and the like. The reset IC 75 outputs a reset signal to a reset input port 75 to bring the microcomputer 50 into an initial state. Reference numeral 80 denotes an inactive battery display means which includes an LED 81 and a resistor 82 and indicates that the charged battery group 2 is an inactive battery. 90 is a charging current setting means for setting the charging current.

【0006】次に、図1の回路図及び図2のフローチャ
ートを参照して満充電検出の動作を説明する。電源を投
入するとマイコン50は電池組2の接続待機状態となる
(ステップ101)。電池組2を接続すると、マイコン
50は電池電圧検出手段40の信号により電池組2が接
続されたことを判別し、出力ポート56より充電制御信
号伝達手段4を介してPWM制御IC23に充電開始信
号を伝達し充電を開始する(ステップ102)。充電開
始と同時に電池組2に流れる充電電流を電流検出手段3
により検出し、検出した充電電流値と基準値Vrefと
の差を作動増幅手段60より充電電流信号伝達手段5を
介してPWM制御IC23に帰還をかける。電流検出手
段3、作動増幅手段60、信号伝達手段5、スイッチン
グ回路20及び整流平滑回路30により充電電流が一定
となるように制御する。
Next, the operation of full charge detection will be described with reference to the circuit diagram of FIG. 1 and the flowchart of FIG. When the power is turned on, the microcomputer 50 enters a standby state for connecting the battery group 2 (step 101). When the battery set 2 is connected, the microcomputer 50 determines from the signal of the battery voltage detection means 40 that the battery set 2 is connected, and the output start signal from the output port 56 to the PWM control IC 23 via the charge control signal transmission means 4. Is transmitted to start charging (step 102). The charging current flowing in the battery set 2 at the same time as the charging is started
The difference between the detected charging current value and the reference value Vref is fed back to the PWM control IC 23 from the operation amplification means 60 via the charging current signal transmission means 5. The current detection means 3, the operation amplification means 60, the signal transmission means 5, the switching circuit 20, and the rectifying / smoothing circuit 30 control so that the charging current becomes constant.

【0007】次いで満充電検出制御を行う。電池電圧記
憶手段531の活性電池満充電検出用電池電圧比較値△
Vmax及び複数サンプリング毎の比較用電池電圧Ei
−5〜Eiをイニシャルセット(ステップ103)する
と共に電池温度記憶手段532の最小電池温度Tmin
及び不活性電池満充電検出用温度上昇比較値ΔTiaを
イニシャルセットし(ステップ104)、電池電圧、電
池温度サンプリングタイマをスタートさせる(ステップ
105)。サンプリングタイマ時間Δtを経過したら
(ステップ106)、再度サンプリングタイマを再スタ
ートさせる(ステップ107)。次いで電池組2の電圧
を分圧した電池電圧検出手段40の出力信号をA/Dコ
ンバータ55でA/D変換して電池電圧Vinとして取
り込み(ステップ108)、演算手段51で電池電圧V
inより6サンプリング前の電池電圧Ei−5を減算しΔ
Vを求める(ステップ109)。また電池温度検出手段
2Aからの出力信号をA/Dコンバータ55でA/D変
換し、最新の電池温度Tinとして取り込み(ステップ
110)、演算手段51で電池温度Tinと電池温度記
憶手段532の最少電池温度Tminを比較し(ステッ
プ111)、Tinが小さい時は電池温度記憶手段53
2の最少電池温度TminにTinのデータを格納し
(ステップ112)、演算手段51で最新電池温度Ti
nから最少電池温度Tminを減算しΔTを求める(ス
テップ113)。
Next, full charge detection control is performed. Battery voltage comparison value for active battery full charge detection of battery voltage storage means 531
Vmax and comparative battery voltage Ei for each sampling
-5 to Ei are initially set (step 103), and the minimum battery temperature Tmin of the battery temperature storage means 532 is set.
Then, the temperature rise comparison value ΔTia for detecting the full charge of the inactive battery is initially set (step 104), and the battery voltage / battery temperature sampling timer is started (step 105). When the sampling timer time Δt has elapsed (step 106), the sampling timer is restarted again (step 107). Next, the output signal of the battery voltage detecting means 40 obtained by dividing the voltage of the battery group 2 is A / D converted by the A / D converter 55 and taken in as the battery voltage Vin (step 108), and the battery voltage V is calculated by the calculating means 51.
The battery voltage Ei-5 before 6 sampling is subtracted from in, and Δ
V is calculated (step 109). Further, the output signal from the battery temperature detecting means 2A is A / D converted by the A / D converter 55 and fetched as the latest battery temperature Tin (step 110), and the calculating means 51 minimizes the battery temperature Tin and the battery temperature storing means 532. The battery temperatures Tmin are compared (step 111), and when Tin is small, the battery temperature storage means 53
The data of Tin is stored in the minimum battery temperature Tmin of 2 (step 112), and the latest battery temperature Ti is calculated by the calculating means 51.
The minimum battery temperature Tmin is subtracted from n to obtain ΔT (step 113).

【0008】次にステップ109において求めたΔVと
ΔVmaxの大小判別を行う(ステップ114)。ΔV
がΔVmaxより小さい時、マイコン50は出力ポート
56より充電制御信号伝達手段4を介して充電停止信号
をPWM制御IC23に伝達して充電を停止する(ステ
ップ115)。次いで電池組2が取り出されるのを判別
し(ステップ116)、電池組2の取り出しを判別した
らステップ101に戻り、次の電池組2の充電のための
待機をする。
Next, the magnitude of ΔV and ΔVmax obtained in step 109 is discriminated (step 114). ΔV
Is smaller than ΔVmax, the microcomputer 50 transmits a charge stop signal from the output port 56 to the PWM control IC 23 via the charge control signal transmission means 4 to stop charging (step 115). Next, it is determined that the battery set 2 is taken out (step 116), and if it is determined that the battery set 2 is taken out, the process returns to step 101 and stands by for charging the next battery set 2.

【0009】ステップ114においてΔVがΔVmax
以上の時は、ΔVmaxの値をΔVとし、電池電圧記憶
手段531の各サンプリング時の電池電圧の書き換えを
行う(ステップ117)。
At step 114, ΔV is ΔVmax
In the above case, the value of ΔVmax is set to ΔV, and the battery voltage at each sampling of the battery voltage storage means 531 is rewritten (step 117).

【0010】次にステップ113で求めたΔTと不活性
電池満充電検出用温度上昇比較値ΔTiaの大小判別を
行う(ステップ118)。不活性電池満充電検出用温度
上昇比較値ΔTiaは、図3に示すように通常の活性電
池に対する満充電検出用温度上昇値ΔTaより大きな値
とし、不活性電池が−ΔV検出法によって検出される時
点での温度上昇値ΔTbより小さい値にセットする。Δ
TがΔTiaより大きい時、電池組2は満充電であると
判別し、ステップ115で充電を停止する。ΔTがΔT
ia以下の時はステップ106に戻り、引き続き同じ処
理を行う。
Next, the difference between ΔT obtained in step 113 and the temperature rise comparison value ΔTia for detecting the full charge of the inactive battery is determined (step 118). The temperature rise comparison value ΔTia for detecting the full charge of the inactive battery is set to a value larger than the temperature rise value ΔTa for detecting the full charge of the normal active battery as shown in FIG. 3, and the inactive battery is detected by the −ΔV detection method. It is set to a value smaller than the temperature rise value ΔTb at the time point. Δ
When T is larger than ΔTia, it is determined that the battery group 2 is fully charged, and charging is stopped in step 115. ΔT is ΔT
When it is ia or less, the process returns to step 106 and the same process is continuously performed.

【0011】上記実施例において、不活性電池用満充電
検出法は所定の温度上昇値以上になるのを検出して充電
を停止するΔT検出法としたが、例えば特開昭62−1
93518号、特開平2−246739号、実開平3−
34638号公報等に記載されている充電時における所
定時間当りの電池温度上昇率(温度勾配)が所定値以上
になるのを検出して充電を制御するΔT/Δt検出法と
してもよい。この場合、不活性電池満充電検出用の温度
勾配値ΔTiは、図3に示すように通常の活性電池に対
する満充電検出用温度勾配値ΔTmより大きな値とし、
不活性電池が−ΔV検出法で検出される時点での温度上
昇勾配値ΔTnより小さい値にセットし、各サンプリン
グ時間毎の温度上昇勾配値を予め設定されている満充電
検出用の所定の温度勾配値ΔTiと比較演算を行い満充
電検出処理を行えばよい。
In the above embodiment, the full charge detection method for an inactive battery is the ΔT detection method which detects the temperature rise above a predetermined temperature and stops charging.
No. 93518, Japanese Patent Laid-Open No. 2-246739, Japanese Utility Model Publication No. 3-
The ΔT / Δt detection method described in Japanese Patent Publication No. 34638 may be used to control charging by detecting that the battery temperature increase rate (temperature gradient) per predetermined time during charging becomes equal to or higher than a predetermined value. In this case, the temperature gradient value ΔTi for detecting the full charge of the inactive battery is set to a value larger than the temperature gradient value ΔTm for detecting the full charge of the normal active battery as shown in FIG.
The temperature rise gradient value ΔTn at the time when the inactive battery is detected by the −ΔV detection method is set to a value smaller than that, and the temperature rise gradient value for each sampling time is set to a predetermined temperature for full charge detection. The full charge detection process may be performed by performing a comparison calculation with the gradient value ΔTi.

【0012】また、満充電までの電池組2の温度上昇は
充電開始時の電池温度によって異なるので、上記実施例
のΔT検出法の所定の温度上昇比較値ΔTia(=K)
は、充電開始時の電池温度または最小電池温度Tmin
によって各々設定する方が検出精度が高くなり望まし
い。例えば充電開始時の電池温度または最小電池温度が
夫々0〜10℃、10〜25℃、25〜40℃及び40
〜60℃の時、不活性電池満充電検出用温度上昇比較値
ΔTiaを、夫々30K、25K、20K及び15Kと
設定すれば、不活性電池の満充電検出の精度がより向上
する。
Further, since the temperature rise of the battery group 2 until full charge differs depending on the battery temperature at the start of charging, a predetermined temperature rise comparison value ΔTia (= K) of the ΔT detection method of the above embodiment.
Is the battery temperature at the start of charging or the minimum battery temperature Tmin
It is preferable to set each of them because the detection accuracy becomes higher. For example, the battery temperature at the start of charging or the minimum battery temperature is 0 to 10 ° C, 10 to 25 ° C, 25 to 40 ° C and 40, respectively.
If the temperature rise comparison value ΔTia for detecting the full charge of the inactive battery is set to 30K, 25K, 20K and 15K at -60 ° C, the accuracy of detecting the full charge of the inactive battery is further improved.

【0013】なお当然のことながら、上記実施例では活
性電池の満充電を2階微分検出法により検出するとした
が、充電末期の降下電圧を検出して充電を停止する−Δ
V検出法によって検出するようにしてもよい。
Of course, in the above embodiment, the full charge of the active battery is detected by the second differential detection method, but the voltage drop at the end of charge is detected to stop the charge -Δ.
You may make it detect by a V detection method.

【0014】[0014]

【発明の効果】以上のように本発明によれば、電池組の
活性、不活性に対応し夫々満充電検出手段を設けること
により、電池組の活性、不活性に関係なく確実に満充電
を検出できるようになる。
As described above, according to the present invention, by providing the full charge detection means corresponding to the activation and inactivation of the battery set, the full charge can be surely performed regardless of the activation and inactivation of the battery set. You will be able to detect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明充電装置の一実施例を示す回路図。FIG. 1 is a circuit diagram showing an embodiment of a charging device of the present invention.

【図2】本発明充電装置の動作説明用フローチャート。FIG. 2 is a flowchart for explaining the operation of the charging device of the present invention.

【図3】活性な電池組及び不活性な電池組の充電特性を
示すグラフ。
FIG. 3 is a graph showing charging characteristics of an active battery set and an inactive battery set.

【符号の説明】[Explanation of symbols]

2は電池組、2Aは温度検出手段、3は充電電流検出手
段、40は電池電圧検出手段、50はマイコンである。
Reference numeral 2 is a battery group, 2A is temperature detecting means, 3 is charging current detecting means, 40 is battery voltage detecting means, and 50 is a microcomputer.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被充電電池の電池電圧を検出する電池電
圧検出手段と、電池電圧検出手段の出力に基づいて活性
な電池の満充電を検出する活性電池満充電検出手段と、
被充電電池の電池温度を検出する電池温度検出手段と、
電池温度検出手段の出力に基づいて不活性な電池の満充
電を検出する不活性電池満充電検出手段を備えたことを
特徴とする電池の充電装置。
1. A battery voltage detecting means for detecting a battery voltage of a battery to be charged, and an active battery full charge detecting means for detecting a full charge of an active battery based on an output of the battery voltage detecting means.
Battery temperature detecting means for detecting the battery temperature of the battery to be charged,
A battery charging device comprising an inactive battery full charge detecting means for detecting a full charge of an inactive battery based on an output of the battery temperature detecting means.
【請求項2】 前記不活性電池満充電検出手段を、少な
くとも最新の電池温度、最小の電池温度及び不活性電池
満充電検出用温度上昇比較値を記憶する電池温度記憶手
段と、各サンプリング時間毎に最新の電池温度と最小電
池温度を比較して最小電池温度を求めると共に最新の電
池温度と最小電池温度との差が前記不活性電池満充電検
出用温度上昇比較値より大きくなった時に充電停止信号
を発生する演算手段とにより構成したことを特徴とする
請求項1記載の電池の充電装置。
2. The inactive battery full charge detection means includes a battery temperature storage means for storing at least the latest battery temperature, a minimum battery temperature and an inactive battery full charge detection temperature rise comparison value, and at each sampling time. The latest battery temperature is compared with the minimum battery temperature to obtain the minimum battery temperature, and charging is stopped when the difference between the latest battery temperature and the minimum battery temperature becomes larger than the temperature rise comparison value for detecting the full charge of the inactive battery. 2. The battery charging device according to claim 1, wherein the battery charging device comprises an arithmetic means for generating a signal.
【請求項3】 前記不活性電池満充電検出用温度上昇比
較値を、活性電池が満充電になる温度上昇値より大き
く、不活性電池が過充電になる温度上昇値より小さくし
たことを特徴とする請求項2記載の電池の充電装置。
3. The temperature rise comparison value for detecting the full charge of the inactive battery is set larger than the temperature rise value at which the active battery is fully charged and smaller than the temperature rise value at which the inactive battery is overcharged. The battery charging device according to claim 2.
【請求項4】 前記不活性電池満充電検出用温度上昇比
較値を、充電開始時の電池温度または最小電池温度に対
応して変えるようにしたことを特徴とする請求項2記載
の電池の充電装置。
4. The battery charging according to claim 2, wherein the temperature rise comparison value for detecting the full charge of the inactive battery is changed in accordance with the battery temperature at the start of charging or the minimum battery temperature. apparatus.
【請求項5】 前記不活性電池が過充電になる温度上昇
値を、不活性電池の充電途上に電池電圧がピーク値から
所定量降下したときの温度上昇値としたことを特徴とす
る請求項3記載の電池の充電装置。
5. The temperature rise value at which the inactive battery is overcharged is the temperature rise value when the battery voltage drops from the peak value by a predetermined amount during charging of the inactive battery. 3. The battery charging device described in 3.
【請求項6】 前記不活性電池満充電検出手段を、少な
くとも最新の電池温度、所定サンプリング前の電池温度
及び不活性電池満充電検出用温度勾配値を記憶する電池
温度記憶手段と、各サンプリング時間毎に最新の電池温
度と所定サンプリング前の電池温度を比較して温度勾配
値を求め、求めた温度勾配値が前記不活性電池満充電検
出用温度勾配値より大きくなった時に充電停止信号を発
生する演算手段とにより構成したことを特徴とする請求
項1記載の電池の充電装置。
6. A battery temperature storage means for storing at least the latest battery temperature, a battery temperature before a predetermined sampling, and a temperature gradient value for detecting an inactive battery full charge, and each sampling time. For each time, the latest battery temperature is compared with the battery temperature before the predetermined sampling to obtain the temperature gradient value, and a charge stop signal is generated when the obtained temperature gradient value is larger than the temperature gradient value for inactive battery full charge detection. 2. The battery charging device according to claim 1, wherein the battery charging device comprises:
【請求項7】 前記不活性電池満充電検出用温度勾配値
を、活性電池が満充電になる温度勾配値より大きく、不
活性電池が過充電になる温度勾配値より小さくしたこと
を特徴とする請求項5記載の電池の充電装置。
7. The temperature gradient value for detecting the full charge of the inactive battery is larger than the temperature gradient value at which the active battery is fully charged and smaller than the temperature gradient value at which the inactive battery is overcharged. The battery charging device according to claim 5.
JP08348296A 1996-04-05 1996-04-05 Battery charger Expired - Lifetime JP3484867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08348296A JP3484867B2 (en) 1996-04-05 1996-04-05 Battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08348296A JP3484867B2 (en) 1996-04-05 1996-04-05 Battery charger

Publications (2)

Publication Number Publication Date
JPH09285032A true JPH09285032A (en) 1997-10-31
JP3484867B2 JP3484867B2 (en) 2004-01-06

Family

ID=13803699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08348296A Expired - Lifetime JP3484867B2 (en) 1996-04-05 1996-04-05 Battery charger

Country Status (1)

Country Link
JP (1) JP3484867B2 (en)

Also Published As

Publication number Publication date
JP3484867B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
US5237259A (en) Charging method for secondary battery
US5994875A (en) Battery charging apparatus and method with charging mode convertible function
US5861730A (en) Battery charging apparatus
CN1835331B (en) Battery charger
WO1997044878A1 (en) Pulse charging method and a charger
JP3161272B2 (en) Battery charger
JP2006129619A (en) Battery charging equipment
JP3637758B2 (en) Battery charging method
JP3772665B2 (en) Battery charger
EP0762593A2 (en) Battery management circuit and method for controlling the in-circuit charge and discharge of series-connected rechargeable electrochemical cells
JP3695266B2 (en) Full charge detection method
JPH11150879A (en) Charging device of battery
JP3268866B2 (en) Rechargeable battery charging method
JP3484867B2 (en) Battery charger
JPH07123604A (en) Charger for secondary battery
JPH1127866A (en) Method of charging battery
JP2000182677A (en) Secondary battery charging device
JPH05219655A (en) Battery charger
JP3722091B2 (en) Battery assembly life discriminator for charger
JPH06343233A (en) Method and apparatus for charging secondary battery
JP3216595B2 (en) Rechargeable battery charger
JP3271138B2 (en) Rechargeable battery charger and charging method
JPH11185825A (en) Charging method of battery
JPH11191936A (en) Battery charger
JP3951296B2 (en) Charger

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141024

Year of fee payment: 11

EXPY Cancellation because of completion of term