JPH09283511A - Vapor growth system - Google Patents

Vapor growth system

Info

Publication number
JPH09283511A
JPH09283511A JP8114193A JP11419396A JPH09283511A JP H09283511 A JPH09283511 A JP H09283511A JP 8114193 A JP8114193 A JP 8114193A JP 11419396 A JP11419396 A JP 11419396A JP H09283511 A JPH09283511 A JP H09283511A
Authority
JP
Japan
Prior art keywords
thermal cvd
susceptor
orifice
chamber
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8114193A
Other languages
Japanese (ja)
Inventor
Yutaka Kudo
豊 工藤
Nobuhisa Komatsu
伸壽 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP8114193A priority Critical patent/JPH09283511A/en
Publication of JPH09283511A publication Critical patent/JPH09283511A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To dispense with a posttreatment and to form a Ta2 O5 film having a full capacity by a method wherein a plasma generating chamber and a reduced thermal CVD reaction chamber are separated from each other by more than one piece of orifices, which respectively have an open. SOLUTION: A plasma generating chamber 3 and a reduced thermal CVD reaction chamber 5 are separated from each other by orifices 7. The orifices 7 respectively have an open 23 in their roughly central parts. Active species generated in the chamber 3 are transferred on the surface of a wafer 21 placed on the upper surface of a susceptor 15 in the chamber 5 through the opens 23 formed in the orifices 7 by a pressure difference between the pressures in both chambers of the chambers 3 and 5. As the wafer 21 is heated to 400 to 600 deg.C by a heating means 17 of the susceptor 15, a thermal CVD film formation reaction due to the active species is caused in the surface of the wafer and a Ta2 O5 film is formed on the surface of the wafer. Thereby, a leakage current due to the formation of an SiO2 film on a lower electrode due to a plasma ion impact can be eliminated, a posttreatment is unnecessary and a high- dielectric constant insulating film having not the leakage current can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は気相成長装置に関す
る。更に詳細には、本発明はプラズマ励起熱CVD装置
に関する。
TECHNICAL FIELD The present invention relates to a vapor phase growth apparatus. More particularly, the present invention relates to plasma enhanced thermal CVD equipment.

【0002】[0002]

【従来の技術】半導体ICの製造においては、ウエハの
表面に酸化シリコン(SiO2)などの絶縁膜を形成す
る工程がある。このような絶縁膜の形成方法には化学的
気相成長法(CVD)が用いられている。
2. Description of the Related Art In manufacturing a semiconductor IC, there is a step of forming an insulating film such as silicon oxide (SiO 2 ) on the surface of a wafer. Chemical vapor deposition (CVD) is used as a method for forming such an insulating film.

【0003】シリコン酸化膜の形成材料には例えば、モ
ノシランガスのSiH4 などが使用されてきたが、半導
体デバイスの微細化に伴ってステップカバレージの低下
が問題となってきた。
For example, SiH 4 which is a monosilane gas has been used as a material for forming a silicon oxide film, but with the miniaturization of semiconductor devices, a decrease in step coverage has become a problem.

【0004】特に、クォーターミクロンプロセス以降の
キャパシタ用高誘電体絶縁膜として熱CVD法によるT
25膜が検討されている。タンタル酸化膜のTa25
膜は液体のTa(OC255を気化して反応炉に導入
することにより成膜される。気化されたTa(OC
255ガスは酸素ガス又はオゾンガスと混合されて成
膜反応に使用される。
In particular, as a high dielectric insulating film for capacitors after the quarter micron process, T by thermal CVD is used.
An a 2 O 5 film has been investigated. Ta 2 O 5 of tantalum oxide film
The film is formed by vaporizing liquid Ta (OC 2 H 5 ) 5 and introducing it into the reaction furnace. Vaporized Ta (OC
2 H 5 ) 5 gas is mixed with oxygen gas or ozone gas and used for film formation reaction.

【0005】しかし、キャパシタ用高誘電体絶縁膜とし
てTa25膜を形成する場合、堆積するTa25膜の酸
素欠乏によりリーク電流が高くなり、その結果、十分な
容量が確保できないという問題がある。この酸素欠乏の
対策には、Ta25膜堆積後の後処理としてO2アニー
ル、O2プラズマ処理などを施す方法が挙げられるが、
プラズマによって励起されたO2イオンがTa25膜を
透過して下地電極のポリシリコン表面と酸化反応を起こ
し、Ta25膜及びポリシリコン間にSiO2膜が形成
され、リーク電流が抑制できる。しかし、キャパシタ用
高誘電率絶縁膜として、容量の確保が難しいという問題
がある。また、O2アニールについては、O2プラズマ処
理に比べ、絶対的なリーク電流量を抑制できないという
問題がある。
However, that in the case of forming a the Ta 2 O 5 film as a high dielectric insulating film for a capacitor, the leakage current increases by oxygen deficiency the Ta 2 O 5 film is deposited, as a result, sufficient capacity can not be secured There's a problem. As a countermeasure against this oxygen deficiency, there is a method of performing O 2 annealing, O 2 plasma treatment or the like as a post-treatment after deposition of the Ta 2 O 5 film.
Undergoes an oxidation reaction between the polysilicon surface of the base electrode O 2 ions excited by plasma is transmitted through the the Ta 2 O 5 film, SiO 2 film is formed between the Ta 2 O 5 film and polysilicon, leakage current Can be suppressed. However, there is a problem that it is difficult to secure capacitance as a high dielectric constant insulating film for capacitors. Further, the O 2 annealing has a problem that the absolute leak current amount cannot be suppressed as compared with the O 2 plasma treatment.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、キャパシタ用高誘電体絶縁膜として後処理が不要
で、かつ十分な容量を有するTa25膜を形成すること
ができる気相成長装置を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to form a vapor phase Ta 2 O 5 film which does not require post-treatment and has a sufficient capacity as a high dielectric insulating film for a capacitor. It is to provide a growth device.

【0007】[0007]

【課題を解決するための手段】前記課題は、プラズマ発
生室と減圧熱CVD反応室とを有し、前記プラズマ発生
室と減圧熱CVD反応室との間は、1個以上の開口を有
するオリフィスにより隔離されていることを特徴とする
気相成長装置により解決される。
An object of the present invention is to provide an orifice having a plasma generation chamber and a reduced pressure thermal CVD reaction chamber, and an orifice having one or more openings between the plasma generation chamber and the reduced pressure thermal CVD reaction chamber. It is solved by a vapor phase growth apparatus characterized by being isolated by.

【0008】[0008]

【発明の実施の形態】図1は本発明の気相成長装置1の
一例の概要断面図である。本発明の気相成長装置は基本
的に、プラズマ発生室3と減圧熱CVD反応室5との2
室構造を有する。プラズマ発生室3と減圧熱CVD反応
室5との間には、この2室を隔離するオリフィス7が配
設されている。
1 is a schematic sectional view of an example of a vapor phase growth apparatus 1 of the present invention. The vapor phase growth apparatus of the present invention basically comprises a plasma generation chamber 3 and a low pressure thermal CVD reaction chamber 5.
It has a room structure. An orifice 7 is provided between the plasma generation chamber 3 and the low pressure thermal CVD reaction chamber 5 to separate the two chambers.

【0009】プラズマ発生室3の外周側壁にはコイル9
が捲回されており、このコイル9の端部は高周波電源1
1に接続されている。高周波電源11の周波数は特に限
定されないが、一般的に、13.56MHzの周波数が
好適に使用される。また、プラズマ発生室3の適当な箇
所に反応ガス送入管13が接続されており、この管13
によりプラズマ発生室3内に気化Ta(OC255
スと酸素ガス又はN2Oガスの混合ガスが送入される。
プラズマ発生室3は石英などの絶縁材料で形成されてい
る。その他の絶縁材料、例えば、アルミナ、サファイヤ
ガラス、窒化アルミなども同様に使用できる。
A coil 9 is provided on the outer peripheral side wall of the plasma generating chamber 3.
Is wound, and the end of the coil 9 has a high frequency power source 1
1 connected. The frequency of the high frequency power source 11 is not particularly limited, but generally, a frequency of 13.56 MHz is preferably used. Further, a reaction gas feed pipe 13 is connected to an appropriate portion of the plasma generation chamber 3, and this pipe 13
As a result, a mixed gas of vaporized Ta (OC 2 H 5 ) 5 gas and oxygen gas or N 2 O gas is fed into the plasma generation chamber 3.
The plasma generating chamber 3 is made of an insulating material such as quartz. Other insulating materials such as alumina, sapphire glass, and aluminum nitride can be used as well.

【0010】減圧熱CVD反応室5は、室内を0.1〜
1Torr程度の範囲内の減圧状態にすることができる
ようにするため、真空ポンプ14が接続されている。真
空ポンプは図示されているように2基配設する必要はな
く、所定の減圧状態を形成することが出来さえすれば1
基でもよい。また、減圧熱CVD反応室5内にはサセプ
タ15が配設されている。このサセプタ15は適当な加
熱手段17により400〜600℃程度の範囲内の温度
に加熱することができる。この加工物21は加熱手段1
7によりサセプタ15を通して所定温度に加熱される。
減圧熱CVD反応室5はアルミニウムなどの導電体で形
成することができる。また、サセプタ15も公知慣用の
材料で形成することができる。このような材料は例え
ば、アルマイト処理アルミニウム、Si−Cなどであ
る。
The low-pressure thermal CVD reaction chamber 5 has a room temperature of 0.1 to 10.
A vacuum pump 14 is connected in order to enable a reduced pressure state within a range of about 1 Torr. It is not necessary to dispose two vacuum pumps as shown in the drawing, and only one vacuum pump can be formed as long as a predetermined reduced pressure state can be formed.
It may be a base. A susceptor 15 is arranged in the reduced pressure thermal CVD reaction chamber 5. The susceptor 15 can be heated to a temperature within the range of 400 to 600 ° C. by a suitable heating means 17. This processed material 21 is heating means 1
7 is heated to a predetermined temperature through the susceptor 15.
The low pressure thermal CVD reaction chamber 5 can be formed of a conductor such as aluminum. Further, the susceptor 15 can also be formed of a known and commonly used material. Such materials are, for example, alumite-treated aluminum and Si-C.

【0011】プラズマ発生室3と減圧熱CVD反応室5
との間は、オリフィス7により隔離されている。オリフ
ィス7は絶縁材料で形成されていることが好ましい。オ
リフィス7が絶縁体でない場合、プラズマ発生室3とオ
リフィス7との間で内部放電が発生し、活性化イオンが
効率よく減圧熱CVD反応室側に供給されないなどの不
都合が生じる。オリフィス7を形成するための絶縁体と
しては、例えば、石英、アルミナ、窒化アルミなどを適
宜選択して使用することができる。
Plasma generation chamber 3 and low pressure thermal CVD reaction chamber 5
An orifice 7 separates the space between and. The orifice 7 is preferably made of an insulating material. If the orifice 7 is not an insulator, an internal discharge is generated between the plasma generation chamber 3 and the orifice 7 and activated ions are not efficiently supplied to the low pressure thermal CVD reaction chamber side. As the insulator for forming the orifice 7, for example, quartz, alumina, aluminum nitride or the like can be appropriately selected and used.

【0012】オリフィス7はその略中央部に開口23を
有する。開口23の開口径は固定であっても良いが、本
発明の気相成長装置においては、このオリフィス7の開
口23の開口径を変化させることもできる。開口径を変
化させることにより形成膜の均一性を向上させるなどの
効果が得られる。開口径は無段階的に変化させることも
できるし、あるいは段階的に変化させることもできる。
開口径を無段階的に変化させる場合、オリフィス7は例
えば、虹彩絞りなどのような公知慣用の機械的開口絞り
機構を使用することができる。開口径を段階的に変化さ
せる場合、異なる開口径を有する複数の板を交換するな
どして使用するか、又はそれらの板を重ね合わせるか、
若しくは除去することにより実施できる。開口23の開
口径はプラズマ発生室3と減圧熱CVD反応室5との間
の圧力差が10〜100倍程度になるように調整するこ
とが好ましい。このような両室間の圧力差と開口径との
関係は実験を繰り返すことにより容易に決定することが
できる。
The orifice 7 has an opening 23 at its substantially central portion. The opening diameter of the opening 23 may be fixed, but in the vapor phase growth apparatus of the present invention, the opening diameter of the opening 23 of the orifice 7 can be changed. The effect of improving the uniformity of the formed film can be obtained by changing the opening diameter. The opening diameter can be changed steplessly or can be changed stepwise.
When the aperture diameter is changed steplessly, the orifice 7 can use a known and conventional mechanical aperture stop mechanism such as an iris stop. When changing the opening diameter stepwise, use by exchanging a plurality of plates having different opening diameters, or stacking these plates,
Alternatively, it can be carried out by removing. The opening diameter of the opening 23 is preferably adjusted so that the pressure difference between the plasma generation chamber 3 and the low pressure thermal CVD reaction chamber 5 is about 10 to 100 times. Such a relationship between the pressure difference between the two chambers and the opening diameter can be easily determined by repeating the experiment.

【0013】図1に示された実施例では、オリフィス7
は開口23を1個しか有しない。しかし、開口の配設数
は1個に限定されない。例えば、図2に示されるように
複数個の開口23を有するオリフィス7も使用できる。
開口23の配設個数及び/又は個々の開口の開口径は、
プラズマ発生室3と減圧熱CVD反応室5との間の所望
の圧力差を考慮して実験を繰り返すことにより適宜決定
することができる。
In the embodiment shown in FIG. 1, the orifice 7
Has only one opening 23. However, the number of openings provided is not limited to one. For example, an orifice 7 having a plurality of openings 23 as shown in FIG. 2 can be used.
The number of openings 23 and / or the opening diameter of each opening is
It can be appropriately determined by repeating the experiment in consideration of the desired pressure difference between the plasma generation chamber 3 and the low pressure thermal CVD reaction chamber 5.

【0014】次に、本発明の気相成長装置による絶縁膜
の形成方法について説明する。先ず、図示されていない
供給源から、気化Ta(OC255ガスと酸素ガス又
はオゾンガスを供給し、これらを混合して反応ガス送入
管13からプラズマ発生室3内に送入する。高周波電源
11を駆動し、コイル9に13.56MHzの高周波を
印加し、プラズマ発生室3内でプラズマを発生させる。
プラズマの発生によりプラズマ発生室3内の反応ガスが
励起され様々な活性種が生成される。前記のように減圧
熱CVD反応室5の室内圧力は0.1〜1Torr程度
の減圧状態であるのに対し、プラズマ発生室3の室内圧
力は1〜10Torr程度である。このため、プラズマ
発生室3内で発生した活性種は、両室の圧力差により、
オリフィス7の開口23を経て減圧熱CVD反応室5内
のサセプタ15の上面に載置されたウエハ21の表面に
移行する。ウエハ21はサセプタ15の加熱手段17に
より400〜600℃にまで加熱されているので、ウエ
ハ表面で活性種による熱CVD成膜反応が起こり、ウエ
ハ表面にTa25膜が生成される。
Next, a method of forming an insulating film by the vapor phase growth apparatus of the present invention will be described. First, vaporized Ta (OC 2 H 5 ) 5 gas and oxygen gas or ozone gas are supplied from a supply source (not shown), and these are mixed and fed into the plasma generation chamber 3 through the reaction gas feed pipe 13. . The high frequency power supply 11 is driven to apply a high frequency of 13.56 MHz to the coil 9 to generate plasma in the plasma generation chamber 3.
The generation of plasma excites the reaction gas in the plasma generation chamber 3 to generate various active species. As described above, the internal pressure of the reduced pressure thermal CVD reaction chamber 5 is in a reduced pressure state of about 0.1 to 1 Torr, while the internal pressure of the plasma generation chamber 3 is about 1 to 10 Torr. Therefore, the activated species generated in the plasma generation chamber 3 are
It moves through the opening 23 of the orifice 7 to the surface of the wafer 21 mounted on the upper surface of the susceptor 15 in the low pressure thermal CVD reaction chamber 5. Since the wafer 21 is heated to 400 to 600 ° C. by the heating means 17 of the susceptor 15, the thermal CVD film formation reaction by the active species occurs on the wafer surface, and a Ta 2 O 5 film is formed on the wafer surface.

【0015】本発明の装置では、圧力差によりプラズマ
活性種をウエハ表面に移行させるので、従来の装置のよ
うにプラズマのイオン衝撃による下部電極上のSiO2
が発生しない。その結果、後処理工程が無く、かつ低リ
ーク電流の高誘電率絶縁膜の形成が可能となる。
In the apparatus of the present invention, the plasma active species are transferred to the wafer surface due to the pressure difference, so that the SiO 2 on the lower electrode due to the ion bombardment of plasma as in the conventional apparatus.
Does not occur. As a result, it is possible to form a high-dielectric-constant insulating film having a low leak current without any post-treatment process.

【0016】以上、本発明の装置をTa25膜の成膜に
ついて説明してきたが、本発明の装置における反応ガス
は気化Ta(OC255ガスに限定されず、その他の
気化ガスも同様に使用できる。例えば、Ta(OC
35ガス、なども使用できる。
Although the apparatus of the present invention has been described with respect to the formation of a Ta 2 O 5 film, the reaction gas in the apparatus of the present invention is not limited to the vaporized Ta (OC 2 H 5 ) 5 gas, and other vaporizations are possible. Gas can be used as well. For example, Ta (OC
H 3 ) 5 gas, etc. can also be used.

【0017】[0017]

【発明の効果】以上説明したように、本発明の気相成長
装置は、プラズマ発生室で励起された活性種を減圧熱C
VD反応室へ、圧力差によりウエハ表面に移行させるの
で、従来の装置のようにプラズマのイオン衝撃による下
部電極上のSiO2膜形成によるリーク電流が無い。そ
の結果、後処理工程が不要で、かつリーク電流が無い優
れた高誘電率絶縁膜の形成が可能となった。
As described above, in the vapor phase growth apparatus of the present invention, the activated species excited in the plasma generation chamber are heated under reduced pressure C.
Since it is transferred to the VD reaction chamber on the surface of the wafer due to the pressure difference, there is no leak current due to the SiO 2 film formation on the lower electrode due to the ion bombardment of plasma unlike the conventional apparatus. As a result, it becomes possible to form an excellent high-dielectric-constant insulating film that does not require a post-treatment process and has no leakage current.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の気相成長装置の一例の模式的構成図で
ある。
FIG. 1 is a schematic configuration diagram of an example of a vapor phase growth apparatus of the present invention.

【図2】図1に示される装置で使用されるオリフィスの
別の例の断面図である。
2 is a cross-sectional view of another example of an orifice used in the device shown in FIG.

【符号の説明】[Explanation of symbols]

1 本発明の気相成長装置 3 プラズマ発生室 5 減圧熱CVD反応室 7 オリフィス 9 コイル 11 高周波電源 13 反応ガス送入管 14 真空ポンプ 15 サセプタ 17 加熱手段 19 昇降式支持台 21 ウエハ 23 オリフィス開口 DESCRIPTION OF SYMBOLS 1 Vapor phase growth apparatus of this invention 3 Plasma generation chamber 5 Decompression thermal CVD reaction chamber 7 Orifice 9 Coil 11 High frequency power supply 13 Reactive gas inlet pipe 14 Vacuum pump 15 Susceptor 17 Heating means 19 Elevating support 21 Wafer 23 Orifice opening

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/316 H01L 21/316 X ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/316 H01L 21/316 X

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 プラズマ発生室と減圧熱CVD反応室と
を有し、前記プラズマ発生室と減圧熱CVD反応室との
間は、1個以上の開口を有するオリフィスにより隔離さ
れていることを特徴とする気相成長装置。
1. A plasma generation chamber and a low pressure thermal CVD reaction chamber, wherein the plasma generation chamber and the low pressure thermal CVD reaction chamber are separated by an orifice having one or more openings. And vapor phase growth equipment.
【請求項2】 前記オリフィスは開口を1個有し、該開
口の開口径を段階的または無段階的に変化させることが
でき、かつ、両室間の圧力が10〜100倍程度の差に
なる請求項1の気相成長装置。
2. The orifice has one opening, the opening diameter of the opening can be changed stepwise or steplessly, and the pressure between the two chambers is about 10 to 100 times. The vapor phase growth apparatus according to claim 1, wherein
【請求項3】 前記オリフィスは開口を複数個有し、該
各開口の開口径は固定され、かつ、両室間の圧力が10
〜100倍程度の差になる請求項1の気相成長装置。
3. The orifice has a plurality of openings, the opening diameter of each opening is fixed, and the pressure between both chambers is 10 mm.
The vapor phase growth apparatus according to claim 1, wherein the difference is about 100 times.
【請求項4】 プラズマ発生室は絶縁材料により形成さ
れていて、その外周側壁にはコイルが捲回され、コイル
の端部は高周波電源に接続されており、減圧熱CVD反
応室は導電性材料により形成されていて、その内部には
加熱手段を具備したサセプタが配置されている請求項1
の気相成長装置。
4. The plasma generation chamber is formed of an insulating material, a coil is wound around the outer peripheral side wall thereof, the end of the coil is connected to a high frequency power source, and the low pressure thermal CVD reaction chamber is made of a conductive material. 2. A susceptor having a heating means is disposed inside the susceptor.
Vapor growth equipment.
【請求項5】 13.56MHz以下の高周波電源を使
用する請求項4の気相成長装置。
5. The vapor phase growth apparatus according to claim 4, wherein a high frequency power source of 13.56 MHz or less is used.
【請求項6】 オリフィスとサセプタとの間の間隔は5
0〜100mmの範囲内である請求項4の気相成長装
置。
6. The distance between the orifice and the susceptor is 5
The vapor phase growth apparatus according to claim 4, which is within a range of 0 to 100 mm.
【請求項7】 サセプタの温度は200〜500℃に加
熱される請求項4の気相成長装置。
7. The vapor phase growth apparatus according to claim 4, wherein the temperature of the susceptor is heated to 200 to 500 ° C.
【請求項8】 反応ガスをプラズマ発生室に送入し、該
反応ガスをプラズマで励起し、励起された活性種を、オ
リフィスを介して減圧熱CVD反応室へ、前記オリフィ
スの略中央部に設けられた開口部を経て、プラズマ発生
室と減圧熱CVD反応室との間の圧力差により、減圧熱
CVD反応室内のサセプタ上の加工物表面へ移行させ熱
CVD反応により酸化物膜を形成することを特徴とする
成膜方法。
8. A reaction gas is fed into a plasma generation chamber, the reaction gas is excited by plasma, and the excited active species are introduced into a low pressure thermal CVD reaction chamber through an orifice and at a substantially central portion of the orifice. The pressure difference between the plasma generation chamber and the low pressure thermal CVD reaction chamber is passed through the provided opening, and transferred to the surface of the workpiece on the susceptor in the low pressure thermal CVD reaction chamber to form an oxide film by the thermal CVD reaction. A film forming method characterized by the above.
【請求項9】 反応ガスは気化Ta(OC255ガス
と酸素ガス又は亜酸化窒素ガスとの混合ガスであり、酸
化物膜はTa25膜である請求項8の方法。
9. The method according to claim 8, wherein the reaction gas is a mixed gas of vaporized Ta (OC 2 H 5 ) 5 gas and oxygen gas or nitrous oxide gas, and the oxide film is a Ta 2 O 5 film.
【請求項10】 オリフィスとサセプタとの間の間隔は
50〜100mmの範囲内である請求項8の成膜方法。
10. The film forming method according to claim 8, wherein the distance between the orifice and the susceptor is in the range of 50 to 100 mm.
【請求項11】 サセプタの温度は200〜500℃に
加熱される請求項8の成膜方法。
11. The film forming method according to claim 8, wherein the temperature of the susceptor is heated to 200 to 500 ° C.
JP8114193A 1996-04-11 1996-04-11 Vapor growth system Pending JPH09283511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8114193A JPH09283511A (en) 1996-04-11 1996-04-11 Vapor growth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8114193A JPH09283511A (en) 1996-04-11 1996-04-11 Vapor growth system

Publications (1)

Publication Number Publication Date
JPH09283511A true JPH09283511A (en) 1997-10-31

Family

ID=14631537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8114193A Pending JPH09283511A (en) 1996-04-11 1996-04-11 Vapor growth system

Country Status (1)

Country Link
JP (1) JPH09283511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266297A (en) * 2006-03-28 2007-10-11 Tokyo Electron Ltd Plasma treatment apparatus and plasma treatment method
US8394200B2 (en) 2006-03-24 2013-03-12 Tokyo Electron Limited Vertical plasma processing apparatus for semiconductor process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394200B2 (en) 2006-03-24 2013-03-12 Tokyo Electron Limited Vertical plasma processing apparatus for semiconductor process
TWI452609B (en) * 2006-03-24 2014-09-11 Tokyo Electron Ltd Vertical plasma processing apparatus for semiconductor process and vertical plasma film formation apparatus for semiconductor process
JP2007266297A (en) * 2006-03-28 2007-10-11 Tokyo Electron Ltd Plasma treatment apparatus and plasma treatment method

Similar Documents

Publication Publication Date Title
JP3688726B2 (en) Manufacturing method of semiconductor device
KR100344967B1 (en) Plasma treatment method and plasma treatment device
KR100222455B1 (en) Semiconductor device and method of fabricating method
US7392759B2 (en) Remote plasma apparatus for processing substrate with two types of gases
US7163896B1 (en) Biased H2 etch process in deposition-etch-deposition gap fill
US6887341B2 (en) Plasma processing apparatus for spatial control of dissociation and ionization
JP2011508434A (en) Silicon nitride film with low wet etching rate
JPH08236513A (en) Method of etching substrate in plasma
US7344996B1 (en) Helium-based etch process in deposition-etch-deposition gap fill
JP4845269B2 (en) Semiconductor wafer processing system, computer readable medium, and semiconductor process chamber cleaning method
KR101713336B1 (en) Liner removal process
JP3086362B2 (en) Plasma processing equipment
US7476621B1 (en) Halogen-free noble gas assisted H2 plasma etch process in deposition-etch-deposition gap fill
EP0469791A1 (en) Soluble oxides for integrated circuits
KR20010108995A (en) Method for manufacturing capacitor in semiconductor memory divice
JP2006049544A (en) Substrate processing apparatus and substrate processing method using same
JPH09283511A (en) Vapor growth system
US6787477B2 (en) Methods of forming dielectric layers and methods of forming capacitors
US20070264770A1 (en) Capacitor forming method
JP2003218106A (en) Method for manufacturing semiconductor device
JP2001345312A (en) Device and method for plasma treatment and method of manufacturing structure
JP2000021598A (en) Plasma treating device
JP3081933B2 (en) Lower electrode
JPH11163282A (en) Manufacture of semiconductor device
JP4167645B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080406

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080406

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090406

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090406

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090406

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100406

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees