JPH09283404A - Electron beam exposure - Google Patents

Electron beam exposure

Info

Publication number
JPH09283404A
JPH09283404A JP8089357A JP8935796A JPH09283404A JP H09283404 A JPH09283404 A JP H09283404A JP 8089357 A JP8089357 A JP 8089357A JP 8935796 A JP8935796 A JP 8935796A JP H09283404 A JPH09283404 A JP H09283404A
Authority
JP
Japan
Prior art keywords
chip
wafer
chips
electron beam
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8089357A
Other languages
Japanese (ja)
Other versions
JP2830830B2 (en
Inventor
Yoshikatsu Kojima
義克 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13968470&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09283404(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8089357A priority Critical patent/JP2830830B2/en
Publication of JPH09283404A publication Critical patent/JPH09283404A/en
Application granted granted Critical
Publication of JP2830830B2 publication Critical patent/JP2830830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for realizing improvement in overlay accuracy and significant reduction in mark detection time, in detection of an alignment mark for performing overlay on a pattern on a wafer by electron beam exposure. SOLUTION: In the case where overlay is performed on chips A, B, C,... n on a wafer 10 by electron beam exposure, alignment marks A1-A4 arranged on the chip A at one position on the wafer 10 are first detected, and chip distortion is corrected. Then, with respect to arbitrary m chips of the total n chips A, B, C,... n on the wafer 10 (where 1<m<=n), an alignment mark at one position within each chip is detected, and an array error of the chips on the wafer 10 (that is, wafer distortion) is corrected by a correction formula. Subsequently, electron beam exposure is performed while the array error and the chip distortion are corrected in accordance with the chip distortion correction formula and the wafer distortion correction formula.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子線露光方法に
関し、特にLSI製造でのリソグラフイ技術における電
子線直接描画技術に係り、詳しくは電子線露光によりパ
タ−ンを試料に描画する際の試料の位置合わせ方法に係
る電子線露光方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam exposure method and, more particularly, to an electron beam direct writing technique in a lithography technique in LSI manufacturing, and more particularly, to a technique for writing a pattern on a sample by electron beam exposure. The present invention relates to an electron beam exposure method related to a method for aligning a sample.

【0002】[0002]

【従来の技術】従来、試料上の所望の位置に電子線を用
いて正確にパタ−ンを描画する場合、予め試料上に配置
した“基準となる位置合わせマ−ク”の位置を検出し、
その位置を基準として電子線によりパタ−ンを描画して
いる。
2. Description of the Related Art Conventionally, when a pattern is accurately drawn by using an electron beam at a desired position on a sample, the position of a "reference positioning mark" previously arranged on the sample is detected. ,
The pattern is drawn by an electron beam based on the position.

【0003】図2は、従来の一例を説明するための図で
あって、ウェハ上のチップ配列を示す図であり、従来の
グロ−バルアライメント法によるアライメントを行った
場合の「ウェハ上のチップの重ね合わせの状態」を示す
図である。図2において、10はウェハを示し、A,
B,C,nは、ウェハ上のチップ、A’,B’,C’
n’は、電子線露光チップ、A1,B1,C1,n1は、位
置合わせマ−クをそれぞれ示す。
FIG. 2 is a view for explaining an example of the prior art, and is a view showing an arrangement of chips on a wafer. FIG. In FIG. 2, reference numeral 10 denotes a wafer;
B, C, n are chips on the wafer, A ', B', C '
n 'indicates an electron beam exposure chip, and A1, B1, C1, and n1 indicate alignment marks.

【0004】従来のグロ−バルアライメント法(以下
“従来法1”という)は、ウェハ10上にn個配置され
たチップ(A,B,C………n)のうち、任意のm(1<m
≦n)個数のチップ(i,j,k……m)について、チッ
プ当り1ヶ所の位置合わせマ−ク(il,jl,kl……m
l)の位置を予め検出し、ウェハ10上のチップの配列誤
差のみを補正して露光を行う方法である(図2参照)。
In the conventional global alignment method (hereinafter referred to as “conventional method 1”), an arbitrary m (1) among n chips (A, B, C... N) arranged on a wafer 10 is used. <M
.Ltoreq.n) For one chip (i, j, k... M), one alignment mark (il, jl, kl.
In this method, the position of l) is detected in advance, and exposure is performed by correcting only the arrangement error of the chips on the wafer 10 (see FIG. 2).

【0005】また、上記従来法1(グロ−バルアライメ
ント法)と共に一般的に用いられているアライメント方
法としては、「ダイ-バイ-ダイ(Die-by-Die)アライメン
ト法」(以下“従来法2”という)が知られている。この
従来法2は、図3(従来の他の例を説明する図であっ
て、ウェハ上のチップ配列を示す図)に示すように、ウ
ェハ10上にn個配置された個々のチップ(A,B,C
……n)内に、複数の「位置合わせマ−ク(A1〜A4,B
1〜B4,C1〜C4……n1〜n4)」を配置し、個々のチ
ップ毎に複数の位置合わせマ−クを検出し、1チップ単
位でウェハ10上の配列位置,チップの回転,倍率等を
補正しながら露光するアライメント方法である。
As an alignment method generally used together with the above-mentioned conventional method 1 (global alignment method), a “die-by-die (Die-by-Die) alignment method” (hereinafter referred to as “conventional method”) 2 ") is known. In this conventional method 2, as shown in FIG. 3 (a diagram for explaining another example of the related art and showing a chip arrangement on a wafer), n individual chips (A , B, C
... N), a plurality of “positioning marks (A1 to A4, B)
1 to B4, C1 to C4... N1 to n4), and detects a plurality of alignment marks for each individual chip. This is an alignment method that performs exposure while correcting the like.

【0006】[0006]

【発明が解決しようとする課題】ところで、前記従来法
1(グロ−バルアライメント方法:図2参照)では、各チ
ップが回転している場合やチップの倍率が異なっている
場合には、それらに対する補正を行うことができず、こ
のため、重ね合わせ精度の劣化を招くという問題点を有
している。
In the above-mentioned conventional method 1 (global alignment method: see FIG. 2), when each chip is rotating or when the magnification of the chip is different, it is necessary to deal with them. Since the correction cannot be performed, there is a problem that the overlay accuracy is deteriorated.

【0007】一方、前記従来法2(ダイ-バイ-ダイアラ
イメント法)では、従来法1の上記問題点を解決するこ
とができる。しかしながら、従来法2によるアライメン
ト方法(図3参照)では、一般的に、方形のチップの4隅
に位置合わせマ−クを配置し、それら4ヶ所の位置合わ
せマ−クを検出することによってチップの回転,倍率等
の補正を行う方法である。従って、ウェハ上の全チップ
について、各チップ毎に4回の位置合わせマ−ク検出が
必要となり、アライメント時間が長大化し、このため、
スル−プットの低下を招くという問題点を有している。
On the other hand, the conventional method 2 (die-by-die alignment method) can solve the above-mentioned problems of the conventional method 1. However, in the alignment method according to the conventional method 2 (see FIG. 3), generally, alignment marks are arranged at four corners of a rectangular chip, and the chip is detected by detecting the four alignment marks. This is a method for correcting rotation, magnification, etc. Therefore, for all the chips on the wafer, it is necessary to detect the alignment mark four times for each chip, and the alignment time is lengthened.
There is a problem that the throughput is reduced.

【0008】本発明は、従来法1,2の前記問題点に鑑
み成されたものであって、その目的とするところは、電
子線露光によって重ね合わせを行う際、従来法1(グロ
−バルアライメント法)よりも高い重ね合わせ精度が得
られ、かつ、従来法2(ダイ-バイ-ダイアライメント法)
のように、スル−プツトの低下を招かないアライメント
方法に係る電子線露光方法を提供することにある。
The present invention has been made in view of the above-mentioned problems of the conventional methods 1 and 2, and an object of the present invention is to provide a conventional method 1 (global) when performing superposition by electron beam exposure. Higher overlay accuracy than alignment method) and conventional method 2 (die-by-die alignment method)
An object of the present invention is to provide an electron beam exposure method related to an alignment method that does not cause a decrease in throughput as described above.

【0009】[0009]

【課題を解決するための手段】本発明は、電子線露光に
よってウェハ上の図形に重ね合わせを行うための位置合
わせマ−クの検出手段として、任意の代表チップを用い
てウェハ上の全てのチップのチップ歪を一括して補正す
ることを特徴とし、これにより、前記目的を達成したも
のである。
According to the present invention, as a means for detecting an alignment mark for superimposing a figure on a wafer by electron beam exposure, any representative chip can be used to detect all the marks on the wafer. It is characterized in that the chip distortion of the chip is corrected collectively, thereby achieving the above object.

【0010】即ち、本発明は、「電子線露光によってウ
ェハ上の図形に重ね合わせを行うための位置合わせマ−
クの検出手段として、ウェハ上の複数個のチップの位置
合わせマ−クの位置を検出し、ウェハ上のチップの配列
誤差を補正する工程と、その内少なくとも1つのチップ
に対して、チップ内の少なくとも2ヶ所以上の位置合わ
せマ−クの位置を検出し、チップ歪を補正する工程とを
具備することを特徴とする電子線露光方法。」(請求項
1)を要旨とする。
That is, according to the present invention, "an alignment marker for overlaying a pattern on a wafer by electron beam exposure is used.
The step of detecting the alignment marks of a plurality of chips on the wafer to correct the alignment error of the chips on the wafer, and at least one of the chips within the chip And a step of correcting the chip distortion by detecting the positions of at least two or more alignment marks. (Claim 1).

【0011】[0011]

【発明の実施の形態】本発明の好ましい実施の形態とし
ては、本発明の前記要旨中の「チップ歪を補正する工
程」において、重複しない2ヶ所以上のチップに対して
位置合わせマ−クの位置を検出し、それぞれ個別にチッ
プ歪の補正を行う手段を採用することである(請求項
2)。
BEST MODE FOR CARRYING OUT THE INVENTION As a preferred embodiment of the present invention, in the "step of correcting chip distortion" in the above-mentioned gist of the present invention, an alignment mark is provided for two or more non-overlapping chips. A means for detecting the position and individually correcting the chip distortion is employed (claim 2).

【0012】[0012]

【実施例】本発明の実施例について、図1を参照して説
明する。なお、図1は、本発明の実施例を説明する図で
あって、ウェハ上のチップ配列を示す図である。
EXAMPLE An example of the present invention will be described with reference to FIG. FIG. 1 is a view for explaining an embodiment of the present invention, showing a chip arrangement on a wafer.

【0013】本実施例では、まず、ウェハ10上に形成
されたn個のチップ(A,B,C……n)の4隅に、位置
合わせマ−ク(A1〜A4,B1〜B4,C1〜C4……n1〜
n4)を形成しておく。そして、このウェハ10上に位置
合わせを行って電子線露光する場合、まずウェハ10上
の少なくとも1チップ、例えばチップ(A)に配置された
位置合わせマ−ク(A1,A2,A3,A4)の位置を検出
し、チップ歪を補正する。この場合、4ヶ所の位置合わ
せマ−クの位置からチップの一次歪(倍率,回転)及び台
形歪をチップ歪の補正式により補正する。
In this embodiment, alignment marks (A1 to A4, B1 to B4, B1 to B4, B1 to B4, N1) are formed at the four corners of n chips (A, B, C... N) formed on the wafer 10. C1 ~ C4 ... n1 ~
n4) is formed in advance. When positioning the wafer 10 and performing electron beam exposure, first, the alignment marks (A1, A2, A3, A4) arranged on at least one chip on the wafer 10, for example, the chip (A). Is detected, and the chip distortion is corrected. In this case, the primary distortion (magnification, rotation) and trapezoidal distortion of the chip are corrected from the positions of the four alignment marks by the chip distortion correction formula.

【0014】次に、ウェハ10上に配置されたn個のチ
ップ(A,B,C………n)のうち、任意のm(1<m≦
n)個のチップ(i,j,k……m)について、チップ中
の1ヶ所の位置合わせマ−ク(il,jl,kl……ml)の
位置を検出し、ウェハ10上のチップの配列誤差(ウェ
ハ歪)を補正する。この場合、本実施例では、ウェハ1
0上で9個のチップについて位置合わせマ−クの検出を
行い、ウェハ10上のチップ配列の一次歪(倍率,回転)
及び台形歪をウェハ歪の補正式により補正した。
Next, of the n chips (A, B, C... N) arranged on the wafer 10, any m (1 <m ≦ m)
With respect to the n) chips (i, j, k... m), the position of one alignment mark (il, jl, kl... Correct the alignment error (wafer distortion). In this case, in this embodiment, the wafer 1
Alignment marks are detected for 9 chips on 0 and the primary distortion (magnification, rotation) of the chip array on the wafer 10 is detected.
And the trapezoidal distortion was corrected by the correction equation of the wafer distortion.

【0015】その後、前記の位置合わせマ−クの検出に
より得られたウェハ歪補正式によりウェハ上のチップ配
列誤差を補正し、かつ、チップ歪補正式により個々のチ
ップ歪を補正しながら電子線露光を行う。この場合、重
ね合わせ精度は、前記従来法2(ダイ-バイ-ダイアライ
メント法)を用い、各チップ毎に4ヶ所の位置合わせマ
−ク検出を行った場合と同等の高い精度が得られた。ま
た、この時、ウェハ上に配置されたチップ数は、100チ
ップであったため、従来法2(ダイ-バイ-ダイアライメ
ント法)を用いた場合、400回の位置合わせマ−ク検出が
必要であったが、本実施例の方法では13回の検出です
み、アライメント時間を1/30以下に低減することが可
能であった。
Thereafter, the electron beam is corrected while correcting the chip arrangement error on the wafer by the wafer distortion correction formula obtained by the detection of the alignment mark, and correcting each chip distortion by the chip distortion correction formula. Perform exposure. In this case, the overlay accuracy was as high as that obtained by using the conventional method 2 (die-by-die alignment method) and detecting the alignment marks at four locations for each chip. . Also, at this time, the number of chips arranged on the wafer was 100 chips. Therefore, when the conventional method 2 (die-by-die alignment method) was used, 400 alignment mark detections were required. However, according to the method of the present embodiment, only 13 detections were required, and the alignment time could be reduced to 1/30 or less.

【0016】以上、本発明の実施例について説明した
が、本発明は、上記実施例に限定されるものではなく、
本発明の前記した要旨を逸脱しない範囲内において各種
の変更が可能である。例えば、上記実施例で記載したチ
ップ歪補正のための位置合わせマ−ク検出と、ウェハ歪
補正のための位置合わせマ−ク検出の順序は、どちらを
先にしてもかまわないものである。
Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.
Various changes can be made without departing from the gist of the present invention. For example, the order of the detection of the alignment mark for correcting the chip distortion and the detection of the alignment mark for correcting the wafer distortion described in the above embodiment may be performed in any order.

【0017】また、チップ歪補正,ウェハ歪補正それぞ
れのために配置あるいは検出する位置合わせマ−クの個
数は、2ヶ所以上であれば任意の個数で良く、それに合
わせて補正の次数も任意の次数に適宜変更可能である。
更に、チップ歪の補正を行う際、2個以上の複数のチッ
プについて位置合わせマ−ク検出を行い、統計処理を用
いてチップ歪補正を行うことも可能である。
Further, the number of alignment marks to be arranged or detected for each of the chip distortion correction and the wafer distortion correction may be any number as long as it is at two or more places, and the order of correction is also arbitrary according to the number. The order can be appropriately changed.
Further, when correcting the chip distortion, it is also possible to perform the alignment mark detection for two or more chips and to perform the chip distortion correction using statistical processing.

【0018】また、前記実施例では、1ヶ所のチップの
位置合わせマ−クを検出し、ウェハ上の全チップのチッ
プ歪補正を同一の補正式により行ったが、例えばウェハ
上のチップをステッパ−等を用いて露光した場合、マス
ク上に複数のチップが形成されている等の理由により、
チップ歪の異なるチップがウェハ上に混載されている場
合がある。このような場合には、予めチップ歪の異なる
複数のチップについて位置合わせマ−ク位置の検出を行
い、それぞれに対してチップ歪補正式を求めておき、実
際の露光を行うときには、指定されたチップに対して指
定されたチップ歪補正式を用いて露光を行うことも可能
である。
In the above-described embodiment, the alignment mark of one chip is detected, and the chip distortion of all the chips on the wafer is corrected by the same correction formula. When exposing using-, etc., because a plurality of chips are formed on the mask,
There are cases where chips with different chip distortions are mixedly mounted on the wafer. In such a case, an alignment mark position is detected in advance for a plurality of chips having different chip distortions, and a chip distortion correction formula is obtained for each of them. Exposure can also be performed using a chip distortion correction formula specified for a chip.

【0019】[0019]

【発明の効果】本発明は、以上詳記したとおり、電子線
露光によってウェハ上の図形に重ね合わせを行うための
位置合わせマ−クの検出において、任意の代表チップを
用いてウェハ上の全てのチップのチップ歪を一括して補
正することを特徴とし、これにより、従来のダイ−バイ
−ダイアライメント法と同等の高い重ね合わせ精度が得
られ、かつ、アライメント時間を大幅に短縮することが
できる効果が生じる。
As described above in detail, the present invention relates to a method for detecting an alignment mark for superimposing a figure on a wafer by electron beam exposure, by using an arbitrary representative chip to detect all of the positions on the wafer. It is characterized in that the chip distortion of the chip is corrected in a lump, and as a result, a high overlay accuracy equivalent to the conventional die-by-die alignment method can be obtained, and the alignment time can be greatly reduced. A possible effect occurs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明する図であって、ウェハ
上のチップ配列を示す図。
FIG. 1 is a view for explaining an embodiment of the present invention, showing a chip arrangement on a wafer.

【図2】従来の一例(従来のグロ−バルアライメント法)
を説明する図であって、ウェハ上のチップ配列を示す
図。
FIG. 2 shows a conventional example (conventional global alignment method)
FIG. 3 is a diagram illustrating chip arrangement on a wafer.

【図3】従来の他の例(従来のダイ-バイ-ダイアライメ
ント法)を説明する図であって、ウェハ上のチップ配列
を示す図。
FIG. 3 is a diagram illustrating another example of the related art (conventional die-by-die alignment method), and is a diagram illustrating a chip arrangement on a wafer.

【符号の説明】[Explanation of symbols]

10 ウェハ A,B,C,n ウェハ上のチップ A’,B’,C’n’ 電子線露光チップ A1〜A4,B1〜B4,C1〜C4,n1〜n4 位置合わ
せマ−ク
10 Wafers A, B, C, n Chips on wafer A ', B', C'n 'Electron beam exposure chips A1-A4, B1-B4, C1-C4, n1-n4 Positioning mark

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電子線露光によってウェハ上の図形に重
ね合わせを行うための位置合わせマ−クの検出手段とし
て、ウェハ上の複数個のチップの位置合わせマ−クの位
置を検出し、ウェハ上のチップの配列誤差を補正する工
程と、その内少なくとも1つのチップに対して、チップ
内の少なくとも2ヶ所以上の位置合わせマ−クの位置を
検出し、チップ歪を補正する工程とを具備することを特
徴とする電子線露光方法。
1. As a positioning mark detecting means for superimposing a pattern on a wafer by electron beam exposure, the positions of the positioning marks of a plurality of chips on the wafer are detected, Comprising a step of correcting the array error of the upper chip and a step of correcting the chip distortion by detecting the positions of at least two or more alignment marks in the chip for at least one of the chips. An electron beam exposure method comprising:
【請求項2】 前記チップ歪を補正する工程において、
重複しない2ヶ所以上のチップに対して位置合わせマ−
クの位置を検出し、それぞれ個別にチップ歪の補正を行
うことを特徴とする請求項1に記載の電子線露光方法。
2. In the step of correcting the chip distortion,
Alignment marker for two or more chips that do not overlap
2. The electron beam exposure method according to claim 1, wherein the position of the mask is detected, and the chip distortion is individually corrected.
JP8089357A 1996-04-11 1996-04-11 Electron beam exposure method Expired - Lifetime JP2830830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8089357A JP2830830B2 (en) 1996-04-11 1996-04-11 Electron beam exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8089357A JP2830830B2 (en) 1996-04-11 1996-04-11 Electron beam exposure method

Publications (2)

Publication Number Publication Date
JPH09283404A true JPH09283404A (en) 1997-10-31
JP2830830B2 JP2830830B2 (en) 1998-12-02

Family

ID=13968470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8089357A Expired - Lifetime JP2830830B2 (en) 1996-04-11 1996-04-11 Electron beam exposure method

Country Status (1)

Country Link
JP (1) JP2830830B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199414A (en) * 1995-11-17 1997-07-31 Sony Corp Methods for measuring alignment error and expositing and for controlling overlay accuracy in semiconductor device manufacturing process
JPH1079339A (en) * 1996-09-05 1998-03-24 Hitachi Ltd Method and apparatus for electron beam lithography
JP2000223397A (en) * 1999-01-29 2000-08-11 Nec Corp Method and apparatus for electron beam exposure
JP2001203162A (en) * 2000-12-18 2001-07-27 Hitachi Ltd Method and system for electron beam lithography
KR100605178B1 (en) * 2004-12-31 2006-07-31 동부일렉트로닉스 주식회사 Overlay measurement method
JP2015525477A (en) * 2012-06-06 2015-09-03 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Apparatus and method for determining alignment error
JP2017183735A (en) * 2017-05-10 2017-10-05 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Device and method for determining alignment error
WO2018144129A1 (en) * 2017-02-03 2018-08-09 Applied Materials, Inc. Method of pattern placement correction
WO2022152312A1 (en) * 2021-01-18 2022-07-21 香港中文大学(深圳) Chip embedded composite for electron beam exposure, preparation method therefor and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012637B (en) * 2009-09-07 2012-06-20 上海华虹Nec电子有限公司 Accurately-aligned correction model in photolithographic process

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199414A (en) * 1995-11-17 1997-07-31 Sony Corp Methods for measuring alignment error and expositing and for controlling overlay accuracy in semiconductor device manufacturing process
JPH1079339A (en) * 1996-09-05 1998-03-24 Hitachi Ltd Method and apparatus for electron beam lithography
JP2000223397A (en) * 1999-01-29 2000-08-11 Nec Corp Method and apparatus for electron beam exposure
JP2001203162A (en) * 2000-12-18 2001-07-27 Hitachi Ltd Method and system for electron beam lithography
KR100605178B1 (en) * 2004-12-31 2006-07-31 동부일렉트로닉스 주식회사 Overlay measurement method
JP2015525477A (en) * 2012-06-06 2015-09-03 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Apparatus and method for determining alignment error
US10410896B2 (en) 2012-06-06 2019-09-10 Ev Group E. Thallner Gmbh Apparatus and method for ascertaining orientation errors
US10134622B2 (en) 2012-06-06 2018-11-20 Ev Group E. Thallner Gmbh Apparatus and method for ascertaining orientation errors
US10115687B2 (en) 2017-02-03 2018-10-30 Applied Materials, Inc. Method of pattern placement correction
WO2018144129A1 (en) * 2017-02-03 2018-08-09 Applied Materials, Inc. Method of pattern placement correction
KR20190105245A (en) * 2017-02-03 2019-09-16 어플라이드 머티어리얼스, 인코포레이티드 Method of pattern placement correction
CN110268512A (en) * 2017-02-03 2019-09-20 应用材料公司 The method that pattern places correction
US10497658B2 (en) 2017-02-03 2019-12-03 Applied Materials, Inc. Method of pattern placement correction
JP2020506433A (en) * 2017-02-03 2020-02-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Pattern placement correction method
JP2017183735A (en) * 2017-05-10 2017-10-05 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Device and method for determining alignment error
WO2022152312A1 (en) * 2021-01-18 2022-07-21 香港中文大学(深圳) Chip embedded composite for electron beam exposure, preparation method therefor and application thereof

Also Published As

Publication number Publication date
JP2830830B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US6218200B1 (en) Multi-layer registration control for photolithography processes
US6537835B2 (en) Method of manufacturing semiconductor device and apparatus of automatically adjusting semiconductor pattern
JP2830830B2 (en) Electron beam exposure method
KR100194255B1 (en) How to Align Reticle Patterns
EP0150129B1 (en) Method and apparatus for lithographic rotate and repeat processing
US6239858B1 (en) Exposure method, exposure apparatus and semiconductor device manufactured by using the exposure apparatus
WO2007013140A1 (en) Aligning method
US20120140193A1 (en) Dynamic wafer alignment method in exposure scanner system
JP2001274073A (en) Method and system for overlay exposure
US20050025351A1 (en) Method for inspecting a defect in a photomask, method for manufacturing a semiconductor device and method for producing a photomask
JPH1154404A (en) Alignment method
JPH11176749A (en) Exposure method and manufacture of device
US6455211B1 (en) Pattern transfer method and apparatus, and device manufacturing method
US7452639B2 (en) Photomask with photoresist test patterns and pattern inspection method
TW200304669A (en) Multi-exposure lithography method and system providing increased overlay accuracy
JP2003017386A (en) Alignment method, method and apparatus for exposure, and method for manufacturing device
JP2002134397A (en) Photomask, semiconductor device, method for exposing semiconductor chip pattern and chip alignment accuracy inspecting device
JP2000040649A (en) Exposure method and position alignment mark
US6841451B2 (en) Method of fabricating semiconductor device having alignment mark
JPH11150054A (en) Mix-and-match exposure method
JP2003037038A (en) Projection exposure method
US6068955A (en) Methods of inspecting for mask-defined, feature dimensional conformity between multiple masks
JP2000260702A (en) Alignment of semiconductor device
JP2003318089A (en) Method of analyzing errors of exposed position, pattern for analyzing errors of exposed position, exposure mask, and exposure apparatus
JPS6244686B2 (en)