JPH092832A - Fiber drawing method of optical fiber and optical fiber drawing furnace - Google Patents

Fiber drawing method of optical fiber and optical fiber drawing furnace

Info

Publication number
JPH092832A
JPH092832A JP15646895A JP15646895A JPH092832A JP H092832 A JPH092832 A JP H092832A JP 15646895 A JP15646895 A JP 15646895A JP 15646895 A JP15646895 A JP 15646895A JP H092832 A JPH092832 A JP H092832A
Authority
JP
Japan
Prior art keywords
optical fiber
upper chamber
core tube
temperature
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15646895A
Other languages
Japanese (ja)
Other versions
JP3189968B2 (en
Inventor
Kohei Kobayashi
宏平 小林
Hiroaki Ota
博昭 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15646895A priority Critical patent/JP3189968B2/en
Publication of JPH092832A publication Critical patent/JPH092832A/en
Application granted granted Critical
Publication of JP3189968B2 publication Critical patent/JP3189968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/63Ohmic resistance heaters, e.g. carbon or graphite resistance heaters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/69Auxiliary thermal treatment immediately prior to drawing, e.g. pre-heaters, laser-assisted resistance heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE: To provide a fiber drawing furnace equipping a furnace core tube for supplying a preform, a heater surrounding the furnace core tube and an upper chamber linked to the upper end of the furnace core tube, capable of suppressing the convection of an inert gas between the neighborhood of the furnace core tube and the upper end part of the upper chamber by keeping the temperature at the upper end part of the upper chamber constant by heating. CONSTITUTION: The method for fiber drawing of an optical fiber is constituted by delivering a preform for the optical fiber 15 connected to the lower end of a supporting rod 18 successively to the side of a furnace core tube 14 accompanying to the fiber drawing, supplying an inert gas to the upper chamber 24 of the furnace core tube 14 through a gas supplying pipe 28, a gas introducing cylinder 27 and a gas introducing port 29, installing a heater 34 for keeping the temperature of the upper chamber 24, and controlling it with a regulating device 35 and a temperature sensor 34. On the verge of the completion of the fiber drawing work of the preform for the optical fiber 15, the temperature at the upper end part of the upper chamber 24 is lowered to <=100 deg.C in the case of not using the heater 34 for keeping the temperature, but by keeping the temperature at 100-700 deg.C with installing the heater 34 for keeping the temperature, the increase in the difference of a temperature of the inert gas in the inside of the furnace core tube is prevented and a good quality product with less line diameter variations can by stably produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、線径変動を抑制し得る
光ファイバの線引き方法およびこれに用いる光ファイバ
線引き炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber drawing method capable of suppressing fluctuations in wire diameter and an optical fiber drawing furnace used therefor.

【0002】[0002]

【従来の技術】通常、光ファイバは、棒状をなす光ファ
イバ用母材を光ファイバ線引き炉内で加熱軟化させて延
伸することにより線引きされる。この光ファイバの製造
コストを下げる一つの手段として、光ファイバ用母材を
長尺化し、その段取り替えを少なくすることが行われて
おり、数百キロメートルに亙る光ファイバの連続線引き
作業が実現されている。
2. Description of the Related Art Usually, an optical fiber is drawn by heating and softening a rod-shaped base material for an optical fiber in an optical fiber drawing furnace and stretching it. As one means of reducing the manufacturing cost of this optical fiber, it has been attempted to lengthen the optical fiber preform and reduce the number of setup changes, and it is possible to achieve continuous drawing work of optical fibers for hundreds of kilometers. ing.

【0003】このような長尺化した光ファイバ用母材を
線引きするために用いられる光ファイバ線引き炉には、
特開平2−6349号公報などに開示されているよう
に、光ファイバ用母材の下端部を加熱するヒータで囲ま
れた炉心管の上方に、この光ファイバ用母材の上部を収
納する煙突状の上部チャンバが形成され、炉心管内に連
通する半密閉空間を構成している。そして、この上部チ
ャンバの上端部にヘリウムや窒素などの不活性ガスを供
給し、上部チャンバおよびこれに連通する炉心管内を非
酸化性雰囲気に保持し、加熱溶融状態にある光ファイバ
用母材の下端部から光ファイバを線引きするようにして
いる。
An optical fiber drawing furnace used for drawing such a lengthened base material for an optical fiber is
As disclosed in Japanese Patent Application Laid-Open No. 2-6349, a chimney for storing the upper part of the optical fiber preform above the core tube surrounded by a heater for heating the lower end of the optical fiber preform. The upper chamber is formed into a semi-enclosed space that communicates with the inside of the core tube. Then, an inert gas such as helium or nitrogen is supplied to the upper end of the upper chamber, the upper chamber and the inside of the furnace core tube communicating with the same are held in a non-oxidizing atmosphere, and the base material for an optical fiber in a heated and melted state The optical fiber is drawn from the lower end.

【0004】[0004]

【発明が解決しようとする課題】上部チャンバを形成し
た光ファイバ線引き炉においては、光ファイバの線引き
作業が進行するに伴い、光ファイバ用母材が短くなって
上部チャンバ内に占めていた光ファイバ用母材の収納空
間が次第に空いてくる状態となる。このため、ここに位
置する不活性ガスが流動し易くなる上に炉心管の内側に
位置する不活性ガスとの温度差が大きくなる結果、炉心
管の周囲と上部チャンバの上端部との間で不活性ガスの
対流現象が発生することとなる。
In the optical fiber drawing furnace in which the upper chamber is formed, the optical fiber preform is shortened as the optical fiber drawing work progresses, and the optical fiber occupies the upper chamber. The storage space for the base material gradually becomes empty. Therefore, as a result of the inert gas located here easily flowing and the temperature difference between the inert gas located inside the core tube becoming large, as a result, between the periphery of the core tube and the upper end of the upper chamber. A convection phenomenon of the inert gas will occur.

【0005】このような不活性ガスの対流が発生する
と、加熱軟化状態にある光ファイバ用母材の下端部の雰
囲気を形成するガスの流れも不安定となり、線引きされ
る光ファイバの線径変動がかなり大きくなる傾向を持
ち、製品として所望の品質を得ることが困難となる。
When such an inert gas convection occurs, the gas flow forming the atmosphere at the lower end of the optical fiber preform in the heat-softened state also becomes unstable, and the fluctuation of the wire diameter of the drawn optical fiber. Has a tendency to become considerably large, and it becomes difficult to obtain a desired quality as a product.

【0006】上部チャンバ内でのこのような不活性ガス
の対流現象を阻止すべく、特開平2−6349号公報で
は、この対流現象を破壊し得るような流速の不活性ガス
を上部チャンバに供給することが提案されている。
In order to prevent such a convection phenomenon of an inert gas in the upper chamber, Japanese Patent Laid-Open No. 2-6349 discloses a method of supplying an inert gas to the upper chamber at a flow rate capable of destroying the convection phenomenon. It is suggested to do so.

【0007】しかし、この方法では最低でも毎秒0. 4
〜0. 5mの流速を確保する必要があるため、例えば炉
心管および上部チャンバの内径が100mmの場合、上下
方向に50cmの長さに亙って上部チャンバの内周壁に沿
って毎秒0. 5mの流速の旋回流を形成するためには、
支持棒の直径を25mmとして毎分281リットルもの不
活性ガスを供給しなければならない。不活性ガスの体積
が炉内の高温雰囲気によって数倍に膨張するとしても、
最低でも標準状態で毎分60〜80リットルもの不活性
ガスを供給する必要があり、ランニングコストが高くな
ってしまう。
However, at least 0.4 per second is possible with this method.
Since it is necessary to secure a flow velocity of ~ 0.5 m, for example, when the inner diameter of the core tube and the upper chamber is 100 mm, 0.5 m per second along the inner peripheral wall of the upper chamber for a length of 50 cm in the vertical direction. In order to form a swirling flow of
With a support rod diameter of 25 mm, 281 liters of inert gas must be supplied per minute. Even if the volume of the inert gas expands several times due to the high temperature atmosphere in the furnace,
It is necessary to supply as much as 60 to 80 liters of inert gas per minute in the standard state at a minimum, which increases running cost.

【0008】[0008]

【発明の目的】本発明の目的は、大量の不活性ガスを炉
内に供給することなく、上部チャンバ内での雰囲気ガス
の対流現象を防止し、均一な径の光ファイバを安定して
線引きすることが可能な光ファイバ線引き方法およびそ
の線引き炉を提供することにある。
It is an object of the present invention to prevent the convection phenomenon of atmospheric gas in the upper chamber without supplying a large amount of inert gas into the furnace and to stably draw an optical fiber having a uniform diameter. (EN) Provided is an optical fiber drawing method and a drawing furnace therefor.

【0009】[0009]

【課題を解決するための手段】本発明の第一の形態は、
光ファイバ用母材が供給される炉心管と、この炉心管を
囲むヒータと、炉心管の上端に接続して前記光ファイバ
用母材を収納すると共に前記光ファイバ用母材を支持す
る支持棒が貫通する上部チャンバとを具えた光ファイバ
線引き炉を用い、前記光ファイバ用母材の下端部を加熱
溶融させて光ファイバを線引きするようにした光ファイ
バ線引き方法において、前記上部チャンバの上端部を加
熱保温するようにしたことを特徴とする光ファイバ線引
き方法にある。
The first aspect of the present invention is as follows.
A core tube to which the optical fiber base material is supplied, a heater surrounding the core tube, and a support rod connected to the upper end of the core tube to accommodate the optical fiber base material and to support the optical fiber base material. Using an optical fiber drawing furnace having an upper chamber penetrating therethrough, in an optical fiber drawing method in which the lower end of the optical fiber preform is melted by heating to draw an optical fiber, the upper end of the upper chamber The method for drawing an optical fiber is characterized in that the above is heated and kept warm.

【0010】ここで、前記上部チャンバの上端部を10
0℃〜700℃の範囲、好ましくは200℃〜400℃
の範囲に加熱保温することが有効である。
Here, the upper end of the upper chamber is
Range of 0 ° C to 700 ° C, preferably 200 ° C to 400 ° C
It is effective to heat and keep the temperature within the range.

【0011】また、本発明の第二の形態は、光ファイバ
用母材が供給される炉心管と、この炉心管を囲むヒータ
と、炉心管の上端に接続して前記光ファイバ用母材を収
納すると共に前記光ファイバ用母材を支持する支持棒が
貫通する上部チャンバとを有する光ファイバ線引き炉に
おいて、前記上部チャンバを囲んでこの上部チャンバの
上端部を加熱する環状の保温ヒータを具えたことを特徴
とする光ファイバ線引き炉にある。
A second aspect of the present invention is to provide a core tube to which the optical fiber preform is supplied, a heater surrounding the furnace core tube, and the optical fiber preform connected to the upper end of the core tube. An optical fiber drawing furnace having an upper chamber through which a supporting rod for supporting the optical fiber preform penetrates and provided with an annular heat insulation heater surrounding the upper chamber and heating an upper end of the upper chamber. An optical fiber drawing furnace characterized by the above.

【0012】ここで、前記上部チャンバの上端部の雰囲
気温度を検出する温度センサと、この温度センサからの
検出情報に基づいて前記保温ヒータの作動を制御するヒ
ータ制御手段とをさらに具えることが望ましく、この場
合、前記ヒータ制御手段は、前記温度センサによって検
出される前記上部チャンバの上端部の雰囲気温度が10
0℃〜700℃の範囲、好ましくは200℃〜400℃
の範囲となるように前記保温ヒータの作動を制御するこ
とが有効である。
Here, a temperature sensor for detecting the ambient temperature of the upper end of the upper chamber, and a heater control means for controlling the operation of the warming heater based on the detection information from the temperature sensor may be further provided. Desirably, in this case, the heater control means sets the ambient temperature of the upper end of the upper chamber detected by the temperature sensor to 10
Range of 0 ° C to 700 ° C, preferably 200 ° C to 400 ° C
It is effective to control the operation of the heat retention heater so as to be in the range.

【0013】[0013]

【作用】光ファイバ用母材をヒータで加熱しつつその下
端部から光ファイバを線引きし、上部チャンバ内を占め
ていた光ファイバ用母材を下方へ移動すると共に支持棒
をこの上部チャンバ内に送り込む。この光ファイバの線
引き作業の進行に伴って上部チャンバ内の空間が次第に
増大し、ここの雰囲気温度が低下し易くなる傾向とな
る。
The optical fiber preform is drawn from the lower end while heating the optical fiber preform by the heater, the optical fiber preform occupying the inside of the upper chamber is moved downward, and the supporting rod is placed in the upper chamber. Send in. The space inside the upper chamber gradually increases with the progress of the drawing operation of the optical fiber, and the ambient temperature here tends to decrease.

【0014】本発明によると、この上部チャンバの上端
部を保温ヒータにて加熱することにより、上部チャンバ
の上端部の雰囲気温度の低下が未然に防止される。
According to the present invention, by heating the upper end portion of the upper chamber with the heat retention heater, it is possible to prevent the ambient temperature at the upper end portion of the upper chamber from lowering.

【0015】上部チャンバの上端部の雰囲気温度を検出
する温度センサと、この温度センサからの検出情報に基
づいて保温ヒータの作動を制御するヒータ制御手段とを
さらに具えた場合、ヒータ制御手段は、温度センサによ
って検出される上部チャンバの上端部の雰囲気温度が1
00℃〜700℃の範囲、好ましくは200℃〜400
℃の範囲となるように保温ヒータの作動を制御し、上部
チャンバ内での雰囲気ガスの対流現象を未然に防止す
る。
When a temperature sensor for detecting the ambient temperature at the upper end of the upper chamber and a heater control means for controlling the operation of the heat retention heater based on the detection information from the temperature sensor are further provided, the heater control means is: The ambient temperature at the upper end of the upper chamber detected by the temperature sensor is 1
In the range of 00 ° C to 700 ° C, preferably 200 ° C to 400
The operation of the heat-retaining heater is controlled so as to be in the range of ° C to prevent the convection phenomenon of the atmospheric gas in the upper chamber.

【0016】[0016]

【実施例】本発明の光ファイバ線引き方法を実現し得る
本発明による光ファイバ線引き炉の一実施例について、
図1〜図5を参照しながら詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the optical fiber drawing furnace according to the present invention which can realize the optical fiber drawing method of the present invention,
This will be described in detail with reference to FIGS.

【0017】本実施例における光ファイバ線引き炉の断
面構造を表す図1に示すように、冷却ジャケット11を
周囲に形成して断熱材12を内張りしたステンレス鋼製
の炉体13の中央部に設けられた円筒状の炉心管14の
周囲には、この炉心管14の内側に供給される光ファイ
バ用母材15の下端部を加熱溶融して光ファイバ16を
線引きするための環状をなすカーボンヒータ17が炉心
管14と同心に設けられている。光ファイバ用母材15
は、その上端が支持棒18の下端に連結されており、こ
の支持棒18の上端が図示しないチャックにより吊り下
げられ、光ファイバ16の線引きに伴って炉心管14側
へ順次送り込まれて行くようになっている。
As shown in FIG. 1 showing the cross-sectional structure of the optical fiber drawing furnace in this embodiment, a cooling jacket 11 is formed in the periphery and a heat insulating material 12 is lined in the central portion of a stainless steel furnace body 13. An annular carbon heater for heating and melting the lower end of the optical fiber preform 15 supplied to the inside of the cylindrical core tube 14 to draw the optical fiber 16 around the cylindrical core tube 14. 17 is provided concentrically with the core tube 14. Optical fiber base material 15
Has its upper end connected to the lower end of the support rod 18, and the upper end of this support rod 18 is hung by a chuck (not shown) and sequentially fed to the core tube 14 side as the optical fiber 16 is drawn. It has become.

【0018】前記炉心管14の下端には、炉体12から
下方に突出して内側に冷却ジャケット19を介して下部
チャンバ20を形成する延長筒21が接続しており、こ
の延長筒21の下端には、光ファイバ16が貫通する開
口22を中央に形成したシール板23が取り付けられて
いる。上述した二つの冷却ジャケット11, 19には、
図示しない冷媒循環供給装置が接続し、この冷媒循環供
給装置から冷却ジャケット11, 19内への冷媒の供給
を制御することによって、カーボンヒータ17と共に炉
心管14および下部チャンバ20内の雰囲気温度を所定
温度に保持するようになっている。
To the lower end of the core tube 14, an extension cylinder 21 is connected which projects downward from the furnace body 12 and forms a lower chamber 20 inside with a cooling jacket 19 connected to the lower end. A seal plate 23 having an opening 22 at the center through which the optical fiber 16 penetrates is attached. In the two cooling jackets 11 and 19 mentioned above,
By connecting a refrigerant circulation supply device (not shown) and controlling the supply of the refrigerant from the refrigerant circulation supply device into the cooling jackets 11 and 19, the ambient temperature in the furnace core tube 14 and the lower chamber 20 together with the carbon heater 17 is controlled to a predetermined value. It is designed to be held at temperature.

【0019】また、前記炉心管14の上端には、炉体1
2から上方に突出して内側に上部チャンバ24を形成す
る母材収納筒25が炉心管14の上端に接続している。
この母材収納筒25の周囲には、断熱材26で囲まれた
インコネルなどの耐熱合金にて形成したガス導入筒27
が配置されている。このガス導入筒27の下端部には、
図示しない不活性ガス供給源に接続するガス供給管28
が取り付けられ、前記母材収納筒25の上端部には、上
部チャンバ24内に連通する複数のガス導入口29が形
成されている。
At the upper end of the core tube 14, the furnace body 1
A base material storage cylinder 25 that projects upward from 2 and forms an upper chamber 24 inside is connected to the upper end of the core tube 14.
Around the base material storage cylinder 25, a gas introduction cylinder 27 formed of a heat-resistant alloy such as Inconel surrounded by a heat insulating material 26.
Is arranged. At the lower end of the gas introducing cylinder 27,
Gas supply pipe 28 connected to an inert gas supply source (not shown)
A plurality of gas introduction ports 29 communicating with the inside of the upper chamber 24 are formed at the upper end of the base material storage cylinder 25.

【0020】つまり、不活性ガス供給源からの不活性ガ
スは、ガス供給管28からガス導入筒27と母材収納筒
25との間に形成した環状の隙間からガス導入口29を
介して上部チャンバ24の上端部にヘリウムや窒素など
の不活性ガスが供給され、炉内を不活性ガス雰囲気に保
持するようになっている。
That is, the inert gas from the inert gas supply source passes through the gas introduction port 29 from the annular gap formed between the gas supply pipe 28 and the gas introducing cylinder 27 and the base material accommodating cylinder 25. An inert gas such as helium or nitrogen is supplied to the upper end portion of the chamber 24 to keep the inside of the furnace in an inert gas atmosphere.

【0021】前記母材収納筒25およびガス導入筒27
の上端には、光ファイバ用母材15が通過し得る大径の
開口30を形成した天板31が取り付けられ、この天板
31には、支持棒18が貫通する小径の開口32を形成
したシャッタリング33が重ね合わされている。また、
上部チャンバ24内を保温するための断熱材26の上端
部には、この断熱材26の上端部を囲んで上部チャンバ
24の上端部を加熱する環状の保温ヒータ34が取り付
けられており、この保温ヒータ34には、当該保温ヒー
タ34に対する通電のオン/オフを制御する制御装置3
5が接続している。この制御装置35には、上部チャン
バ24の上端部の雰囲気温度を検知する温度センサ36
が連結され、この温度センサ36からの検出情報が制御
装置35に出力されるようになっている。
The base material storage cylinder 25 and the gas introduction cylinder 27
A top plate 31 having a large-diameter opening 30 through which the optical fiber preform 15 can pass is attached to the upper end of the, and a small-diameter opening 32 through which the support rod 18 penetrates is formed in the top plate 31. The shutter ring 33 is superposed. Also,
At the upper end portion of the heat insulating material 26 for keeping the inside of the upper chamber 24 warm, an annular warming heater 34 that surrounds the upper end portion of the heat insulating material 26 and heats the upper end portion of the upper chamber 24 is attached. The heater 34 includes a control device 3 for controlling ON / OFF of energization of the heat retaining heater 34.
5 is connected. The control device 35 includes a temperature sensor 36 that detects the ambient temperature of the upper end of the upper chamber 24.
Are connected, and the detection information from the temperature sensor 36 is output to the control device 35.

【0022】そして、上部チャンバ24の上端部と炉心
管14で囲まれた部分との間での雰囲気ガスの熱対流が
発生しないように、保温ヒータ34によって上部チャン
バ24の上端部が適宜加熱されるのである。
The heat-retaining heater 34 appropriately heats the upper end of the upper chamber 24 so that thermal convection of the atmospheric gas does not occur between the upper end of the upper chamber 24 and the portion surrounded by the core tube 14. It is.

【0023】ところで、光ファイバ用母材15に対する
線引き作業の終了間際における炉の上端から下端に沿っ
た炉内温度の分布状態を図2に示す。実線が本願発明の
場合であり、破線が保温ヒータ34を使用していない従
来の場合である。つまり、保温ヒータ34を使用してい
ない従来の光ファイバ線引き炉では、光ファイバ用母材
15に対する線引き作業の終了間際における上部チャン
バ24の上端部の温度が100℃以下にまで低下してい
ることが判る。
By the way, FIG. 2 shows the distribution of the temperature inside the furnace from the upper end to the lower end of the furnace immediately before the end of the drawing work for the optical fiber preform 15. The solid line is the case of the present invention, and the broken line is the conventional case where the heat insulation heater 34 is not used. That is, in the conventional optical fiber drawing furnace that does not use the heat-retaining heater 34, the temperature of the upper end portion of the upper chamber 24 has dropped to 100 ° C. or lower just before the end of the drawing work for the optical fiber preform 15. I understand.

【0024】また、線引き作業の経過に伴う上部チャン
バ中央部の温度変化を図3に示す。図2と同様に、実線
が本願発明の場合であり、破線が保温ヒータ34を使用
していない従来の場合である。これは、800mmの長さ
の光ファイバ用母材15を使用した場合であり、その余
長が最初の半分以下になると、従来の光ファイバ用線引
き炉では急激に上部チャンバ24の上下方向中央部の温
度が低下してくることが判る。
FIG. 3 shows the temperature change in the central portion of the upper chamber as the wire drawing work progresses. Similar to FIG. 2, the solid line represents the case of the present invention, and the broken line represents the conventional case in which the heat retaining heater 34 is not used. This is a case where the optical fiber preform 15 having a length of 800 mm is used, and when the surplus length is less than the first half, the conventional optical fiber drawing furnace abruptly increases the vertical central portion of the upper chamber 24. It can be seen that the temperature of is decreasing.

【0025】さらに、線引きされた光ファイバ16の外
径寸法の変動量の変化を図4に示す。図2および図3と
同様に、実線が本願発明の場合であり、破線が保温ヒー
タ34を使用していない従来の場合である。この図4に
よると、光ファイバ用母材15の余長が最初の半分未満
になると、光ファイバ16の外径寸法の変動量が次第に
増大してくることが判る。
Further, FIG. 4 shows the change in the variation of the outer diameter of the drawn optical fiber 16. Similar to FIGS. 2 and 3, the solid line represents the case of the present invention, and the broken line represents the conventional case in which the heat retention heater 34 is not used. According to FIG. 4, when the extra length of the optical fiber preform 15 is less than the first half, the variation of the outer diameter dimension of the optical fiber 16 gradually increases.

【0026】ちなみに、図1に示した光ファイバ線引き
炉を用いて保温ヒータ34に通電せずに125μmの線
径の光ファイバ16を紡糸した場合、上部チャンバ24
の上端部の雰囲気温度と、線引された光ファイバ16の
外径寸法の変動量との関係を調べた結果、図5に示すよ
うな相関関係を得ることができた。
By the way, when the optical fiber 16 having a diameter of 125 μm is spun by the optical fiber drawing furnace shown in FIG.
As a result of investigating the relationship between the ambient temperature at the upper end of the and the variation in the outer diameter dimension of the drawn optical fiber 16, the correlation as shown in FIG. 5 could be obtained.

【0027】以上の結果から、光ファイバ線引き炉の上
部チャンバ24の上端部の雰囲気温度が100℃未満に
なると、光ファイバ16の外径寸法の変動量が±0. 4
μm以上に増大するので、光ファイバ線引き炉の上部チ
ャンバ24の上端部の雰囲気温度を100℃以上に保持
することが必要である。特に、変動量を±0. 2μm以
下にする必要がある場合には、上部チャンバ24の上端
部の雰囲気温度を200℃以上に保持することが好まし
い。また、上部チャンバ24の上端部の雰囲気温度を4
00℃以上に保持した場合には、光ファイバ16の外径
寸法の変動量を±0. 1μm未満に抑えることができる
が、700℃以上に保持したとしても光ファイバ16の
外径寸法の変動量をそれ以上改善することができないこ
とから、上部チャンバ24の上端部の雰囲気温度を10
0℃から700℃の範囲、好ましくは200℃から40
0℃の範囲に保持することが有効である。
From the above results, when the ambient temperature at the upper end of the upper chamber 24 of the optical fiber drawing furnace becomes lower than 100 ° C., the variation of the outer diameter of the optical fiber 16 is ± 0.4.
Since it increases to μm or more, it is necessary to maintain the atmospheric temperature at the upper end of the upper chamber 24 of the optical fiber drawing furnace at 100 ° C. or more. In particular, when the fluctuation amount needs to be ± 0.2 μm or less, it is preferable to maintain the atmospheric temperature of the upper end portion of the upper chamber 24 at 200 ° C. or higher. Also, the ambient temperature at the upper end of the upper chamber 24 is set to 4
When the temperature is kept at 00 ° C or higher, the fluctuation amount of the outer diameter of the optical fiber 16 can be suppressed to less than ± 0.1 μm. Since the amount cannot be further improved, the ambient temperature at the upper end of the upper chamber 24 is set to 10
In the range of 0 ° C to 700 ° C, preferably 200 ° C to 40 ° C
It is effective to keep the temperature in the range of 0 ° C.

【0028】このようなことから、上述した制御装置3
5は、温度センサ36からの検出情報に基づき、上部チ
ャンバ24の上端部の雰囲気温度が300℃前後となる
ように、保温ヒータ34に対する通電のオン/オフを制
御し、光ファイバ16の線径変動量が±0. 1μmとな
るようにしている。
From the above, the control device 3 described above is used.
Reference numeral 5 controls on / off of energization to the heat-retaining heater 34 based on the detection information from the temperature sensor 36 so that the ambient temperature at the upper end of the upper chamber 24 is around 300 ° C. The amount of fluctuation is set to ± 0.1 μm.

【0029】[0029]

【発明の効果】本発明の光ファイバ線引き方法およびそ
の装置によると、前記上部チャンバを囲んでこの上部チ
ャンバの上端部を加熱する環状の保温ヒータを設けたの
で、光ファイバ用母材が短くなって上部チャンバ内に占
めていた光ファイバ用母材の収納空間が次第に空いてき
た場合、この上部チャンバの上端部を加熱保温して炉心
管の内側に位置する不活性ガスとの温度差が大きくなら
ないようにすることできるため、炉心管の周囲と上部チ
ャンバの上端部との間での不活性ガスの対流現象を抑制
することが可能となる。この結果、光ファイバ用母材の
全長に亙って線径変動量の少ない良好な品質の光ファイ
バを安定して製造することができる。
According to the optical fiber drawing method and apparatus of the present invention, since the annular heat-retaining heater which surrounds the upper chamber and heats the upper end of the upper chamber is provided, the optical fiber preform is shortened. When the storage space for the optical fiber preform, which was occupied in the upper chamber, gradually becomes open, the upper end of this upper chamber is heated and kept warm, resulting in a large temperature difference with the inert gas located inside the core tube. Therefore, it is possible to suppress the convection phenomenon of the inert gas between the periphery of the core tube and the upper end of the upper chamber. As a result, it is possible to stably manufacture an optical fiber of good quality with a small variation in the wire diameter over the entire length of the optical fiber preform.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実現し得る本発明による光ファイ
バ線引き炉の一実施例の概略構造を表す断面図である。
FIG. 1 is a sectional view showing a schematic structure of an embodiment of an optical fiber drawing furnace according to the present invention capable of realizing the method of the present invention.

【図2】光ファイバ用母材の余長が短くなった状態にお
ける図1に示した実施例および従来の光ファイバ線引き
炉の上下方向に沿った温度分布をそれぞれ表すグラフで
ある。
2 is a graph showing temperature distributions in the vertical direction of the optical fiber drawing furnace of the embodiment shown in FIG. 1 and the conventional optical fiber drawing furnace, respectively, in a state where the excess length of the optical fiber preform is shortened.

【図3】図1に示した実施例および従来の光ファイバ線
引き炉における上部チャンバの上端部の温度変化をそれ
ぞれ表すグラフである。
FIG. 3 is a graph showing temperature changes at the upper end of the upper chamber in the example shown in FIG. 1 and the conventional optical fiber drawing furnace.

【図4】図1に示した実施例および従来の光ファイバ線
引き炉における光ファイバの線径変動の過程をそれぞれ
表すグラフである。
4A and 4B are graphs showing a process of fluctuations in the diameter of the optical fiber in the embodiment shown in FIG. 1 and the conventional optical fiber drawing furnace, respectively.

【図5】上部チャンバの上端部の雰囲気温度と光ファイ
バの線径変動量との関係を表すグラフである。
FIG. 5 is a graph showing the relationship between the ambient temperature at the upper end of the upper chamber and the amount of variation in the diameter of the optical fiber.

【符号の説明】[Explanation of symbols]

11 冷却ジャケット 12 断熱材 13 炉体 14 炉心管 15 光ファイバ用母材 16 光ファイバ 17 カーボンヒータ 18 支持棒 19 冷却ジャケット 20 下部チャンバ 21 延長筒 22 開口 23 シール板 24 上部チャンバ 25 母材収納筒 26 断熱材 27 ガス導入筒 28 ガス供給管 29 ガス導入口 30 開口 31 天板 32 開口 33 シャッタリング 34 保温ヒータ 35 制御装置 36 温度センサ 11 Cooling Jacket 12 Heat Insulating Material 13 Furnace Body 14 Core Tube 15 Optical Fiber Base Material 16 Optical Fiber 17 Carbon Heater 18 Support Rod 19 Cooling Jacket 20 Lower Chamber 21 Extension Tube 22 Opening 23 Seal Plate 24 Upper Chamber 25 Base Material Storage Tube 26 Heat insulating material 27 Gas introduction cylinder 28 Gas supply pipe 29 Gas introduction port 30 Opening 31 Top plate 32 Opening 33 Shuttering 34 Heat retention heater 35 Control device 36 Temperature sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ用母材が供給される炉心管
と、この炉心管を囲むヒータと、炉心管の上端に接続し
て前記光ファイバ用母材を収納すると共に前記光ファイ
バ用母材を支持する支持棒が貫通する上部チャンバとを
具えた光ファイバ線引き炉を用い、前記光ファイバ用母
材の下端部を加熱溶融させて光ファイバを線引きするよ
うにした光ファイバ線引き方法において、 前記上部チャンバの上端部を加熱保温するようにしたこ
とを特徴とする光ファイバ線引き方法。
1. A furnace core tube to which a base material for an optical fiber is supplied, a heater surrounding the furnace core tube, an upper end of the furnace core tube to accommodate the base material for the optical fiber, and the base material for the optical fiber. Using an optical fiber drawing furnace having an upper chamber through which a supporting rod that supports the optical fiber drawing method, wherein the lower end of the optical fiber preform is heated and melted to draw the optical fiber, An optical fiber drawing method, characterized in that the upper end of the upper chamber is heated and kept warm.
【請求項2】 前記上部チャンバの上端部を100℃〜
700℃の範囲、好ましくは200℃〜400℃の範囲
に加熱保温するようにしたことを特徴とする請求項1に
記載した光ファイバ線引き方法。
2. The upper end of the upper chamber is at 100 ° C.
The optical fiber drawing method according to claim 1, wherein the temperature is kept warm by heating in the range of 700 ° C, preferably in the range of 200 ° C to 400 ° C.
【請求項3】 光ファイバ用母材が供給される炉心管
と、この炉心管を囲むヒータと、炉心管の上端に接続し
て前記光ファイバ用母材を収納すると共に前記光ファイ
バ用母材を支持する支持棒が貫通する上部チャンバとを
有する光ファイバ線引き炉において、 前記上部チャンバを囲んでこの上部チャンバの上端部を
加熱する環状の保温ヒータを具えたことを特徴とする光
ファイバ線引き炉。
3. A core tube to which an optical fiber preform is supplied, a heater surrounding the core tube, an upper end of the furnace tube is connected to accommodate the optical fiber preform and the optical fiber preform. An optical fiber drawing furnace having an upper chamber through which a supporting rod for supporting the upper chamber penetrates, the optical fiber drawing furnace comprising an annular heat insulation heater surrounding the upper chamber and heating an upper end of the upper chamber. .
【請求項4】 前記上部チャンバの上端部の雰囲気温度
を検出する温度センサと、この温度センサからの検出情
報に基づいて前記保温ヒータの作動を制御するヒータ制
御手段とをさらに具えたことを特徴とする請求項3に記
載した光ファイバ線引き炉。
4. A temperature sensor for detecting an ambient temperature of an upper end portion of the upper chamber, and a heater control means for controlling an operation of the heat retaining heater based on detection information from the temperature sensor. The optical fiber drawing furnace according to claim 3.
【請求項5】 前記ヒータ制御手段は、前記温度センサ
によって検出される前記上部チャンバの上端部の雰囲気
温度が100℃〜700℃の範囲、好ましくは200℃
〜400℃の範囲となるように前記保温ヒータの作動を
制御するものであることを特徴とする請求項4に記載し
た光ファイバ線引き炉。
5. The heater control means has an atmospheric temperature of the upper end of the upper chamber detected by the temperature sensor in a range of 100 ° C. to 700 ° C., preferably 200 ° C.
The optical fiber drawing furnace according to claim 4, wherein the operation of the heat retention heater is controlled so as to be in the range of 400 ° C to 400 ° C.
JP15646895A 1995-06-22 1995-06-22 Optical fiber drawing method and optical fiber drawing furnace Expired - Lifetime JP3189968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15646895A JP3189968B2 (en) 1995-06-22 1995-06-22 Optical fiber drawing method and optical fiber drawing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15646895A JP3189968B2 (en) 1995-06-22 1995-06-22 Optical fiber drawing method and optical fiber drawing furnace

Publications (2)

Publication Number Publication Date
JPH092832A true JPH092832A (en) 1997-01-07
JP3189968B2 JP3189968B2 (en) 2001-07-16

Family

ID=15628413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15646895A Expired - Lifetime JP3189968B2 (en) 1995-06-22 1995-06-22 Optical fiber drawing method and optical fiber drawing furnace

Country Status (1)

Country Link
JP (1) JP3189968B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051534A1 (en) * 1998-04-03 1999-10-14 Sumitomo Electric Industries, Ltd. Furnace and method for optical fiber wire drawing
US6735983B1 (en) 1998-11-13 2004-05-18 Sumitomo Electric Industries, Ltd. Optical fiber drawing method and drawing furnace
JP2009234857A (en) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The Optical fiber drawing method and optical fiber drawing apparatus
JP2012246219A (en) * 2012-09-06 2012-12-13 Furukawa Electric Co Ltd:The Drawing furnace of optical fiber
EP3543218A1 (en) * 2018-03-22 2019-09-25 Corning Incorporated Method and apparatus for suppressing flow instabilities in an optical fiber draw system
NL2020854B1 (en) * 2018-03-22 2019-10-02 Corning Inc Method and apparatus for suppressing flow instabilities in an optical fiber draw system
US20210355018A1 (en) * 2020-05-15 2021-11-18 Corning Incorporated Optical fiber forming apparatus
RU2774544C2 (en) * 2018-03-22 2022-06-21 Корнинг Инкорпорейтед Furnace system for suppressing the instability of the process gas flow when pulling an optical fibre preform during production
US11498862B2 (en) 2020-01-24 2022-11-15 Corning Incorporated Optical fiber draw furnace system and method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051534A1 (en) * 1998-04-03 1999-10-14 Sumitomo Electric Industries, Ltd. Furnace and method for optical fiber wire drawing
US6668592B1 (en) 1998-04-03 2003-12-30 Sumitomo Electric Industries, Ltd. Optical fiber drawing furnace having adjustable partitions
US6810692B2 (en) 1998-04-03 2004-11-02 Sumitomo Electric Industries, Ltd. Method of controlling an upper portion of an optical fiber draw furnace
US6735983B1 (en) 1998-11-13 2004-05-18 Sumitomo Electric Industries, Ltd. Optical fiber drawing method and drawing furnace
JP2009234857A (en) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The Optical fiber drawing method and optical fiber drawing apparatus
JP2012246219A (en) * 2012-09-06 2012-12-13 Furukawa Electric Co Ltd:The Drawing furnace of optical fiber
NL2020854B1 (en) * 2018-03-22 2019-10-02 Corning Inc Method and apparatus for suppressing flow instabilities in an optical fiber draw system
WO2019183014A1 (en) * 2018-03-22 2019-09-26 Corning Incorporated Method and apparatus for suppressing flow instabilities in an optical fiber draw system
EP3543218A1 (en) * 2018-03-22 2019-09-25 Corning Incorporated Method and apparatus for suppressing flow instabilities in an optical fiber draw system
US11198636B2 (en) 2018-03-22 2021-12-14 Corning Incorporated Method and apparatus for suppressing flow instabilities in an optical fiber draw system
US20220002182A1 (en) * 2018-03-22 2022-01-06 Corning Incorporated Method and apparatus for suppressing flow instabilities in an optical fiber draw system
RU2774544C2 (en) * 2018-03-22 2022-06-21 Корнинг Инкорпорейтед Furnace system for suppressing the instability of the process gas flow when pulling an optical fibre preform during production
CN115536263A (en) * 2018-03-22 2022-12-30 康宁股份有限公司 Method and apparatus for suppressing flow instabilities in fiber draw systems
US11554980B2 (en) 2018-03-22 2023-01-17 Corning Incorporated Method and apparatus for suppressing flow instabilities in an optical fiber draw system
CN115536263B (en) * 2018-03-22 2024-04-09 康宁股份有限公司 Method and apparatus for suppressing flow instabilities in optical fiber drawing systems
US11498862B2 (en) 2020-01-24 2022-11-15 Corning Incorporated Optical fiber draw furnace system and method
US11820696B2 (en) 2020-01-24 2023-11-21 Corning Incorporated Optical fiber draw furnace system and method
US20210355018A1 (en) * 2020-05-15 2021-11-18 Corning Incorporated Optical fiber forming apparatus
US11827555B2 (en) * 2020-05-15 2023-11-28 Corning Incorporated Optical fiber forming apparatus

Also Published As

Publication number Publication date
JP3189968B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
EP1001912B1 (en) Apparatus and method for overcladding optical fiber preform rod and optical fiber drawing method
RU2116269C1 (en) Furnace for spinning of optical fibers and method of joining of intermediate products of optical fibers
JPH092832A (en) Fiber drawing method of optical fiber and optical fiber drawing furnace
US6134922A (en) Method for drawing a glass ingot
EP0471152B1 (en) Method of forming glass articles
JP2922483B2 (en) Method and apparatus for providing a tinted glass stream
US20030000255A1 (en) Method of producing optical fiber preform and sintering apparatus
US20020178762A1 (en) Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
JPH0672736A (en) Induction furnace for drawing optical fiber
JP2870058B2 (en) Optical fiber drawing furnace and drawing method
JP4404203B2 (en) Optical fiber manufacturing method
US20090260401A1 (en) Heater having multi hot-zones, furnace having the heater for drawing down optical fiber preform into optical fiber, and method for drawing optical fiber using the same
RU2757891C1 (en) Apparatus for supplying gas to a furnace, apparatus for producing optical fibre, and method for producing optical fibre
JP3236215B2 (en) Magnesia fiber drawer furnace
JP2019026524A (en) Manufacturing method and cap
EP1165451B1 (en) Method and apparatus for the thermal treatment of an object such as an optical fiber preform
JPH05208840A (en) Method for optical fiber spinning and equipment therefor
JP2922482B2 (en) Method and apparatus for providing a tinted glass stream
JP3842003B2 (en) Apparatus and method for manufacturing optical fiber preform base material
JPH06199537A (en) Optical fiber drawing furnace
JP2778648B2 (en) Heating furnace for optical element molding
KR20040047441A (en) Graphite resistance furnace providing non-oxidizing atmosphere, an apparatus for preventing entry of air, and a furnace having the same
JP2004161563A (en) Method and apparatus for drawing optical fiber
JP2000203869A (en) Fiber drawing of optical fiber and fiber drawing oven
JPH05147970A (en) Optical fiber drawing furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term