JPH09283155A - Manufacture of electrode for high molecular solid electrolyte fuel cell - Google Patents

Manufacture of electrode for high molecular solid electrolyte fuel cell

Info

Publication number
JPH09283155A
JPH09283155A JP8113191A JP11319196A JPH09283155A JP H09283155 A JPH09283155 A JP H09283155A JP 8113191 A JP8113191 A JP 8113191A JP 11319196 A JP11319196 A JP 11319196A JP H09283155 A JPH09283155 A JP H09283155A
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
electrolyte fuel
grooves
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8113191A
Other languages
Japanese (ja)
Inventor
Keiji Murayama
恵二 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Original Assignee
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Stonehart Associates Inc filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP8113191A priority Critical patent/JPH09283155A/en
Publication of JPH09283155A publication Critical patent/JPH09283155A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode, which can improve the H2 gas supplying property of an anode and which can improve the oxidizing gas and water discharging property of a cathode, by forming specified grooves in an electrode base material, and forming a catalyst layer thereon in the predetermined condition. SOLUTION: An electrode base material 1, which is desirably formed of a carbon paper, is formed with plural parallel grooves or grid-shaped grooves 3 at 1μ-1mm of width by a dicing device, and the paste-like catalyst obtained by forming the carbon powder, which carries platinum, into the paste with water or the organic solvent such as alcohol having C3-4 is coated thereon, and dried so as to form a catalyst layer. As a cross section shape, a square at about 1μ-1mm of width and at about 1μ-1mm of depth is desirable, but various shapes such as a U-shape, V-shape and semi-circular are possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高分子固体電解質
型燃料電池用電極の製作方法に係り、特に高分子固体電
解質型燃料電池の特性向上に好適な電極の製作方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode for a polymer electrolyte fuel cell, and more particularly to a method for manufacturing an electrode suitable for improving the characteristics of a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】従来、高分子固体電解質型燃料電池用電
極を製作するには、カーボンペーパーなどを電極形状に
合わせて切り取った電極基材の片面に、ペースト状の触
媒を塗布、乾燥して触媒層を形成していた。
2. Description of the Related Art Conventionally, in order to manufacture an electrode for a polymer electrolyte fuel cell, a paste catalyst is applied to one side of an electrode base material cut out in accordance with the shape of the electrode such as carbon paper and dried. The catalyst layer was formed.

【0003】一方、近時高分子固体電解質型燃料電池
は、軽量、小型化の要請に伴い、これに用いられる電極
も小型化が要請され、且つ触媒の利用率の向上ならびに
アノード(H2 極)としてのガスの供給性の向上やカソ
ード(O2 極)としての水の排出性の向上が要求される
ようになってきた。
On the other hand, in recent years, solid polymer electrolyte fuel cells have been required to be lighter and smaller, so that the electrodes used therefor are also required to be smaller, and the catalyst utilization rate is improved and the anode (H 2 electrode) is used. ) Has been required to be improved, and the discharge property of water as a cathode (O 2 electrode) has been required to be improved.

【0004】しかし、上記従来の電極の製作方法では、
このような要求に対応できる電極を得ることができなか
った。
However, in the above-mentioned conventional electrode manufacturing method,
It has not been possible to obtain an electrode that can meet such requirements.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、触媒
の利用率の向上ならびにアノード(H2 極)としての水
素ガスの供給性の向上やカソード(O2 極)としての酸
化ガスの供給性、水の排出性の向上を図ることのできる
高分子固体電解質型燃料電池用電極の製作方法を提供し
ようとするものである。
Therefore, the present invention is directed to improving the utilization rate of the catalyst, improving the supply of hydrogen gas as the anode (H 2 electrode), and supplying the oxidizing gas as the cathode (O 2 electrode). Another object of the present invention is to provide a method for producing an electrode for a polymer electrolyte fuel cell, which can improve the drainage of water.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明の高分子固体電解質型燃料電池用電極の製作方
法は、電極基材に複数の平行溝又は格子状の溝を形成
し、その上にペースト状の触媒を塗布し、乾燥して触媒
層を形成することを特徴とするものであり、前記溝はダ
イシング装置を使用して形成しその幅は1μm〜1mm幅
とすることが望ましい。上記の電極基材は、カーボンペ
ーパーであることが好ましく、ペースト状の触媒は、白
金を担持したカーボン粉末を水又は有機溶剤でペースト
状になしたものが好ましい。
Means for Solving the Problems In order to solve the above problems, a method for producing an electrode for a polymer electrolyte fuel cell according to the present invention comprises forming a plurality of parallel grooves or grid-like grooves on an electrode substrate, It is characterized in that a catalyst in paste form is applied thereon and dried to form a catalyst layer, and the groove is formed by using a dicing device, and its width is 1 μm to 1 mm. desirable. The above-mentioned electrode base material is preferably carbon paper, and the paste-like catalyst is preferably one in which carbon powder carrying platinum is made into a paste form with water or an organic solvent.

【0007】該電極基材表面に形成される溝は、前述の
通り該電極基材表面に担持されかつ露出して電極反応に
利用される触媒量を最大とするとともに、電極へのガス
供給及び電極からのガス排出を円滑にするため機能を有
する。従って前記溝の幅、ピッチ及び深さ等は該機能を
損なわない範囲で適宜決定すれば良い。好ましい溝の断
面形状は幅が1μm〜1mm程度、深さも1μm〜1mm程
度の方形状であり、そのピッチが5μm〜5mm程度と
し、溝の数はピッチと電極基材の幅に応じて決定され
る。しかしこの溝の断面形状も電極面積増大及びガスの
円滑流通という機能が確保されれば前記方形状に特に限
定されるものではなく、U字状、V字状、半円状等の各
種形状とすることができる。
The groove formed on the surface of the electrode base material maximizes the amount of the catalyst which is carried and exposed on the surface of the electrode base material and utilized in the electrode reaction as described above, and the gas supply to the electrode and It has a function for smoothing gas discharge from the electrode. Therefore, the width, pitch, depth, etc. of the grooves may be appropriately determined within a range that does not impair the function. A preferred cross-sectional shape of the groove is a rectangular shape having a width of about 1 μm to 1 mm and a depth of about 1 μm to 1 mm, and its pitch is about 5 μm to 5 mm, and the number of grooves is determined according to the pitch and the width of the electrode base material. It However, the cross-sectional shape of the groove is not particularly limited to the rectangular shape as long as the functions of increasing the electrode area and smooth flow of gas are secured, and various shapes such as U-shape, V-shape, and semi-circle shape can be used. can do.

【0008】この複数の溝はガスの円滑供給及び円滑排
出という観点から曲線を構成したり隣接する溝同士が互
いに交差したりすることは望ましくなく、直線状の溝が
互いに平行に位置しあるいはこれらの複数の平行な直線
状溝同士が直角に交差して格子状を構成していることが
望ましい。前述したカーボンペーパー等の電極基材表面
に複数の溝を形成することは簡単ではないが、本発明で
はダイシング装置を使用して好適に形成できる。このダ
イシング装置には通常2枚以上の平行なブレードが設置
され、該ブレードの回転により前記電極基材表面に複数
の平行又は格子状の溝を形成できる。しかし本発明方法
ではこのダイシング装置以外で複数の溝を形成すること
もできる。
It is not desirable that the plurality of grooves form a curved line or that adjacent grooves intersect with each other from the viewpoint of smooth gas supply and smooth discharge, and the linear grooves are located in parallel with each other. It is preferable that the plurality of parallel linear grooves of (1) intersect at a right angle to form a lattice shape. Although it is not easy to form a plurality of grooves on the surface of the electrode base material such as the carbon paper described above, the present invention can be suitably formed using a dicing device. Two or more parallel blades are usually installed in this dicing device, and a plurality of parallel or lattice-shaped grooves can be formed on the surface of the electrode base material by rotating the blades. However, in the method of the present invention, a plurality of grooves can be formed by means other than this dicing device.

【0009】次いでこのように複数の溝を形成した電極
基材表面に触媒層を被覆する。この触媒層は前記溝を含
む電極基材表面全体に形成することにより電極面積の増
大という本発明方法の一方の目的を達成する。この触媒
は微粒子状の担体上に触媒金属を担持して成り、担体と
してはカーボン粒子、触媒金属としては白金やパラジウ
ム等の白金族金属を好ましく使用できる。該触媒の電極
基材表面への被覆はそのまま行なってもカーボン粒子等
の担体をカーボンペーパー等の電極基材表面に強固に付
着させることができないため、前記担体を適度の粘性を
有する有機溶剤例えば炭素数3〜4のアルコールを使用
してペーストとし、該ペーストを前記電極基材表面に塗
布及び乾燥し、必要に応じて更に焼成を行なって燃料電
池用電極を構成する。該電極は、複数の溝を形成した電
極基材上にペーストを塗布し乾燥しているため、電極基
材表面の溝つまり凹部にペーストが進入し前記溝の上部
のペースト量が不足して最終的に生成する電極表面に凹
凸が生じ、これにより電極面積が増大して触媒の利用率
も向上する。
Next, the surface of the electrode substrate having the plurality of grooves thus formed is coated with a catalyst layer. By forming this catalyst layer on the entire surface of the electrode base material including the groove, one of the purposes of the method of the present invention of increasing the electrode area is achieved. This catalyst is formed by supporting a catalyst metal on a fine particle carrier, preferably carbon particles as the carrier, and platinum group metals such as platinum and palladium as the catalyst metal. Even if the catalyst is coated on the surface of the electrode base material as it is, the carrier such as carbon particles cannot be firmly adhered to the surface of the electrode base material such as carbon paper, and therefore the carrier is an organic solvent having an appropriate viscosity, for example, A paste is prepared by using an alcohol having 3 to 4 carbon atoms, the paste is applied to the surface of the electrode base material, dried, and further fired if necessary to form a fuel cell electrode. Since the electrode is formed by applying a paste onto an electrode base material having a plurality of grooves and drying the paste, the paste enters the grooves, that is, the recesses on the surface of the electrode base material, and the amount of the paste above the grooves is insufficient, so that the final As a result, irregularities are generated on the surface of the electrode, which increases the electrode area and improves the catalyst utilization rate.

【0010】上記の製作方法で製作した高分子固体電解
質型燃料電池用電極は、電極基材に複数の好ましくは多
数の平行溝又は格子状の溝が形成され、その上に触媒層
が形成されているので、電極面積が著しく増大し、該電
極を前記高分子固体電解質型燃料電池用として使用する
と電解質膜との接合面積が数倍にも増大する。従って、
この電極をアノード(H2 極)側で使用すると、水素ガ
スとの接触効率従って触媒の利用率が向上すると共に水
素ガスの供給性が向上し、カソード(O2 極)側で使用
すると、酸素ガスとの接触効率従って触媒の利用率が向
上すると共に酸化ガスの供給性、生成水の排出性が向上
し、高分子固体電解質型燃料電池の電池特性が向上す
る。
In the polymer solid oxide fuel cell electrode manufactured by the above manufacturing method, a plurality of parallel grooves or grid grooves, preferably a plurality of grooves, are formed on the electrode substrate, and the catalyst layer is formed thereon. Therefore, the electrode area is remarkably increased, and when the electrode is used for the polymer electrolyte fuel cell, the joint area with the electrolyte membrane is increased several times. Therefore,
Using this electrode at the anode (H 2-pole) side, to improve the supply of hydrogen gas along with contact efficiency therefore catalyst utilization of hydrogen gas is increased, the cathode (O 2-pole) when used in the side, oxygen The efficiency of contact with gas and thus the utilization rate of the catalyst is improved, the supply of the oxidizing gas and the discharge of the produced water are improved, and the cell characteristics of the polymer electrolyte fuel cell are improved.

【0011】[0011]

【実施例】次に本発明方法の実施例を添付図面を参照し
ながら説明する。
Embodiments of the method of the present invention will now be described with reference to the accompanying drawings.

【実施例1】図1に示すように電極基材である縦 150mm
×横 200mm×厚さ0.36mmのカーボンペーパー1に、ダイ
シング装置のブレード2の回転により幅 100μm深さ50
μmの溝を 200μmピッチで図2に示すように格子状に
形成し、この格子状の溝3の上に、白金を担持したカー
ボン粉末(粒径20μmから30μm)を有機溶剤(1−プ
ロパノール)でペースト状にした触媒を塗布し、乾燥し
て、図3に示すように厚さ50〜80μmの触媒層4を形成
して、高分子固体電解質型燃料電池用電極5を得た。
Example 1 As shown in FIG. 1, the electrode base material is 150 mm in length.
× width 200mm × thickness 0.36mm carbon paper 1 by rotating the blade 2 of the dicing device, width 100μm depth 50
Grooves of μm are formed in a grid pattern at a pitch of 200 μm as shown in FIG. 2, and carbon powder (particle size 20 μm to 30 μm) carrying platinum is placed on the grid-shaped grooves 3 with an organic solvent (1-propanol). The catalyst in paste form was applied and dried to form a catalyst layer 4 having a thickness of 50 to 80 μm as shown in FIG. 3 to obtain a polymer solid oxide fuel cell electrode 5.

【0012】こうして得た高分子固体電解質型燃料電池
用電極5を、図5に示すように縦 250mm×横 250mm×厚
さ8mmのセパレータ6、7の中央部に接合し、Oリング
10によりシールされた電解質膜(デュポン社製ナフィ
オン112 膜)8を挾んで対向させて高分子固体電解質型
燃料電池のシングルセル9を構成した。このシングルセ
ル9で燃料ガスをH2 、酸化ガスを空気とし、1kgf/cm
2 の加圧で運転した処、本実施例の電極5を備えたセパ
レータ6、7を有するシングルセル9では最高出力 0.4
W/cm2 で、後述する比較例よりも出力が向上した。これ
は本実施例の電極5が、電解質膜8との接合面積が増大
し、触媒の利用率が向上し、アノードとして水素ガスの
供給性が向上し、カソードとして空気の供給性、生成水
の排出性が向上し、全体として電池特性が向上したから
であると推測される。
The polymer solid oxide fuel cell electrode 5 thus obtained is joined to the central portion of separators 6 and 7 of length 250 mm × width 250 mm × thickness 8 mm as shown in FIG. The electrolyte membrane (Nafion 112 membrane manufactured by DuPont) 8 was sandwiched and opposed to each other to form a single cell 9 of a polymer electrolyte fuel cell. In this single cell 9, the fuel gas is H 2 , the oxidizing gas is air, and 1 kgf / cm
When operated at a pressure of 2 , the maximum output of the single cell 9 having the separators 6 and 7 equipped with the electrode 5 of the present example is 0.4.
At W / cm 2 , the output was improved as compared with the comparative example described later. This means that the electrode 5 of the present embodiment has an increased bonding area with the electrolyte membrane 8, an improved utilization rate of the catalyst, an improved hydrogen gas supply ability as an anode, an air supply ability as a cathode, and generated water. It is presumed that this is because the discharge property was improved and the battery characteristics were improved as a whole.

【0013】[0013]

【比較例1】一方、前記格子状の溝3を形成しないカー
ボンペーパー1上に触媒層4を形成した実施例1と同一
寸法の図4に示す高分子固体電解質型燃料電池用電極
5′を使用して同様にして高分子固体電解質型燃料電池
のシングルセル9′を構成した。このシングルセル9′
を使用して実施例1と同一条件で運転した処、最高出力
0.3W/cm2 であり、出力が低下した。
Comparative Example 1 On the other hand, a solid polymer electrolyte fuel cell electrode 5'shown in FIG. 4 having the same dimensions as in Example 1 in which the catalyst layer 4 was formed on the carbon paper 1 on which the grid-shaped grooves 3 were not formed was used. A single cell 9'of a polymer electrolyte fuel cell was constructed in the same manner as above. This single cell 9 '
Output under the same conditions as in Example 1
It was 0.3 W / cm 2 , and the output decreased.

【0014】[0014]

【発明の効果】以上の説明で判るように本発明の高分子
固体電解質型燃料電池用電極の製作方法によれば、電極
基材表面に形成された複数の平行溝又は格子状の溝が前
記電極基材表面に生成される触媒層の表面積を増大させ
て触媒の利用率を向上させ、かつアノード(H2 極)と
して水素ガスの供給性の向上やカソード(O2 極)とし
ての酸化ガスの供給性、水の排出性の向上を図ることが
でき、電池特性が向上した高分子固体電解質型燃料電池
用電極を提供できる。
As can be seen from the above description, according to the method for producing an electrode for a polymer electrolyte fuel cell of the present invention, a plurality of parallel grooves or grid-like grooves formed on the surface of an electrode substrate are The surface area of the catalyst layer formed on the surface of the electrode base material is increased to improve the utilization rate of the catalyst, and the hydrogen gas is supplied more easily as the anode (H 2 electrode) and the oxidizing gas is used as the cathode (O 2 electrode). It is possible to provide an electrode for a polymer electrolyte fuel cell with improved battery characteristics and improved battery characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】電極基材であるカーボンペーパーにダイシング
装置により溝を形成する状態を示す概略図である。
FIG. 1 is a schematic view showing a state in which a groove is formed on a carbon paper as an electrode base material by a dicing device.

【図2】カーボンペーパーに格子状の溝を形成した状態
を示す平面図である。
FIG. 2 is a plan view showing a state in which grid-like grooves are formed on carbon paper.

【図3】図2のカーボンペーパーの溝の上に触媒層を形
成して得た実施例の高分子固体電解質型燃料電池用電極
を示す断面図である。
3 is a cross-sectional view showing an electrode for a polymer electrolyte fuel cell of an example obtained by forming a catalyst layer on the groove of the carbon paper of FIG.

【図4】従来の高分子固体電解質型燃料電池用電極を示
す断面図である。
FIG. 4 is a cross-sectional view showing a conventional polymer solid oxide fuel cell electrode.

【図5】高分子固体電解質型燃料電池のシングルセルを
示す断面図である。
FIG. 5 is a cross-sectional view showing a single cell of a polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1 電極基材(カーボンペーパー) 2 ダイシング装置のブレード 3 格子状の溝 4 触媒層 5 高分子固体電解質型燃料電池用電極 1 Electrode Base Material (Carbon Paper) 2 Blade of Dicing Device 3 Lattice-Shaped Grooves 4 Catalyst Layer 5 Polymer Solid Electrolyte Fuel Cell Electrode

───────────────────────────────────────────────────── フロントページの続き (71)出願人 391016716 ストンハルト・アソシエーツ・インコーポ レーテッド STONEHART ASSOCIATE S INCORPORATED アメリカ合衆国 06443 コネチカット州、 マジソン、コテッジ・ロード17、ピー・オ ー・ボックス1220 (72)発明者 村山 恵二 神奈川県平塚市新町2番73号 田中貴金属 工業株式会社技術開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 391016716 STONEHART ASSOCIATES INCORPORATED United States 06443 Connecticut, Madison, Cottage Road 17, P-O Box 1220 (72) Inventor Keiji Murayama Kanagawa 2-7 Shinmachi, Hiratsuka-shi, Japan Tanaka Kikinzoku Kogyo Co., Ltd. Technology Development Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電極基材に、複数の平行溝又は格子状の
溝を形成し、その上にペースト状の触媒を塗布し、乾燥
して触媒層を形成することを特徴とする高分子固体電解
質型燃料電池用電極の製作方法。
1. A polymer solid characterized in that a plurality of parallel grooves or a grid-like groove is formed on an electrode base material, a paste-like catalyst is applied onto the groove, and the catalyst layer is dried to form a catalyst layer. Manufacturing method of electrode for electrolyte fuel cell.
【請求項2】 電極基材に、ダイシング装置により1μ
m〜1mm幅の複数の平行溝又は格子状の溝を形成するこ
とを特徴とする請求項1記載の高分子固体電解質型燃料
電池用電極の製作方法。
2. The electrode substrate is 1 μm by a dicing device.
The method for producing an electrode for a polymer electrolyte fuel cell according to claim 1, wherein a plurality of parallel grooves or a grid-shaped groove having a width of m to 1 mm are formed.
【請求項3】 電極基材が、カーボンペーパーであるこ
とを特徴とする請求項1記載の高分子固体電解質型燃料
電池用電極の製作方法。
3. The method for producing an electrode for a polymer electrolyte fuel cell according to claim 1, wherein the electrode base material is carbon paper.
【請求項4】 ペースト状の触媒が、白金を担持したカ
ーボン粉末を水又は有機溶剤でペースト状になしたもの
であることを特徴とする高分子固体電解質型燃料電池用
電極の製作方法。
4. A method for producing an electrode for a polymer electrolyte fuel cell, wherein the paste-like catalyst is carbon powder carrying platinum and made into a paste with water or an organic solvent.
JP8113191A 1996-04-10 1996-04-10 Manufacture of electrode for high molecular solid electrolyte fuel cell Pending JPH09283155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8113191A JPH09283155A (en) 1996-04-10 1996-04-10 Manufacture of electrode for high molecular solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8113191A JPH09283155A (en) 1996-04-10 1996-04-10 Manufacture of electrode for high molecular solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH09283155A true JPH09283155A (en) 1997-10-31

Family

ID=14605869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8113191A Pending JPH09283155A (en) 1996-04-10 1996-04-10 Manufacture of electrode for high molecular solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH09283155A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529892A (en) * 1998-10-29 2002-09-10 スリーエム イノベイティブ プロパティズ カンパニー Microstructured flow field
WO2016208324A1 (en) * 2015-06-26 2016-12-29 東レ株式会社 Gas diffusion electrode substrate and method for manufacturing same, gas diffusion electrode, membrane electrode assembly, and solid polymer fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529892A (en) * 1998-10-29 2002-09-10 スリーエム イノベイティブ プロパティズ カンパニー Microstructured flow field
WO2016208324A1 (en) * 2015-06-26 2016-12-29 東レ株式会社 Gas diffusion electrode substrate and method for manufacturing same, gas diffusion electrode, membrane electrode assembly, and solid polymer fuel cell

Similar Documents

Publication Publication Date Title
JP4291575B2 (en) Flow field plate geometry
RU2331953C1 (en) Catalyst layer for fuel element with solid polymer electrolyte and method to produce thereof
CA2430681C (en) Process for the manufacture of membrane-electrode-assemblies using catalyst-coated membranes
KR101019922B1 (en) Flow field plate geometries
US20090246572A1 (en) Method and a reactor for making methanol
CN112072119B (en) Fuel cell gas diffusion layer structure and processing method thereof
EP1137090A3 (en) Method for fabricating membrane-electrode assembly and fuel cell adopting the membrane electrode assembly
MX2007001511A (en) Resistive-varying electrode structure.
JPH11511289A (en) Electrochemical fuel cell with electrode substrate having in-plane unequal structure for control of reactant and product transport
KR20020069338A (en) Membrane and Electrode Assembly method for producing the same
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
EP1643573A4 (en) Membrane electrode assembly for solid polymer fuel cell and method for producing same
CN110661013A (en) Fuel cell with cathode flow channel flow distribution design and catalytic layer Pt content gradient distribution
US20040058218A1 (en) Flow fields with capillarity for solid polymer electrolyte fuel cells
JP4748937B2 (en) Method for producing a fuel cell having a large effective surface area and a small volume
JP2014096375A (en) Method of producing polymer electrolyte membrane for fuel cell, membrane electrode assembly and polymer electrolyte fuel cell
CN1697222A (en) Fuel cell
KR100434778B1 (en) A Separator with sub-channeled flow field
JPH09283155A (en) Manufacture of electrode for high molecular solid electrolyte fuel cell
US6852440B1 (en) Fuel cell with improved long term performance, method for operating a PME fuel cell and PME fuel cell battery
KR100670279B1 (en) A thin MEA for fuel cell and fuel cell comprising the same
JP2004200023A (en) Solid oxide fuel cell
CA2633347C (en) Fuel cell including a hydrogen permeable membrane as anode and manufacturing method of the same
JP5234878B2 (en) Fuel cell
JP2002270197A (en) High molecular electrolyte type fuel cull