JPH09283143A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH09283143A
JPH09283143A JP8093857A JP9385796A JPH09283143A JP H09283143 A JPH09283143 A JP H09283143A JP 8093857 A JP8093857 A JP 8093857A JP 9385796 A JP9385796 A JP 9385796A JP H09283143 A JPH09283143 A JP H09283143A
Authority
JP
Japan
Prior art keywords
conductive filler
secondary battery
ion secondary
lithium ion
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8093857A
Other languages
Japanese (ja)
Other versions
JP3719286B2 (en
Inventor
Hideji Sato
秀治 佐藤
Manabu Hayashi
学 林
Shoji Yamaguchi
祥司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP09385796A priority Critical patent/JP3719286B2/en
Publication of JPH09283143A publication Critical patent/JPH09283143A/en
Application granted granted Critical
Publication of JP3719286B2 publication Critical patent/JP3719286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery at a high capacity and having excellent discharging characteristic and rate characteristic by using the electrode material, which is formed by including the conductive filler in a specified carbonaceous material, for a negative electrode. SOLUTION: Organic material such as ethylene heavy end tar to be obtained at the time of decomposition of naphtha is burned at 400-950 deg.C so as to obtain the amorphous carbon at 10<1> -10<7> Ω.cm of volume resistivity, at 1-100m<2> /g of a specific surface area and at 0.05-0.5 of H/C as a carbonaceous material, which can absurd and discharge Li ion, and the conductive filler is contained in this carbonaceous material so as to form the electrode material, and this electrode material is used for the negative electrode. In the electrode material, the carbonaceous material is desirably contained at 85-50 volume weight % and the conductive filler is desirably contained at 15-50 volume weight %. As a conductive filler, one or more is desirably selected among carbon black, graphite powder, carbon fiber and metal powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高容量で、放電特
性、レート特性に優れたリチウム二次電池に関する。
TECHNICAL FIELD The present invention relates to a lithium secondary battery having a high capacity and excellent discharge characteristics and rate characteristics.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い高容量の
二次電池の高容量化が望まれている。そのためニッケル
・カドミウム、ニッケル・水素電池に比べ、よりエネル
ギー密度の高いリチウムイオン二次電池が注目されてい
る。その負極材料としては、最初にリチウム金属を用い
ることが試みられたが、充放電を繰り返すうちにデンド
ライト状のリチウムが析出してセパレータを貫通して、
正極にまで達し、短絡して発火事故を起こす可能性があ
ることが判明した。そのため、現在では、充放電過程に
おける非水溶媒の出入りを層間で行ない、リチウム金属
の析出を防止できる炭素材料を負極材料として使用する
ことが注目されている。この炭素材料としては、特開昭
57−208079には、結晶化度が高い黒鉛を使用す
ることが提案されている。しかし、黒鉛はリチウムイオ
ンの黒鉛結晶中へのインターカレーションを充放電の原
理として使用するため、常温、常圧下では最大リチウム
導入化合物のLiC6から算出される372mAh/g
以上の容量が得られないという問題がある。また、高分
子炭化物、コークス、炭素繊維、石炭及び石油ピッチ焼
成物、メソカーボンマイクロビーズ等黒鉛に比べ、低い
結晶化度と比重、ラマン分光、比表面積その他の特性に
より定義された単一相からなる炭素質物が提案されてい
る。結晶化度の低いアモルファス炭素は黒鉛の理論容量
372mAh/gよりも大きく、容量増大法として、特
に期待される。しかし、この場合にも、充放電時の電位
が黒鉛に比べて高く、また、充電・放電で示す電位が平
坦でなく、大きなヒステリシスを有しているため、正極
との電位差がとりにくく、結果として大容量、大電力の
電池が得られないという問題があった。更に、急速充電
時に著しい容量の低下を引き起こすことも判明した。
2. Description of the Related Art In recent years, with the miniaturization of electronic devices, there has been a demand for higher capacity secondary batteries with higher capacity. Therefore, lithium-ion secondary batteries, which have higher energy density than nickel-cadmium and nickel-hydrogen batteries, are attracting attention. As the negative electrode material, it was first attempted to use lithium metal, but during repeated charging and discharging, dendrite-like lithium was deposited and penetrated the separator,
It has been revealed that it may reach the positive electrode and cause a short circuit resulting in an ignition accident. Therefore, at present, attention is paid to the use of a carbon material as a negative electrode material, which allows a nonaqueous solvent to flow in and out between layers during a charge / discharge process and prevent lithium metal precipitation. As the carbon material, JP-A-57-208079 proposes to use graphite having high crystallinity. However, since graphite uses intercalation of lithium ions into the graphite crystal as a principle of charge / discharge, 372 mAh / g calculated from LiC6 which is the maximum lithium-introducing compound at room temperature and pressure.
There is a problem that the above capacity cannot be obtained. In addition, compared with graphite such as polymer carbide, coke, carbon fiber, coal and petroleum pitch calcined product, mesocarbon microbeads, etc., a single phase defined by low crystallinity and specific gravity, Raman spectroscopy, specific surface area and other properties The following carbonaceous materials have been proposed. Amorphous carbon having a low crystallinity is larger than the theoretical capacity of graphite of 372 mAh / g and is particularly expected as a capacity increasing method. However, even in this case, the potential during charging / discharging is higher than that of graphite, and the potential indicated by charging / discharging is not flat and has a large hysteresis, so it is difficult to obtain a potential difference from the positive electrode. As a result, there is a problem that a large capacity and high power battery cannot be obtained. Further, it has been found that the capacity is significantly reduced during rapid charging.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、充放
電時の電位が平坦で、Li/Li+の電位に近く、更
に、急速充電にも強いリチウムイオン二次電池を提供す
ることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium ion secondary battery which has a flat potential during charge and discharge, is close to the potential of Li / Li +, and is also strong against rapid charge. .

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
解決のため鋭意検討した結果、負極材料の抵抗率が高い
場合に電池のセルインピーダンスが高くなることによ
り、充放電電位が高くなり、急速充放電時の容量低下を
引き起こしていることを見いだし、負極材料に導電性フ
ィラーを添加することで、上記問題を解決できることを
見出し、本発明を完成するに至った。即ち、本発明は、
金属イオンを吸蔵、放出可能な炭素質物が導電性フィラ
ーを含有してなる電極材料を負極として用いることを特
徴とするリチウムイオン二次電池に関する。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that when the resistivity of the negative electrode material is high, the cell impedance of the battery is high, and thus the charge / discharge potential is high. It was found that the capacity was decreased during rapid charge / discharge, and it was found that the above problem can be solved by adding a conductive filler to the negative electrode material, and the present invention has been completed. That is, the present invention
The present invention relates to a lithium ion secondary battery, characterized in that a carbonaceous material capable of occluding and releasing metal ions uses an electrode material containing a conductive filler as a negative electrode.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で使用する金属イオンを吸蔵、放出可能な炭素質
物としては、炭素質原料と特定の導電性フィラーからな
る混合体を原料として用い、その混合体を炭素化したも
のを用いる。この炭素は導電性材料が微分散した構造を
持つため、炭素質物の導電性を向上させることができ、
充放電電位の低電位平坦化及び急速充放電性を改良した
リチウムイオン二次電池用炭素電極材料とすることがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
As the carbonaceous material capable of storing and releasing metal ions used in the present invention, a mixture of a carbonaceous raw material and a specific conductive filler is used as a raw material, and the mixture is carbonized. Since this carbon has a structure in which a conductive material is finely dispersed, it is possible to improve the conductivity of the carbonaceous material,
A carbon electrode material for a lithium ion secondary battery, which has a flat charge / discharge potential and an improved rapid charge / discharge property, can be obtained.

【0006】好適なものとして、具体的には、X線回折
から求められる炭素の結晶の層間距離であるd002の
値が、3.40Å以上、4.00Å以下の値、あるいは
C軸方向の結晶子の大きさ(Lc.)が10Å以上、5
0Å以下の値、更に好ましくは両者を満足する炭素質物
が挙げられる。更に好ましいものとして、有機物を40
0〜950℃で焼成したものであり、炭素質物の体積抵
抗率が101 〜107Ω・cm、BET法の比表面積が
1m2 /g以上、100m2 /g以下、H/C(水素/
炭素原子存在比)が0.05以上、0.5以下、より好
ましくは0.1以上、0.3以下で定義されるアモルフ
ァス炭素が挙げられる。
Specifically, specifically, the value of d002, which is the interlayer distance of the carbon crystal obtained by X-ray diffraction, is not less than 3.40 Å and not more than 4.00 Å, or the crystal in the C-axis direction. Child size (Lc.) Is 10Å or more, 5
A carbonaceous material satisfying the values of 0 Å or less, and more preferably, both are mentioned. More preferably, the organic matter is 40
The carbonaceous material has a volume resistivity of 10 1 to 10 7 Ω · cm, a BET specific surface area of 1 m 2 / g or more and 100 m 2 / g or less, H / C (hydrogen). /
Amorphous carbon defined as having a carbon atom abundance ratio of 0.05 or more and 0.5 or less, and more preferably 0.1 or more and 0.3 or less.

【0007】これら炭素質を得るための原料について、
以下詳細に説明する。液相で炭素化が進行する有機物と
して、軟ピッチから硬ピッチまでのコールタールピッチ
や乾留液化油などの石炭系重質油や、常圧残油、減圧残
油等の直流系重質油、原油、ナフサなどの熱分解時に副
生するエチレンタール等分解系重質油等の石油系重質油
が挙げられる。
Regarding the raw materials for obtaining these carbonaceous materials,
This will be described in detail below. As organic matter in which carbonization proceeds in the liquid phase, coal-based heavy oil such as coal tar pitch from soft pitch to hard pitch and dry-distilled liquefied oil, normal pressure residual oil, direct current heavy oil such as vacuum residual oil, Examples include heavy petroleum-based oils such as crude oil and naphtha, which are by-products of thermal decomposition such as ethylene tar, and heavy oils such as cracked heavy oils.

【0008】さらにアセナフチレン、デカシクレン、ア
ントラセンなどの芳香族炭化水素、フェナジンやアクリ
ジンなどのN環化合物、チオフェンなどのS環化合物、
30MPa以上の加圧が必要となるがアダマンタンなど
の脂環、ビフェニルやテルフェニルなどのポリフェニレ
ン、ポリ塩化ビニル、ポリビニルアルコールなどの高分
子があげられる。
Further, aromatic hydrocarbons such as acenaphthylene, decacyclene and anthracene, N ring compounds such as phenazine and acridine, S ring compounds such as thiophene,
Although a pressure of 30 MPa or more is required, examples thereof include alicyclic rings such as adamantane, polyphenylene such as biphenyl and terphenyl, and polymers such as polyvinyl chloride and polyvinyl alcohol.

【0009】固相で炭素化が進行する有機物としては、
セルロースや糖類などの天然高分子、ポリフェニレンサ
イルファイド、ポリフェニレンオキシド等の熱可塑性樹
脂、フルフリルアルコール樹脂、フェノール−ホルムア
ルデヒド樹脂、イミド樹脂等の熱硬化性樹脂などが挙げ
られる。以上の原料を400〜950℃、より好ましく
は600〜800℃で焼成することにより、炭素質が得
られる。該炭素質は粉砕により好ましくは、1〜100
μm、更に好ましくは5〜50μmの平均粒径をもつ粒
子として使用する。
[0009] As an organic substance whose carbonization proceeds in the solid phase,
Examples include natural polymers such as cellulose and saccharides, thermoplastic resins such as polyphenylene sulfide, and polyphenylene oxide; and thermosetting resins such as furfuryl alcohol resin, phenol-formaldehyde resin, and imide resin. A carbonaceous material is obtained by firing the above raw materials at 400 to 950 ° C, and more preferably at 600 to 800 ° C. The carbonaceous matter is preferably 1 to 100 by pulverization.
It is used as particles having an average particle diameter of μm, more preferably 5 to 50 μm.

【0010】本発明の導電性フィラーとしては、炭素質
物より導電性が高いものであり、好ましくは、体積抵抗
率101 Ω・cm未満、更に好ましくは10-3〜100
Ω・cmである。導電性フィラーの形状としては、球
状、板状、繊維状等各種形状のものが使用可能である
が、好ましいものとして、平均粒径が炭素質物の粉砕粒
径よりも小さいものが好ましく、特に好ましくは、導電
性フィラーの平均粒径または平均長径が、焼成、粉砕後
の金属イオンを吸蔵、放出可能な炭素質物の平均粒径の
0.05〜90%の範囲である。
[0010] As the electrically conductive filler of the present invention has high conductivity than the carbonaceous material, preferably a volume resistivity of less than 10 1 Omega · cm, more preferably 10 -3 to 10 0
Ω · cm. As the shape of the conductive filler, various shapes such as spherical, plate-like, and fibrous can be used, but as the preferable one, those having an average particle diameter smaller than the crushed particle diameter of the carbonaceous material are preferable, and particularly preferable. Is that the average particle diameter or the average major axis of the conductive filler is in the range of 0.05 to 90% of the average particle diameter of the carbonaceous material capable of storing and releasing the metal ions after firing and crushing.

【0011】導電性フィラーとしては炭素系フィラーま
たは金属粉末が挙げられる。炭素系フィラーには表面に
ニッケル等の金属を付着させ、更に導電性を向上させた
ものも使用できる。導電性フィラーの好適な具体例とし
ては、アセチレンブラック、ケッチェンブラック等の導
電性カーボンブラック、人造黒鉛(TIMCAL社製T
6,KS6、SFG6等)、天然黒鉛(関西熱化学社製
NG2、NG7等)等の黒鉛粉末、気相成長炭素繊維等
の炭素繊維、金属粉末等が挙げられる。
Examples of the conductive filler include carbon-based filler and metal powder. As the carbon-based filler, one having metal such as nickel attached to the surface and further improved conductivity can also be used. Specific preferred examples of the conductive filler include conductive carbon black such as acetylene black and Ketjen black, artificial graphite (T manufactured by TIMCAL).
6, KS6, SFG6, etc.), graphite powder such as natural graphite (NG2, NG7 etc. manufactured by Kansai Thermo Chemical Co., Inc.), carbon fiber such as vapor grown carbon fiber, metal powder and the like.

【0012】このうち金属粉末としては、電池中の負極
電位の関係からニッケル粉、銅粉、ステンレススチール
粉が好ましい。また、ニッケル粉は、導電性が良好で、
耐酸化性にも優れているので好ましく、特に、ニッケル
テトラカルボニルの熱分解で製造されるカルボニルニッ
ケル粉はその純度も高く、スパイク状突起を持つ球状粒
子がフィラメント状につながった形状をしているため、
粒子同士の接触性に優れ、導電パスを作りやすいので好
ましい。
Of these, nickel powder, copper powder, and stainless steel powder are preferable as the metal powder in view of the negative electrode potential in the battery. Also, nickel powder has good conductivity,
It is preferable because it is also excellent in oxidation resistance. In particular, carbonyl nickel powder produced by thermal decomposition of nickel tetracarbonyl has high purity, and spherical particles having spike-like protrusions are connected in a filament shape. For,
It is preferable because the particles are excellent in contact with each other and a conductive path is easily formed.

【0013】また、炭素系フィラーは、炭素質物原料、
特に重質油系原料との原料混合段階での相溶性に優れ、
均一の組成を持つ複合材料を作製し易い。加えて、焼成
後は、炭素質材料の導電性の向上及び、フィラー自身が
持つリチウムイオン吸蔵、放出能による電極容量への寄
与も得ることができる。一般的に導電性フィラーを絶縁
材料又は高抵抗材料に添加していくと、特定の体積分率
で急速に抵抗が減少するいわゆるパーコレーション現象
を示す。そのため、導電性フィラーの割合はパーコレー
ション閾値よりも大きいことが必要である。より具体的
には導電性フィラー及び炭素質物の含有量は、好ましく
は、最終調整された電極中で炭素質物が85〜50Vo
l.%で、導電性フィラーが15〜50Vol.%、更
に好ましくは炭素質物が85〜65Vol.%で、導電
性フィラーが15〜35Vol.%である。
The carbonaceous filler is a carbonaceous material raw material,
Especially excellent compatibility at the raw material mixing stage with heavy oil type raw materials,
It is easy to produce a composite material having a uniform composition. In addition, after firing, it is possible to improve the conductivity of the carbonaceous material and to contribute to the electrode capacity due to the lithium ion storage / release capacity of the filler itself. Generally, when a conductive filler is added to an insulating material or a high resistance material, a so-called percolation phenomenon in which the resistance rapidly decreases at a specific volume fraction is exhibited. Therefore, it is necessary that the ratio of the conductive filler is larger than the percolation threshold value. More specifically, the content of the conductive filler and the carbonaceous material is preferably 85 to 50 Vo in the final adjusted electrode.
l. %, The conductive filler is 15 to 50 Vol. %, More preferably 85 to 65 Vol. %, The conductive filler is 15 to 35 Vol. %.

【0014】導電性フィラーの量が上記範囲以下では、
低電位化、急速充放電特性の改善が少なく、また、上記
範囲以上では、体積エネルギー密度、重量エネルギー密
度の低下を引き起こす可能性がある。尚、上記範囲は原
料仕込み比ではなく、最終的炭素質物の段階での含有量
である。そのため、仕込み時には、最終段階での組成比
を考慮して原料の配合量を決定する必要がある。
When the amount of the conductive filler is less than the above range,
There is little improvement in the low potential and rapid charge / discharge characteristics, and if the content is more than the above range, the volume energy density and the weight energy density may decrease. The above range is not the raw material charging ratio but the content at the stage of the final carbonaceous material. Therefore, at the time of charging, it is necessary to determine the blending amount of the raw material in consideration of the composition ratio at the final stage.

【0015】次に本発明の電極の製造方法について説明
する。本発明の電極の製造方法は上記、原料として、炭
素質物原料と導電性フィラーを使用する限り、限定無
く、従来公知の方法が採用可能である。例えば、炭素質
物の原料と導電性フィラーを加熱手段がある混合機で最
終組成が上記範囲内となる仕込み比で混合し、脱タール
処理を行い、400〜950℃、0.1〜5時間、好ま
しくは600〜800℃で、0.5〜3時間焼成を行
う。焼成物を、好ましくは1〜100μm、更に好まし
くは平均粒径5〜50μmの範囲に粉砕し、該粉砕物に
結着剤、溶媒等を加えて、スラリー状とし、銅箔等の金
属製の集電体の基板にスラリーを塗布・乾燥することで
電極とする。また、該電極材料をそのままロール成形、
圧縮成形等の方法で電極の形状に成形することもでき
る。
Next, a method for manufacturing the electrode of the present invention will be described. The method for producing the electrode of the present invention is not particularly limited as long as the carbonaceous material raw material and the conductive filler are used as the above-mentioned raw materials, and conventionally known methods can be adopted. For example, a carbonaceous material raw material and a conductive filler are mixed with a mixer having a heating means at a charging ratio such that the final composition is within the above range, and detarring treatment is performed, 400 to 950 ° C., 0.1 to 5 hours, Preferably, the baking is performed at 600 to 800 ° C. for 0.5 to 3 hours. The calcined product is crushed to preferably 1 to 100 μm, more preferably 5 to 50 μm in average particle size, and a binder, a solvent and the like are added to the crushed product to form a slurry, which is made of metal such as copper foil. An electrode is formed by applying and drying the slurry on the substrate of the current collector. Further, the electrode material is directly roll-formed,
It is also possible to form the shape of the electrode by a method such as compression molding.

【0016】上記の目的で使用できる結着剤としては、
溶媒に対して安定な、ポリエチレン、ポリプロピレン、
ポリエチレンテレフタレート、芳香族ポリアミド、セル
ロース等の樹脂系高分子、スチレン・ブタジエンゴム、
イソプレンゴム、ブタジエンゴム、エチレン・プロピレ
ンゴム等のゴム状高分子、スチレン・ブタジエン・スチ
レンブロック共重合体、その水素添加物、スチレン・イ
ソプレン・スチレンブロック共重合体、その水素添加物
等の熱可塑性エラストマー状高分子、シンジオタクチッ
ク12−ポリブタジエン、エチレン・酢酸ビニル共重合
体、プロピレン・α−オレフィン(炭素数2〜12)共
重合体等の軟質樹脂状高分子、ポリフッ化ビニリデン、
ポリテトラフルオロエチレン、ポリテトラフルオロエチ
レン・エチレン共重合体等のフッ素系高分子、アルカリ
金属イオン、特にリチウムイオンのイオン伝導性を有す
る高分子組成物が挙げられる。
Binders that can be used for the above purposes include
Solvent stable polyethylene, polypropylene,
Resin-based polymers such as polyethylene terephthalate, aromatic polyamide, cellulose, styrene-butadiene rubber,
Thermoplastics such as isoprene rubber, butadiene rubber, rubber-like polymers such as ethylene / propylene rubber, styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / isoprene / styrene block copolymers, hydrogenated products thereof, etc. Elastomeric polymers, syndiotactic 12-polybutadiene, ethylene / vinyl acetate copolymers, propylene / α-olefin (C2-12) copolymers and other soft resinous polymers, polyvinylidene fluoride,
Examples thereof include fluoropolymers such as polytetrafluoroethylene and polytetrafluoroethylene / ethylene copolymers, and polymer compositions having ion conductivity of alkali metal ions, particularly lithium ions.

【0017】上記のイオン伝導性を有する高分子として
は、ポリエチレンオキシド、ポリプロピレンオキシド等
のポリエーテル系高分子化合物、ポリエーテル化合物の
架橋体高分子、ポリエピクロルヒドリン、ポリフォスフ
ァゼン、ポリシロキサン、ポリビニルピロリドン、ポリ
ビニリデンカーボネート、ポリアクリロニトリル等の高
分子化合物に、リチウム塩、またはリチウムを主体とす
るアルカリ金属塩を複合させた系、、あるいはこれに炭
酸プロピレン、炭酸エチレン、γ−ブチロラクトン等の
高い誘電率を有する有機化合物を配合した系を用いるこ
とができる。この様な、イオン伝導性高分子組成物の室
温におけるイオン導電率は、好ましくは10-5S/cm
以上、より好ましくは10-3S/cm以上である。
Examples of the above-mentioned polymer having ion conductivity include polyether polymer compounds such as polyethylene oxide and polypropylene oxide, cross-linked polymer of polyether compounds, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, Polyvinylidene carbonate, a polymer compound such as polyacrylonitrile, a lithium salt, or a system in which an alkali metal salt mainly composed of lithium is combined, or a high dielectric constant of propylene carbonate, ethylene carbonate, γ-butyrolactone, etc. It is possible to use a system in which the organic compound has. The ionic conductivity of such an ion conductive polymer composition at room temperature is preferably 10 −5 S / cm.
Or more, more preferably 10 −3 S / cm or more.

【0018】本発明に用いる炭素質物と上記の結着剤と
の混合形式としては、各種の形態をとることができる。
即ち、両者の粒子が混合した形態、繊維状の結着剤が炭
素質物の粒子に絡み合う形で混合した形態、または結着
剤の層が炭素質物の粒子表面に付着した形態などが挙げ
られる。炭素質物と上記結着剤との混合割合は、炭素質
物に対し、好ましくは0.1〜30重量%、より好まし
くは、0.5〜10重量%である。これ以上の量の結着
剤を添加すると、電極の内部抵抗が大きくなり、好まし
くなく、これ以下の量では集電体と炭素質粉体の結着性
に劣る。
The carbonaceous material used in the present invention and the above-mentioned binder may be mixed in various forms.
That is, a form in which both particles are mixed, a form in which a fibrous binder is mixed with particles of a carbonaceous material so as to be entangled with each other, or a form in which a layer of the binder is attached to the surface of the particles of the carbonaceous material can be mentioned. The mixing ratio of the carbonaceous material and the binder is preferably 0.1 to 30% by weight, more preferably 0.5 to 10% by weight, based on the carbonaceous material. If the binder is added in an amount more than this, the internal resistance of the electrode increases, which is not preferable, and if the amount is less than this, the binding property between the current collector and the carbonaceous powder is poor.

【0019】こうして作製した負極板と以下に説明する
電解液、正極板を、その他の電池構成要素であるセパレ
ータ、ガスケット、集電体、封口板、セルケース等と組
み合わせて二次電池を構成する。作成可能な電池は筒
型、角型、コイン型等特に限定されるものではないが、
基本的にはセル床板上に集電体と負極材料を乗せ、その
上に電解液とセパレータを、更に負極と対向するように
正極を乗せ、ガスケット、封口板と共にかしめて二次電
池とする。
The negative electrode plate thus produced and the electrolytic solution and the positive electrode plate described below are combined with other battery components such as a separator, a gasket, a current collector, a sealing plate, and a cell case to form a secondary battery. . Batteries that can be created are not particularly limited to cylinder type, square type, coin type, etc.,
Basically, a current collector and a negative electrode material are placed on a cell floor plate, an electrolyte solution and a separator are placed thereon, and a positive electrode is placed so as to face the negative electrode, and the gasket and the sealing plate are caulked to form a secondary battery.

【0020】電解液用に使用できる非水溶媒としては、
プロピレンカーボネート、エチレンカーボネート、ジエ
チルカーボネート、ジメチルカーボネート、エチルメチ
ルカーボネート、1,2−ジメトキシエタン、γ−ブチ
ロラクトン、テトラヒドロフラン、2−メチルテトラヒ
ドロフラン、スルホラン、1,3−ジオキソラン等の有
機溶媒の単独、または二種類以上を混合したものを用い
ることができる。これらの溶媒に0.5〜2.0M程度
のLiClO4 、LiPF6 、LiBF 4 、LiCF3
SO3 、LiAsF6 等の電解質を溶解して電解液とす
る。
The non-aqueous solvent that can be used for the electrolytic solution includes
Propylene carbonate, ethylene carbonate, die
Chill carbonate, dimethyl carbonate, ethyl meth
Rucarbonate, 1,2-dimethoxyethane, γ-buty
Lolactone, tetrahydrofuran, 2-methyltetrahi
With drofuran, sulfolane, 1,3-dioxolane, etc.
Machine solvent used alone or as a mixture of two or more
Can be 0.5 to 2.0M in these solvents
LiClOFour, LiPF6, LiBF Four, LiCFThree
SOThree, LiAsF6Dissolve the electrolyte such as
You.

【0021】また、リチウムイオン等のアルカリ金属カ
チオンの導電体である高分子固体電解質を、用いること
もできる。正極体の材料は、特に限定されないが、リチ
ウムイオンなどのアルカリ金属カチオンを充放電時に吸
蔵、放出できる金属カルコゲン化合物からなることが好
ましい。その様な金属カルコゲン化合物としては、バナ
ジウムの酸化物、バナジウムの硫化物、モリブデンの酸
化物、モリブデンの硫化物、マンガンの酸化物、クロム
の酸化物、チタンの酸化物、チタンの硫化物及びこれら
の複合酸化物、複合硫化物等が挙げられる。好ましく
は、Cr3 8 ,V2 5 ,V5 13,VO2,Cr2
5 ,MnO2 ,TiO2 ,MoV2 8 ,TiS2
2 5 MoS2,MoS3 VS2 ,Cr0.25
0.752 ,Cr0.5 0.5 2 等である。また、LiM
2 (Mは、Co,Ni等の遷移金属YはO,S等のカ
ルコゲン化合物),LiM2 4 (MはMn,Yは
O),WO3 等の酸化物、CuS,Fe0.25
0.752 ,Na0.1 CrS2 等の硫化物、NiPS3
FePS3 等のリン、硫黄化合物、VSe2 ,NbSe
3 等のセレン化合物等を用いることもできる。これらを
負極材と同様、結着剤と混合して集電体の上に塗布して
正極板とする。
In addition, alkali metal catalysts such as lithium ions
Using solid polymer electrolytes, which are conductors of thione
You can also The material of the positive electrode body is not particularly limited, but lithium
It absorbs alkali metal cations such as um ions during charging and discharging.
A metal chalcogen compound that can be stored and released is preferred.
Good. Such metal chalcogen compounds include vana
Oxide ofdium, sulfide of vanadium, acid of molybdenum
Compounds, molybdenum sulfides, manganese oxides, chromium
Oxides, titanium oxides, titanium sulfides and these
Complex oxides, complex sulfides, and the like. Preferably
Is CrThreeO8, VTwoOFive, VFiveO13, VOTwo, CrTwo
OFive, MnOTwo, TiOTwo, MoVTwoO8, TiSTwoV
TwoSFiveMoSTwo, MoSThreeVSTwo, Cr0.25V
0.75STwo, Cr0.5V0.5STwoAnd so on. Also, LiM
YTwo(M is a transition metal such as Co and Ni, and Y is a transition metal such as O and S.
Rucogen compound), LiMTwoYFour(M is Mn, Y is
O), WOThreeOxides such as CuS, Fe0.25V
0.75STwo, Na0.1CrSTwoSulfides such as NiPSThree,
FePSThreeSuch as phosphorus, sulfur compounds, VSeTwo, NbSe
ThreeAnd the like can also be used. these
Like the negative electrode material, mix with the binder and apply it on the current collector.
A positive electrode plate is used.

【0022】電解液を保持するセパレーターは、一般的
に保液性に優れた材料であり、例えば、ポリオレフィン
系樹脂の不織布や多孔性フィルムなどを使用して、上記
電解液を含浸させる。評価内容の内、負極充放電容量、
サイクル特性、及び電位−容量曲線等の測定については
以下の様に行った。結着剤を用いペレット状に成形した
上記の負極材料を、セパレーター、電解液と共に、対極
をリチウム金属とした半電池とし、2016コインセル
中に組み立て、充放電試験機で評価した。
The separator that holds the electrolytic solution is generally a material having excellent liquid retaining properties, and is impregnated with the electrolytic solution using, for example, a non-woven fabric of polyolefin resin or a porous film. Among the evaluation contents, negative electrode charge and discharge capacity,
The cycle characteristics, the potential-capacity curve, and the like were measured as follows. The above-mentioned negative electrode material molded into a pellet using a binder was combined with a separator and an electrolytic solution into a half battery having a lithium metal counter electrode, assembled in a 2016 coin cell, and evaluated by a charge / discharge tester.

【0023】一方、抵抗率は、結着剤を用いシート状に
加工した上記の負極材料について、四探針法により表面
抵抗を計測し、算出した。この様な条件でテストを行っ
たところ、本発明の炭素負極板中でのIRドロップが減
少し、電位はよりLi/Li+ に対し+0.5V以下の
放電電圧を示し、また、レート特性に優れていた。
On the other hand, the resistivity was calculated by measuring the surface resistance of the above negative electrode material processed into a sheet using a binder by the four-point probe method. When the test was conducted under such conditions, the IR drop in the carbon negative electrode plate of the present invention was decreased, the potential showed a discharge voltage of +0.5 V or less with respect to Li / Li + , and the rate characteristics were Was excellent.

【0024】以上説明したように、本発明のリチウムイ
オン二次電池用電極は炭素質物に導電性フィラーを添加
することで、炭素負極中のIRドロップが減少し、電位
はよりLi/Li+ の電位に近いところで平坦部を示す
ようになった。また、高抵抗炭素粒子中での電子移動律
速により、使用されることがなかった部分にまでリチウ
ムイオンがドープされるようになり、本来炭素質物が有
する充放電容量を急速充放電時にも効率よく引き出すこ
とができるようになった。
As described above, in the lithium ion secondary battery electrode of the present invention, by adding a conductive filler to the carbonaceous material, the IR drop in the carbon negative electrode is reduced and the potential is higher than that of Li / Li + . A flat portion came to appear near the potential. In addition, due to the electron transfer rate control in the high resistance carbon particles, lithium ions are doped even in the parts that were not used, and the charge and discharge capacity originally possessed by the carbonaceous material can be efficiently achieved even during rapid charge and discharge. You can now withdraw.

【0025】[0025]

【実施例】次に実施例により本発明を更に詳細に説明す
るが、本発明はこれらの例によってなんら限定されるも
のではない。
Next, the present invention will be described in more detail by way of examples, which should not be construed as limiting the present invention.

【0026】(実施例1)内容積20リットルのステン
レスタンクに人造黒鉛粉末(TIMCAL社製KS−
6;粒径2〜3mm)をナフサ分解時に得られるエチレ
ンヘビーエンドタール(EHE;三菱化学(株)社製)
7.0Lに対し体積重量%(Vol.%)で20、50
(重量でそれぞれ420、1700g)になるようにそ
れぞれ調整し、ハンドミキサーにて20分混合した。得
られたスラリー状の混合物を内温が300℃に保たれ、
更に減圧度を87.99×103 Pa(660tor
r)とした加熱混合機に投入し、脱気及び脱揮を行い、
エチレンヘビーエンドタールの軽質留分の除去を行い、
半固溶体である生成物を回収した。こうして導電性フィ
ラーと熱処理ピッチの混合物を得た。
Example 1 An artificial graphite powder (KS-manufactured by TIMCAL) was placed in a stainless steel tank having an internal volume of 20 liters.
6; particle size 2 to 3 mm) obtained by decomposing naphtha ethylene heavy end tar (EHE; manufactured by Mitsubishi Chemical Corporation)
20, 50 in volume% by weight (Vol.%) With respect to 7.0 L
The respective amounts were adjusted to be 420 and 1700 g by weight, and mixed by a hand mixer for 20 minutes. The internal temperature of the obtained slurry-like mixture was kept at 300 ° C.,
Furthermore, the degree of pressure reduction is set to 87.99 × 10 3 Pa (660 torr).
Into the heating mixer described in r), deaeration and devolatilization are performed,
Removal of the light fraction of ethylene heavy end tar,
The product, a semi-solid solution, was recovered. Thus, a mixture of the conductive filler and the heat-treated pitch was obtained.

【0027】上記、導電性フィラーであるKS−6の含
有されたピッチを回分式加熱炉で不活性雰囲気下にて7
00℃に保ち、1時間熱処理した。これを粉砕し、振動
式篩いにより粒径を7〜20μmに整えてからサンプル
とした。該サンプルを元素分析し、H/Cを測定したと
ころ、0.1〜0.2であった。また、BET法比表面
積は20〜30m2 /gであった。この電極材料サンプ
ル5gに、ポリフッ化ビニリデン(PVdF)のジメチ
ルアセトアミド溶液を固形分換算で10重量%加えたも
のを攪拌し、スラリーを得た。このスラリーを銅箔上に
塗布し、80℃で予備乾燥を行った。さらに圧着させた
のち、直径20mmの円盤状に打ち抜き、110℃で減
圧乾燥をして電極とした。
The above pitch containing the conductive filler KS-6 was placed in a batch type heating furnace under an inert atmosphere.
The temperature was kept at 00 ° C. and heat treatment was performed for 1 hour. This was crushed and adjusted to a particle size of 7 to 20 μm by a vibrating screen before being used as a sample. When the sample was subjected to elemental analysis and H / C was measured, it was 0.1 to 0.2. The BET specific surface area was 20 to 30 m 2 / g. To 5 g of this electrode material sample, 10% by weight of a polyvinylidene fluoride (PVdF) dimethylacetamide solution in terms of solid content was added and stirred to obtain a slurry. This slurry was applied on a copper foil and pre-dried at 80 ° C. After further pressure bonding, it was punched into a disk having a diameter of 20 mm, and dried under reduced pressure at 110 ° C. to form an electrode.

【0028】また、同スラリーをポリエチレンテレフタ
レート薄膜上に塗布し、80℃で予備乾燥を行った。5
cm×5cmの正方形以外の部分をカッターで除去した
のち、110℃で減圧乾燥を行った。このものの抵抗率
を測定した結果を表1に示す。得られた電極に対し、電
解液を含浸させたポリプロピレン製セパレーターをはさ
み、リチウム金属電極に対向させたコイン型セルを作製
し、充放電試験を行った。電解液には、エチレンカーボ
ネートとジエチルカーボネートを容量比1:1の比率で
混合した溶媒に過塩素酸リチウムを1.0mol/Lの
割合で溶解させたものを用いた。
The same slurry was coated on a polyethylene terephthalate thin film and predried at 80 ° C. 5
After removing a portion other than a square of 5 cm × 5 cm with a cutter, vacuum drying was performed at 110 ° C. The results of measuring the resistivity of this product are shown in Table 1. The obtained electrode was sandwiched with a polypropylene separator impregnated with an electrolytic solution to prepare a coin-shaped cell facing a lithium metal electrode, and a charge / discharge test was conducted. As the electrolytic solution, a solution in which lithium perchlorate was dissolved at a ratio of 1.0 mol / L in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used.

【0029】基準充放電試験は、電流密度0.16mA
/cm2 で極間電位差が0Vになるまでドープを行い、
電流密度0.33mA/cm2 で極間電位差が1.5V
になるまで脱ドープを行った。容量値は、コイン型セル
3個について各々充放電試験を行い、その初回の脱ドー
プ容量を算出して評価した。評価結果を表2に示す。
The standard charge / discharge test was conducted at a current density of 0.16 mA.
/ Cm 2 Dope until the potential difference between the electrodes becomes 0 V,
A current density of 0.33 mA / cm 2 and a potential difference between the electrodes of 1.5 V
It was dedoped until it became. The capacity value was evaluated by conducting a charge / discharge test on each of three coin type cells and calculating the initial dedoping capacity. Table 2 shows the evaluation results.

【0030】(比較例1)実施例において、原料である
重質油にフィラーの添加を行わなかった以外は同様な操
作を行った。抵抗率を表1に、評価結果を表2に示す。
(Comparative Example 1) The same operation as in Example was carried out except that the filler was not added to the heavy oil as the raw material. The resistivity is shown in Table 1 and the evaluation result is shown in Table 2.

【0031】(実施例2)内温が100℃に保たれた、
内容積が10リットルのZ刃混合機にケッチェンブラッ
ク粉末(KB;粒径1μm以下、三菱化学(株)製)を
エチレンヘビーエンドタール(EHE;三菱化学(株)
製))1.4Lに対し体積重量%で20、30、50
(重量でそれぞれ60、100、150g)になるよう
に調整し、混合した。導電性フィラーであるカーボンブ
ラックを含んだピッチを回分式加熱炉により不活性雰囲
気下、700℃で1時間処理し脱気及び脱揮を行った。
得られた固形分は5〜20μmに粉砕し、サンプルとし
た。該サンプルを元素分析し、H/Cを測定したとこ
ろ、0.2〜0.3であった。また、BET法比表面積
は10〜70m2 /gであった。
(Example 2) The internal temperature was maintained at 100 ° C,
Ketjen black powder (KB; particle size 1 μm or less, manufactured by Mitsubishi Chemical Co., Ltd.) was added to ethylene heavy end tar (EHE; Mitsubishi Chemical Co., Ltd.) in a Z-blade mixer having an internal volume of 10 liters.
Manufactured by)) 1.4 L by volume% by weight of 20, 30, 50
(Weight, 60, 100 and 150 g respectively) were adjusted and mixed. The pitch containing carbon black as the conductive filler was degassed and volatilized by treating it at 700 ° C. for 1 hour in a batch heating furnace in an inert atmosphere.
The obtained solid content was crushed to 5 to 20 μm and used as a sample. When the sample was subjected to elemental analysis and H / C was measured, it was 0.2 to 0.3. The BET specific surface area was 10 to 70 m 2 / g.

【0032】このサンプル5gにポリフッ化ビニリデン
(PVdF)のジメチルアセトアミド溶液を固形分換算
で10重量%加えたものを攪拌し、スラリー状に加工し
た。これを銅箔上に塗布し、80℃で予備乾燥を行った
後、直径20mmの円盤状に打ち抜き、110℃で加熱
減圧乾燥を施して電極ペレットとした。また、同スラリ
ーをポリエチレンテレフタレート薄膜上に塗布し、80
℃で予備乾燥を行った。これを20cm×10cmの大
きさに成形し、110℃で加熱真空乾燥を施した。これ
らのものの抵抗率を表1に示す。
To 5 g of this sample was added a polyvinylidene fluoride (PVdF) dimethylacetamide solution in an amount of 10% by weight in terms of solid content, and the mixture was stirred to form a slurry. This was applied on a copper foil, preliminarily dried at 80 ° C., punched into a disk shape with a diameter of 20 mm, and dried under reduced pressure by heating at 110 ° C. to obtain an electrode pellet. Moreover, the same slurry was applied onto a polyethylene terephthalate thin film,
Pre-drying was performed at ° C. This was molded into a size of 20 cm × 10 cm, and heated and vacuum dried at 110 ° C. Table 1 shows the resistivity of these materials.

【0033】電極ペレットに対して、リチウム金属電極
との間に電解質を含浸させたポリエチレン製セパレータ
ーを挟んだ構造のコイン型セルを作製し、充放電試験を
行った。電解液には、エチレンカーボネートとジエチル
カーボネートを容量比で50/50で混合した溶媒に過
塩素酸リチウムを1.0mol/L溶解させたものを用
いた。充放電試験は電流密度0.16mA/cm2 で極
間電位差が0Vになるまでドープを行い、電流密度0.
33mA/cm2 で極間電位差1.5Vになるまで脱ド
ープを行った。
A coin-type cell having a structure in which a polyethylene separator impregnated with an electrolyte was sandwiched between the electrode pellet and a lithium metal electrode was prepared and a charge / discharge test was conducted. The electrolytic solution used was a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 50/50 and lithium perchlorate was dissolved in 1.0 mol / L. In the charge / discharge test, doping was performed at a current density of 0.16 mA / cm 2 until the potential difference between the electrodes became 0 V, and the current density was 0.
Dedoping was performed at 33 mA / cm 2 until the inter-electrode potential difference became 1.5 V.

【0034】急速充放電試験は、それぞれ電流密度0.
4mA/cm2 で極間電位差が0Vになるまでドープを
行い、電流密度2.8mA/cm2 で極間電位差が1.
5Vになるまで脱ドープを行った。容量値は、コイン型
セル3個について各々充放電試験を行い、それらの初回
の脱ドープ容量(基準脱ドープ容量および急速脱ドープ
容量)を算出して評価した。評価結果を表2に示す。
In the rapid charge / discharge test, the current density was 0.
Doping was performed at 4 mA / cm 2 until the potential difference between the electrodes became 0 V, and when the current density was 2.8 mA / cm 2 , the potential difference between the electrodes was 1.
Dedoping was performed until the voltage became 5V. The capacity value was evaluated by performing a charge / discharge test on each of three coin cells and calculating the initial dedoping capacity (reference dedoping capacity and rapid dedoping capacity) of each of them. Table 2 shows the evaluation results.

【0035】(実施例3)内温が100℃に保たれた、
内容積が10リットルのZ刃混合機に黒鉛粉末(TIM
CAL社製SFG−6;粒径4〜5mm)をエチレンヘ
ビーエンドタール(EHE;三菱化学(株)製))1.
4Lに対し体積重量%で20(重量で85g)になるよ
うに調整し、混合した。導電性フィラーであるSFG−
6を含んだピッチを回分式加熱炉により不活性雰囲気
下、700℃で1時間処理し脱気及び脱揮を行った。得
られた固形分は7〜20μmに粉砕し、サンプルとし
た。該サンプルを元素分析し、H/Cを測定したとこ
ろ、0.153であった。また、BET法比表面積は2
6m2 /gであった。
(Example 3) The internal temperature was kept at 100 ° C,
Graphite powder (TIM
CAL SFG-6; particle size 4-5 mm) with ethylene heavy end tar (EHE; manufactured by Mitsubishi Chemical Corporation) 1.
It was adjusted so as to be 20 (85 g by weight) in volume% with respect to 4 L, and mixed. SFG- which is a conductive filler
The pitch containing 6 was treated in a batch heating furnace in an inert atmosphere at 700 ° C. for 1 hour for deaeration and volatilization. The obtained solid content was crushed to 7 to 20 μm and used as a sample. The sample was subjected to elemental analysis and H / C was measured to be 0.153. The BET specific surface area is 2
It was 6 m 2 / g.

【0036】このサンプル5gにポリフッ化ビニリデン
(PVdF)のジメチルアセトアミド溶液を固形分換算
で10重量%加えたものを攪拌し、スラリー状に加工し
た。これを銅箔上に塗布し、80℃で予備乾燥を行った
後、直径20mmの円盤状に打ち抜き、110℃で加熱
減圧乾燥を施して電極ペレットとした。また、同スラリ
ーをポリエチレンテレフタレート薄膜上に塗布し、80
℃で予備乾燥を行った。これを20cm×10cmの大
きさに成形し、110℃で加熱真空乾燥を施した。これ
らのものの抵抗率を表1に示す。
To 5 g of this sample was added a polyvinylidene fluoride (PVdF) dimethylacetamide solution in an amount of 10% by weight in terms of solid content, and the mixture was stirred and processed into a slurry form. This was applied on a copper foil, preliminarily dried at 80 ° C., punched into a disk shape with a diameter of 20 mm, and dried under reduced pressure by heating at 110 ° C. to obtain an electrode pellet. Moreover, the same slurry was applied onto a polyethylene terephthalate thin film,
Pre-drying was performed at ° C. This was molded into a size of 20 cm × 10 cm, and heated and vacuum dried at 110 ° C. Table 1 shows the resistivity of these materials.

【0037】電極ペレットに対して、リチウム金属電極
との間に電解質を含浸させたポリエチレン製セパレータ
ーを挟んだ構造のコイン型セルを作製し、充放電試験を
行った。電解液には、エチレンカーボネートとジエチル
カーボネートを容量比で50/50で混合した溶媒に過
塩素酸リチウムを1.0mol/L溶解させたものを用
いた。充放電試験は電流密度0.16mA/cm2 で極
間電位差が0Vになるまでドープを行い、電流密度0.
33mA/cm2 で極間電位差1.5Vになるまで脱ド
ープを行った。容量値は、コイン型セル3個について各
々充放電試験を行い、それらの初回の脱ドープ容量を算
出して評価した。評価結果を表2に示す。
A coin-type cell having a structure in which a polyethylene separator impregnated with an electrolyte was sandwiched between the electrode pellet and a lithium metal electrode was prepared and a charge / discharge test was conducted. The electrolytic solution used was a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 50/50 and lithium perchlorate was dissolved in 1.0 mol / L. In the charge / discharge test, doping was performed at a current density of 0.16 mA / cm 2 until the potential difference between the electrodes became 0 V, and the current density was 0.
Dedoping was performed at 33 mA / cm 2 until the inter-electrode potential difference became 1.5 V. The capacity value was evaluated by performing a charge / discharge test on each of three coin cells and calculating the initial de-doping capacity thereof. Table 2 shows the evaluation results.

【0038】(実施例4)内温が100℃に保たれた、
内容積が10リットルのZ刃混合機にカーボンファイバ
ー粉末(CF;15μm粉砕品、ペトカ(株)製)をエ
チレンヘビーエンドタール(EHE;三菱化学(株)
製))1.4Lに対し体積重量%で20(重量で60
g)になるように調整し、混合した。導電性フィラーで
あるカーボンブラックを含んだピッチを回分式加熱炉に
より不活性雰囲気下、700℃で1時間処理し脱気及び
脱揮を行った。得られた固形分は17〜20μmに粉砕
し、サンプルとした。該サンプルを元素分析し、H/C
を測定したところ、0.158であった。また、BET
法比表面積は27m2 /gであった。
(Example 4) The internal temperature was kept at 100 ° C,
Carbon fiber powder (CF; 15 μm crushed product, Petka Co., Ltd.) ethylene heavy end tar (EHE; Mitsubishi Chemical Co., Ltd.) in a Z-blade mixer with an internal volume of 10 liters.
20% by volume% (60 by weight)
g), and mixed. The pitch containing carbon black as the conductive filler was degassed and volatilized by treating it at 700 ° C. for 1 hour in a batch heating furnace in an inert atmosphere. The obtained solid content was pulverized to 17 to 20 μm and used as a sample. The sample is subjected to elemental analysis and H / C
Was 0.158. Also, BET
The specific surface area was 27 m 2 / g.

【0039】このサンプル5gにポリフッ化ビニリデン
(PVdF)のジメチルアセトアミド溶液を固形分換算
で10重量%加えたものを攪拌し、スラリー状に加工し
た。これを銅箔上に塗布し、80℃で予備乾燥を行った
後、直径20mmの円盤状に打ち抜き、110℃で加熱
減圧乾燥を施して電極ペレットとした。また、同スラリ
ーをポリエチレンテレフタレート薄膜上に塗布し、80
℃で予備乾燥を行った。これを20cm×10cmの大
きさに成形し、110℃で加熱真空乾燥を施した。これ
らのものの抵抗率を表1に示す。
To 5 g of this sample was added a polyvinylidene fluoride (PVdF) dimethylacetamide solution in an amount of 10% by weight in terms of solid content, and the mixture was stirred to form a slurry. This was applied on a copper foil, preliminarily dried at 80 ° C., punched into a disk shape with a diameter of 20 mm, and dried under reduced pressure by heating at 110 ° C. to obtain an electrode pellet. Moreover, the same slurry was applied onto a polyethylene terephthalate thin film,
Pre-drying was performed at ° C. This was molded into a size of 20 cm × 10 cm, and heated and vacuum dried at 110 ° C. Table 1 shows the resistivity of these materials.

【0040】電極ペレットに対して、リチウム金属電極
との間に電解質を含浸させたポリエチレン製セパレータ
ーを挟んだ構造のコイン型セルを作製し、充放電試験を
行った。電解液には、エチレンカーボネートとジエチル
カーボネートを容量比で50/50で混合した溶媒に過
塩素酸リチウムを1.0mol/L溶解させたものを用
いた。
A coin-type cell having a structure in which a polyethylene separator impregnated with an electrolyte was sandwiched between a lithium metal electrode and the electrode pellet was prepared and a charge / discharge test was conducted. The electrolytic solution used was a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 50/50 and lithium perchlorate was dissolved in 1.0 mol / L.

【0041】充放電試験は電流密度0.16mA/cm
2 で極間電位差が0Vになるまでドープを行い、電流密
度0.33mA/cm2 で極間電位差1.5Vになるま
で脱ドープを行った。容量値は、コイン型セル3個につ
いて各々充放電試験を行い、それらの初回の脱ドープ容
量を算出して評価した。評価結果を表2に示す。
The charge / discharge test was conducted at a current density of 0.16 mA / cm.
2 performs doped to interelectrode potential difference is 0V, the was dedoped at a current density of 0.33 mA / cm 2 until the interelectrode potential difference 1.5V. The capacity value was evaluated by performing a charge / discharge test on each of three coin cells and calculating the initial de-doping capacity thereof. Table 2 shows the evaluation results.

【0042】[0042]

【表1】 表1 抵抗率 (実施例1) Ω・cm EHE80体積%/KS-6 20体積% 3.63×101 EHE50体積%/KS-6 50体積% 1.04×101 (実施例2) Ω・cm EHE80体積%/KB20体積% 3.65×101 EHE70体積%/KB30体積% 1.76×101 EHE50体積%/KB50体積% 4.86×100 (実施例3) Ω・cm EHE80体積%/SFG-620体積% 8.94×101 (実施例4) Ω・cm EHE80体積%/CF20体積% 1.6×102 (比較例1) Ω・cm 5.70×103 [Table 1] Table 1 Resistivity (Example 1) Ω · cm EHE80 volume% / KS-6 20 volume% 3.63 × 10 1 EHE50 volume% / KS-6 50 volume% 1.04 × 10 1 (Example 2) Ω Cm EHE80 volume% / KB20 volume% 3.65 × 10 1 EHE70 volume% / KB30 volume% 1.76 × 10 1 EHE50 volume% / KB50 volume% 4.86 × 10 0 (Example 3) Ω · cm EHE80 volume% / SFG-620 Volume% 8.94 × 10 1 (Example 4) Ω · cm EHE 80 volume% / CF 20 volume% 1.6 × 10 2 (Comparative example 1) Ω ・ cm 5.70 × 10 3

【0043】[0043]

【表2】 表2 基準脱ドープ容量 急速脱ドープ容量 0.33mA/cm2 2.8mA/cm2 (実施例1) mAh/g EHE80体積%/KS-6 20体積% 557 EHE50体積%/KS-6 50体積% 609 (実施例2) mAh/g mAh/g EHE80体積%/KB20体積% 633 339 EHE70体積%/KB30体積% 634 331 EHE50体積%/KB50体積% 641 310 (実施例3) mAh/g EHE80体積%/SFG-620体積% 557 (実施例4) mAh/g EHE80体積%/CF20体積% 516 (比較例1) mAh/g EHE 485 307[Table 2] Table 2 Reference dedoping capacity Rapid dedoping capacity 0.33 mA / cm 2 2.8 mA / cm 2 (Example 1) mAh / g EHE80 volume% / KS-6 20 volume% 557 EHE50 volume% / KS-6 50 volume% 609 (Example 2) mAh / g mAh / g EHE80 volume% / KB20 volume% 633 339 EHE70 volume% / KB30 volume% 634 331 EHE50 volume% / KB50 volume% 641 310 (Example 3) mAh / g EHE 80 volume% / SFG-620 volume% 557 (Example 4) mAh / g EHE 80 volume% / CF 20 volume% 516 (Comparative example 1) mAh / g EHE 485 307

【0044】[0044]

【発明の効果】本発明の導電性フィラーを含有する炭素
質物を負極として使用するリチウムイオン二次電池は、
炭素負極板中でのIRドロップが減少し、電位は、Li
/Li+に対し、0.5V以下の放電電位を与えるた
め、レート特性に優れたリチウムイオン二次電池とな
る。
The lithium ion secondary battery using the carbonaceous material containing the conductive filler of the present invention as the negative electrode is
The IR drop in the carbon negative electrode plate is reduced, and the potential is Li
Since a discharge potential of 0.5 V or less is applied to / Li +, the lithium ion secondary battery has excellent rate characteristics.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵、放出可能な炭素
質物が導電性フィラーを含有してなる電極材料を負極と
することを特徴とするリチウムイオン二次電池。
1. A lithium ion secondary battery comprising a negative electrode which is an electrode material comprising a carbonaceous material capable of inserting and extracting lithium ions and containing a conductive filler.
【請求項2】 リチウムイオンを吸蔵、放出可能な炭素
質物が、有機物を400℃以上、950℃以下で焼成し
たものであり、体積抵抗率が101 Ω・cm以上、10
7 Ω・cm以下、比表面積が1m2 /g以上、100m
2 /g以下、H/C(水素/炭素原子存在比)が0.0
5以上0.5以下で定義されるアモルファス炭素である
ことを特徴とする請求項1記載のリチウムイオン二次電
池。
2. A carbonaceous material capable of occluding and releasing lithium ions is obtained by firing an organic material at 400 ° C. or higher and 950 ° C. or lower, and has a volume resistivity of 10 1 Ω · cm or more and 10 or more.
7 Ω · cm or less, specific surface area 1 m 2 / g or more, 100 m
2 / g or less, H / C (hydrogen / carbon atom abundance ratio) is 0.0
The lithium ion secondary battery according to claim 1, which is amorphous carbon defined by 5 or more and 0.5 or less.
【請求項3】 電極材料において、リチウムイオンを吸
蔵、放出可能な炭素質物が85〜50体積重量%(Vo
l.%)、及び導電性フィラーが15〜50Vol.%
であることを特徴とする請求項1または2記載のリチウ
ムイオン二次電池。
3. The electrode material contains 85 to 50% by volume (Vo) of a carbonaceous material capable of absorbing and desorbing lithium ions.
l. %), And the conductive filler is 15 to 50 Vol. %
The lithium ion secondary battery according to claim 1 or 2, wherein
【請求項4】 導電性フィラーの体積抵抗率が101 Ω
・cm未満であることを特徴とする請求項1〜3のいず
れかに記載のリチウムイオン二次電池。
4. The volume resistivity of the conductive filler is 10 1 Ω.
-Lithium ion secondary battery according to any one of claims 1 to 3, which is less than cm.
【請求項5】 導電性フィラーの平均粒径または平均長
径が、焼成後の金属イオンを吸蔵、放出可能な炭素質物
の平均粒径の0.05〜90%の範囲であることを特徴
とする請求項1〜4のいずれかに記載のリチウムイオン
二次電池。
5. An average particle diameter or an average major axis of the conductive filler is in the range of 0.05 to 90% of the average particle diameter of the carbonaceous material capable of storing and releasing metal ions after firing. The lithium ion secondary battery according to claim 1.
【請求項6】 導電性フィラーがカーボンブラック、黒
鉛粉末、炭素繊維、金属粉末から選ばれた少なくとも1
種であることを特徴とする請求項1〜5のいずれかに記
載のリチウムイオン二次電池。
6. The conductive filler is at least one selected from carbon black, graphite powder, carbon fiber and metal powder.
The lithium ion secondary battery according to claim 1, wherein the lithium ion secondary battery is a seed.
【請求項7】 金属粉末がニッケル、銅、ステンレスス
チールから選ばれた少なくとも1種であることを特徴と
する請求項6記載のリチウムイオン二次電池。
7. The lithium ion secondary battery according to claim 6, wherein the metal powder is at least one selected from nickel, copper and stainless steel.
JP09385796A 1996-04-16 1996-04-16 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same Expired - Fee Related JP3719286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09385796A JP3719286B2 (en) 1996-04-16 1996-04-16 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09385796A JP3719286B2 (en) 1996-04-16 1996-04-16 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH09283143A true JPH09283143A (en) 1997-10-31
JP3719286B2 JP3719286B2 (en) 2005-11-24

Family

ID=14094108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09385796A Expired - Fee Related JP3719286B2 (en) 1996-04-16 1996-04-16 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3719286B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006439A (en) * 1998-06-24 2000-01-11 Shin Kobe Electric Mach Co Ltd Cathode plate and anode plate for non-aqueous electrolyte secondary cell
JP2002246020A (en) * 2001-02-13 2002-08-30 Sony Corp Active material and non-aqueous electrolyte battery using the same, and battery producing method
WO2008099508A1 (en) * 2007-02-16 2008-08-21 Namics Corporation Lithium ion secondary battery and process for manufacturing the same
JP2016110773A (en) * 2014-12-04 2016-06-20 山陽特殊製鋼株式会社 Powder for conductive filler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006439A (en) * 1998-06-24 2000-01-11 Shin Kobe Electric Mach Co Ltd Cathode plate and anode plate for non-aqueous electrolyte secondary cell
JP2002246020A (en) * 2001-02-13 2002-08-30 Sony Corp Active material and non-aqueous electrolyte battery using the same, and battery producing method
WO2008099508A1 (en) * 2007-02-16 2008-08-21 Namics Corporation Lithium ion secondary battery and process for manufacturing the same
KR101367613B1 (en) * 2007-02-16 2014-02-27 나믹스 코포레이션 Lithium ion secondary battery and process for manufacturing the same
US9236594B2 (en) 2007-02-16 2016-01-12 Namics Corporation Lithium ion secondary battery and process for manufacturing the same
JP2016110773A (en) * 2014-12-04 2016-06-20 山陽特殊製鋼株式会社 Powder for conductive filler

Also Published As

Publication number Publication date
JP3719286B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP4161376B2 (en) Non-aqueous electrolyte secondary battery
KR101361567B1 (en) Composite graphite particles and use of same
JP3633257B2 (en) Lithium ion secondary battery
US20100092864A1 (en) Negative-electrode active material for lithium ion secondary battery, process for producing the same, and negative electrode for lithium ion secondary battery and lithium ion secondary battery both employing the same
JPH11354122A (en) Lithium secondary battery negative electrode active material and lithium secondary battery
JP2007214137A (en) Negative electrode active material for nonaqueous carbon-coated lithium secondary battery
JP3960691B2 (en) Anode active material for non-aqueous carbon-coated lithium secondary battery
KR20130094853A (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
JP3677992B2 (en) Lithium ion secondary battery
JP4595931B2 (en) Negative electrode material for lithium secondary battery and negative electrode sheet produced therefrom
KR101631735B1 (en) Anode active material for lithium secondary battery and preparation method of thereof
JP4134504B2 (en) Lithium secondary battery
JP3969164B2 (en) Negative electrode material for lithium secondary battery and negative electrode body produced therefrom
JP2002348109A (en) Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
JPH10189044A (en) Nonaqueous electrolytic secondary battery
US20030134201A1 (en) Lithium ion secondary battery
JP3654790B2 (en) Graphite material for electrode and lithium ion secondary battery using the same
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP4818498B2 (en) Nonaqueous electrolyte secondary battery
KR101417588B1 (en) Anode active material with high electrical conductivity and method for preparing the same
JP3091944B2 (en) Method for producing carbon particles for negative electrode of lithium ion secondary battery
JP2003272627A (en) Negative electrode material for lithium secondary battery and negative electrode sheet manufactured from it
JP2003272621A (en) Negative electrode material for lithium secondary battery and negative electrode sheet manufactured from it
JP2000260428A (en) Lithium secondary battery using nonaqueous cabon- coated negative electrode
JP3719286B2 (en) Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees