JP3960691B2 - Anode active material for non-aqueous carbon-coated lithium secondary battery - Google Patents

Anode active material for non-aqueous carbon-coated lithium secondary battery Download PDF

Info

Publication number
JP3960691B2
JP3960691B2 JP25656298A JP25656298A JP3960691B2 JP 3960691 B2 JP3960691 B2 JP 3960691B2 JP 25656298 A JP25656298 A JP 25656298A JP 25656298 A JP25656298 A JP 25656298A JP 3960691 B2 JP3960691 B2 JP 3960691B2
Authority
JP
Japan
Prior art keywords
substance
negative electrode
active material
electrode active
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25656298A
Other languages
Japanese (ja)
Other versions
JP2000090916A (en
Inventor
秀治 佐藤
享 布施
正司 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP25656298A priority Critical patent/JP3960691B2/en
Publication of JP2000090916A publication Critical patent/JP2000090916A/en
Application granted granted Critical
Publication of JP3960691B2 publication Critical patent/JP3960691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、小型、軽量の電気機器や電気自動車の電源として好適な、非水系リチウム二次電池、特に該二次電池用の負極活物質に関する。
【0002】
【従来の技術】
近年、電子機器の小型化に伴い、高容量の二次電池が求められている。そのためニッケル・カドミウム電池、ニッケル・水素電池に比べ、よりエネルギー密度の高い非水系リチウム二次電池が注目されている。
【0003】
負極材料としては、最初リチウム金属を用いることが試みられたが、充放電を繰り返すうちにデンドライト状のリチウムが析出し、セパレータを貫通して正極にまで達し、短絡して発火事故を起こす可能性があることが判明した。
【0004】
また、特開昭57−208079には、リチウムを負極活物質とし、電極板として結晶化度が高い黒鉛を使用することが提案された。しかしながら、黒鉛は充放電の原理にリチウムイオンの黒鉛結晶中へのインターカレーションを利用するため、常温、常圧下では、最大リチウム導入化合物のLiC6から算出される黒鉛の理論容量である372mAh/gを超える放電容量が得られないとい問題があった。しかも、黒鉛材料の電解液との濡れ性の低さは、充放電初期のリチウム脱ドープ容量が、本来黒鉛材料が発現できるはずの350mAh/g以上の容量よりも低くなるという問題があった。
【0005】
そこで、黒鉛性炭素質物の表面を炭素化可能な有機物で被覆、焼成した炭素質物を用いることが知られているが、この材料は充放電時の電位が黒鉛のそれと同様リチウム金属の酸化還元電位に近く、しかも黒鉛性炭素質物より高容量が得られるという利点があるが、やはり黒鉛の理論容量である372mAh/gを超える容量は得られていない。
【0006】
更に、高容量を発現できる負極材料として、Al、Siなどリチウムのドープ、脱ドープが可能な金属を用いることが知られているが、この材料は電極表面での電解液の分解や、充放電サイクルに対する容量の低下に問題がある。
【0007】
これらの問題を解決するために、特開平1−298645、特開平1−255165などには、炭素質物で金属粉末を被覆した負極材料を用いたリチウム二次電池が開示されている。炭素質物で金属材料を被覆することにより、充放電に伴う金属部分の構造的劣化を抑制できる作用があるものと考えられる。また、特開平10−3920には、炭素質物に混合する金属の粒子の粒径を500nm以下とすることが開示されている。炭素質物中の金属粒子の粒径を小さくすることで、充放電時に生じる金属部分の大きな体積変化が抑制され、サイクル効率の向上に寄与することが考えられるが、炭素質物に金属の微粒子を混合した後焼成しているため、金属の融解、凝集が起こり易く、制御が難しい。更に特開平8−241715には、金属酸化物などを炭素化又は黒鉛化可能な有機物を非酸化性雰囲気中で焼成した、炭素質物/金属複合負極材料が開示されているが、このときの焼成後の炭素質物に対する金属の割合は、40重量%以下に限られており、具体的に製造されたものは約20重量%以下のものである。
【0008】
【発明が解決しようとする課題】
本発明の目的は、リチウムの充放電を行った場合に、従来の黒鉛系電極材料よりも高容量を発現でき、かつ負極材料の全重量に対する金属質物の含有量が多いにも関わらず、従来の炭素質物/金属質物複合負極材料よりサイクル劣化が小さい非水系リチウム二次電池用の負極活物質を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、熱処理後には電気化学的にリチウムイオンを吸蔵及び放出することができるようになる物質aと炭素質物前駆体bとを混合、熱処理して、前記物質a由来の金属質物粒子が炭素質物で被覆された非水系リチウム二次電池用負極活物質であって、
(イ)上記物質aが、元素周期表Ia族、IIa族、チタン、バナジウム、タンタル、VIa族、マンガン、VIII族、Ib族、IIb族、IIIb族、IVb族、ヒ素、アンチモン及びビスマスから選ばれる元素の酸化物、硫化物、窒化物、セレン化物、テルル化物、硝酸塩、硫酸塩、あるいは該化合物を主成分とする複合化合物、及びこれら化合物の混合物から選ばれるものであり、
(ロ)かつ前記物質aの二次粒子の平均粒径が10μm以下か、又は一次粒子の平均粒径が500nm以下であり、
(ハ)前記炭素質物前駆体bを熱処理した炭素質物の、学振法によって規定されたX線広角回折法による(002)面の面間隔(d002)が3.38Å以上、及びc軸方向の結晶子の大きさ(Lc)が100Å以下であり、かつ
(ニ)前記物質aと物質bを熱処理した後の負極活物質中の金属質物の割合が5〜85重量%である、負極活物質である。
【0010】
【発明の実施の形態】
次に本発明の詳細を述べる。
【0011】
「金属質物」
本発明の金属質物は、元素周期表Ia族、IIa族、チタン、バナジウム、タンタル、VIa族、マンガン、VIII族、Ib族、IIb族、IIIb族、IVb族、ヒ素、アンチモン及びビスマスから選ばれる元素の酸化物、硫化物、窒化物、セレン化物、テルル化物、硝酸塩、硫酸塩、該化合物を主成分とする複合化合物、あるいはこれら化合物の混合物であり、該化合物粒子の二次粒子の平均粒径が10μm以下か、又は一次粒子の平均粒径が500nm以下のものを選択する。
【0012】
上記化合物としては、上記の要件を満たす限り限定なく用いることができるが、具体的にはAg2O、Al23、Bi23、CdO、CrO2、Cr23、Cu2O、Fe23、In23、IrO2、MgO、MnO2、Mn23、OsO2、OsO4、PbO、Pb34、PbO2、PdO、PtO、RuO2、SnO、SnO2,SiO、SiO2、TaO2、TiO、Ti23、TiO2、V23、V24、V25、VO2、V23、WO、WO2、WO3、ZnO等の金属酸化物;Bi23、CdS、In23、PbS、PtS、SnS、SnS2、TaS2、TiS2、V23、V22、WS2、ZnS等の金属硫化物;Bi2Te3、SnTe、SnTe2、WTe2、ZnTe等の金属テルル化物;Si34、TaSi2、TiSi2、V3Si、V2Si、WSi2等の金属ケイ化物;AlN、TaN、W2N、WN等の金属窒化物;これら前述の金属化合物から選択されるものの複合金属化合物;又はこれらとアルカリ金属の複合酸化物;アルカリ土類金属との複合酸化物;前述のいずれかの金属化合物と同士の複合金属化合物;更には、これらのものから選択された化合物同士の混合物を用いることができる。錫酸、錫酸塩、一酸化錫、二酸化錫、錫酸アルカリ金属塩、錫酸アルカリ土類金属塩、錫酸アンモニウム、錫酸アンチモン、酸化アンチモン、一酸化ケイ素、酸化銀、酸化亜鉛、酸化アルミ及び二酸化ケイ素が挙げられる。
【0013】
物質aの平均粒径が上記範囲より大きいと、熱処理後においても完全に金属質物まで還元されにくい、あるいは粒径が大きい物を全量還元できるような温度まで熱処理温度を引き上げる、あるいは熱処理時間を長くする等の工程を行うと、絶縁性の炭素質物が多量に形成され、負極容量の低下につながる等の問題が生じてくる化合物もある。また、前述したような金属化合物の代わりに金属質物そのものを炭素質物前駆体と混合し熱処理すると、金属の融点が炭素化が始まる温度以下にあることが多いため、金属質物同士の融着がおこり、熱処理後に炭素質物と分離したり、たとえ炭素質物中に取り込まれても大きく粒成長してしまい、負極としたときサイクルの維持率が悪くなる。
【0014】
本発明では、炭素化が始まる温度以下では構造が安定で、融解、凝集を起こしにくい前述の物質aを使用することで、熱処理後に炭素質物中に、前記物質a由来の金属質物の粒子を、より細かいまま保持することができる。更に、使用する物質aの粒子径が小さく、一般的に金属質物よりも表面積が大きいため、炭素質物前駆体bとの混合段階において、分散性及び/又は相溶性に優れ、熱処理後にもより均質な材料を作成できる。
【0015】
本発明に使用される前記物質aは、その粒子の二次粒子の平均粒径が10〜0.01μm、好ましくは7〜0.05μm、更に好ましくは5〜0.1μmのもの、又は一次粒子の平均粒径が500〜1nm、好ましくは400〜3nmのものである。具体的には、例えば粒径10nmのシリカ超微粒子、アルミノシリカの超微粒子、酸化錫又は酸化錫と酸化アンチモンの複合金属酸化物の一次粒子の平均粒径5nmの超微粒子が特に好ましい。また、これらの粒子を溶媒に分散させたゲル、酸化錫の表面を有機物で被覆した一次粒子の平均粒径10nmの酸化錫ゾル、これを溶媒に分散させたゲル等は特に好ましい。
【0016】
「炭素質物前駆体b」
本発明で述べる「炭素質物前駆体」とは、後述する、熱処理後には電気化学的にリチウムイオンを吸蔵及び放出することができるようになる物質aとともに熱処理された後は、リチウムイオンを吸蔵及び放出可能な性質を有する有機化合物である。
【0017】
具体的には、炭素化可能な有機物として、液相で炭素化が進行する軟ピッチから硬ピッチまでのコールタールピッチや、乾留液化油などの石炭系重質油や、常圧残油、減圧残油等の直流系重質油、原油、ナフサなどの熱分解時に副生するエチレンタール等分解系重質油等の石油系重質油、あるいは以上のものを炭素化が進む以下の温度で蒸留、溶媒抽出等の手段を経て固化したものが挙げられる。更にアセナフチレン、デカシクレン、アントラセンなどの芳香族炭化水素;フェナジンやアクリジンなどの窒素含有環状化合物;チオフェンなどの硫黄含有環状化合物;30MPa以上の加圧が必要となるがアダマンタンなどの脂環が挙げられる。炭素化可能な熱可塑性高分子としては、炭素化に至る過程で液相を経るビフェニルやテルフェニルなどのポリフェニレン;ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルブチラールなどのポリビニルエステル類;ポリビニルアルコールが挙げられる。また、以上に列挙した有機物、高分子に適量のリン酸、ホウ酸、塩酸等の酸類、水酸化ナトリウム等のアルカリ類を添加したものでもよい。更にこれらのものを100〜600℃、好ましくは200〜400℃で、酸素、硫黄、窒素又はホウ素から選ばれる元素により、適度に架橋処理したものでもよい。適度な架橋構造を炭素質物又は炭素質物前駆体中に形成することにより、後述する金属質物を安定に系内に保持することができ、更に熱処理中に起こる金属質物の凝集を妨げる効果も生じる。
【0018】
これらの炭素質物前駆体を熱処理した後の炭素質物の性質は、学振法によって規定されたX線広角回折法による(002)面の面間隔(d002)が3.38Å以上、及びc軸方向の結晶子の大きさ(Lc)が100Å以下のものを選択するとよい。
【0019】
物質aと炭素質物前駆体bの混合方法としては、従来の方法を限定なく用いることが可能であるが、それぞれの原料の状態に合わせ、「マイクロス」R分散機、アキシャルミキサー、ホモジェナイザー、ホモディスパーザー、ペイントシェーカー、加熱式二軸混練機、加熱式ブレードニーダー、メカノヒュージョン、ボールミル、ジェットミル、ハイブリダイゼーションマシン、あるいはVブレンダー等を用いると、より均一に前駆体同士が混合されるので好ましい。これらの混合方法は適宜組み合わせて用いてもよい。これらの混合方法には、混合と同時に解砕や粉砕を行えるものもあり、それらを用いた場合には、混合前の物質aの一次又は二次粒子の平均粒径が、上記の範囲外にあっても、混合、解砕、あるいは粉砕が行われることで、最終的に上記の平均粒径の範囲内に収まればよい。
上記の混合後、600〜2,000℃、より好ましくは700〜1,500℃、更に好ましくは800〜1,300℃で、好ましくは還元的雰囲気下で熱処理し、その後、解砕、あるいは粉砕し、1〜100μm、好ましくは5〜50μmの平均粒径をもつ電極活物質として使用する。
【0020】
熱処理、解砕、粉砕等の工程を経て最終調製された電極材料粉体において、粉体全体を100重量%としたとき、金属質物は5〜85重量%で、炭素質物前駆体の熱処理物の含量は15〜95重量%である。金属質物は15〜80重量%、更には35〜70重量%、特に40〜65重量%であることが好ましい。なお、上記範囲は原料仕込み比ではなく、最終的な調製段階での含有量である。そのため、仕込み時には、最終段階での組成比を考慮して原料の配合量を決定する必要がある。これより金属質物の含有量が少ないと、リチウム電池を組立てたときに、実際上大きな放電容量の増加が見込めず、またこれ以上の含有量であると、金属質物を炭素質物が被覆することができず、また、熱処理段階で金属質物同士が融解、凝集するなどして粒子径が大きく成長してしまうため、電池のサイクルの維持が難しくなる。
【0021】
本発明の負極活物質の製造方法は、上記物質aと物質bを使用する限り限定なく、従来公知の方法が採用可能である。例えば、有機化合物と金属化合物を加熱手段がある混合機で、最終組成が上記範囲内となる仕込み比で混合し、脱気・脱揮処理を行い、600〜2,000℃で0.1〜12時間、好ましくは700〜1,500℃、特に好ましくは800〜1,300℃で0.5〜5時間焼成し、この熱処理物を、好ましくは1〜100μm、更に好ましくは5〜50μmの範囲に解砕又は粉砕して、該負極活物質粉体を得る。
【0022】
次に、本発明の負極活物質を用いて、電池を製造する方法について説明する。上記負極活物質粉体に結着剤、溶媒等を加えてスラリー状とし、銅箔等の金属製の集電体の基板に、このスラリーを塗布・乾燥して電極とする。また、該負極活物質をそのままロール成形、圧縮成形等の方法で電極の形状に成形することもできる。
【0023】
上記の目的で使用できる結着剤としては、溶媒に対して安定な、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、セルロース等の樹脂系高分子;スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体、その水素添加物、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体、その水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック1,2−ポリブタジエン、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン(炭素数2〜12)共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレン共重合体等のフッ素系高分子;アルカリ金属イオン、特にリチウムイオンのイオン伝導性を有する高分子組成物が挙げられる。
【0024】
上記のイオン伝導性を有する高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル化合物の架橋体高分子;ポリエピクロルヒドリン、ポリホスファゼン、ポリシロキサン、ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリル等の高分子化合物に、リチウム塩、又はリチウムを主体とするアルカリ金属塩を複合させた系、あるいはこれにプロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン等の高い誘電率を有する有機化合物を配合した系を用いることができる。
【0025】
負極活物質粉体と上記の結着剤との混合形態としては、各種の形態をとることができる。即ち、両者の粒子が混合した形態、繊維状の結着剤が該電極粒子に絡み合う形で混合した形態、又は結着剤の層が電極粒子表面に付着した形態などが挙げられる。該電極粉体と上記結着剤との混合割合は、電極粉体に対し、好ましくは0.1〜30重量%、より好ましくは0.3〜20重量%、特に好ましくは0.5〜10重量%である。これ以上の量の結着剤を添加すると、電極の内部抵抗が大きくなり、好ましくなく、これ以下の量では集電体と電極粉体の結着性に劣る。
【0026】
こうして作製した負極板と、以下に説明する電解液及び正極板を、その他の電池構成要素であるセパレータ、ガスケット、集電体、封口板、セルケース等と組み合わせて二次電池を構成する。作成可能な電池は、筒型、角型、コイン型等特に限定されるものではないが、基本的にはセル床板上に集電体と負極板を乗せ、その上に電解液とセパレータを、更に負極と対向するように正極を乗せ、ガスケット、封口板と共にかしめて二次電池とする。
【0027】
電解液用に使用できる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、スルホラン、1,3−ジオキソラン等の公知の有機溶媒の単独、又は二種類以上を混合したものを用いることができる。
【0028】
これらの溶媒に、0.5〜2.0M程度のLiClO4、LiPF6、LiBF4、LiCF3SO3、LiAsF6、LiCl、LiBr等の公知の電解質を溶解して電解液とする。
【0029】
また、リチウムイオン等のアルカリ金属カチオンの導電体である高分子固体電解質を用いることもできる。
【0030】
正極材料は特に限定されないが、リチウムイオンなどのアルカリ金属カチオンを充放電時に吸蔵、放出できる金属カルコゲン化合物からなることが好ましい。そのような金属カルコゲン化合物としては、バナジウム酸化物、バナジウム硫化物、モリブデン酸化物、モリブデン硫化物、マンガン酸化物、クロム酸化物、チタン酸化物、チタン硫化物及びこれらの複合酸化物、複合硫化物等が挙げられる。好ましくはCr38、V25、V513、VO2、Cr25、MnO2、TiO2、MoV28、TiS225MoS2、MoS3VS2、Cr0.250.752、Cr0.50.52等である。またLiMY2(Mは、Co、Ni,Fe等の遷移金属、YはO、S等のカルコゲン化合物)、LiM24(MはMn、YはO)、あるいはこれらの酸化物の不定比化合物、WO3等の酸化物、CuS、Fe0.250.752、Na0.1CrS2等の硫化物、NiPS3、FePS3等のリン、硫黄化合物、VSe2、NbSe3等のセレン化合物等を用いることもできる。これらを負極体と同様、結着剤と混合して集電体の上に塗布して正極体とする。
【0031】
電解液を保持するセパレーターは、一般的に保液性に優れた材料であり、例えばポリオレフィン系樹脂の不織布や多孔性フィルム等を使用して、上記電解液を含浸させる。
【0032】
【実施例】
次に実施例により本発明を更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
【0033】
電極材料の評価方法
評価は以下のように行った。結着剤を用いてペレット状に成形した上記の負極体を、セパレーター、電解液と共に、対極をリチウム金属とした半電池とし、2016コインセル中に組み立て、充放電試験機で充放電容量を評価したが、正極体とともに組んだ全電池でも同様な効果が期待できる。
【0034】
(実施例1)
二次粒子の平均粒径0.6μm(一次粒子の平均粒径400nm)の酸化錫(IV)(SnO2;福井新素材(株)製)微粒子粉と、コールタールピッチを熱処理して得た揮発分(以下、VMと称す)が22.1%で、ガンマレジン量が25.0%で、かつ原子比O/Cが0.009である原料(以下、ピッチAと称す)を、空気の存在下で機械的エネルギーを付与しながら280℃で1時間処理して得られた固体を粉末化した。得られた粉体を、回分式加熱炉で不活性雰囲気下にて、900℃に保ち、1時間熱処理した。不活性雰囲気下で放冷後、得られた粉体を解砕し、10〜25μmに整え、サンプル粉体とした。該粒子の炭素質部分の粉末X線広角回折法による(002)面の面間隔(d002)は3.47Å、及びc軸方向の結晶子の大きさ(Lc)が23Åであった。また、元素分析から算出された該粉体内の金属質物の含有量は、粉体全体を100重量%としたとき、47重量%であった。
この粉体を走査型顕微鏡で観察したところ、炭素質物マトリックス中に被覆された錫金属微粒子が高分散しているのが見られた。
なお、揮発分(VM)は、JIS−M8812に従って、ガンマレジン量は、JIS−K2425に従ってトルエン不溶分量を測定して、それぞれ求めた。
また、酸素含有量(原子比O/C)は、炭素及び酸素の重量含有率からそれぞれの原子量を用いて計算した。炭素の含有量は、全自動元素分析装置(パーキンエルマー社製「CHN計240C」)で測定した。酸素含有量は、酸素窒素分析装置(LECO社製「TC436」)を用い、試料10mgをニッケルカプセルに封入し、ヘリウム気流下において300Wで300秒、続いて5,500Wで100秒加熱し、発生ガス中の二酸化炭素を赤外吸収より定量して求めた。
この電極材料サンプル2gに対し、ポリフッ化ビニリデン(PVdF)のジメチルアセトアミド溶液を固形分換算で10重量%加えたものを撹拌し、スラリーを得た。このスラリーを銅箔上に塗布し、80℃で予備乾燥した。更に圧着したのち、直径12.5mmの円盤状に打ち抜き、110℃で減圧乾燥して電極とした。
得られた電極に対し、電解液を含浸させたポリプロピレン製セパレーターをはさみ、リチウム金属電極に対向させたコイン型セルを作製し、充放電試験を行った。電解液には、エチレンカーボネートとジエチルカーボネートを容量比1:1の比率で混合した溶媒に、過塩素酸リチウムを1.0mol/Lの割合で溶解させたものを用いた。
基準充放電試験は、電流密度0.16mA/cm2で極間電位差が0Vになるまでドープを行い、電流密度0.33mA/cm2で極間電位差が1.5Vになるまで脱ドープを行った。
容量値は、コイン型セル3個について各々充放電試験を行い、第1回目の充放電時サイクルのドープ容量、脱ドープ容量の平均、及び第4回目の放電容量を初回の放電容量で割った値の100分率(容量維持率%)で評価した。炭素質物部分の粉末X線広角回折法による(002)面の面間隔(d002)、及びc軸方向の結晶子の大きさ(Lc)とともに、結果を表1に示す。
【0035】
【表1】

Figure 0003960691
【0036】
(実施例2)
実施例1において、二次粒子の平均粒径0.6μm(一次粒子の平均粒径400nm)の酸化錫(IV)(SnO2;福井新素材(株)製)微粒子粉のピッチAに対する混合量を多くし、熱処理後の元素分析から算出された該粉体内の金属質物の含有量は、粉体全体を100重量%としたとき、65重量%である以外は、実施例1と同様の操作を行った。
この粉体を走査型顕微鏡で観察したところ、炭素質物マトリックス中に被覆された錫金属微粒子が高分散しているのが見られた。
炭素質物部分の粉末X線広角回折法による(002)面の面間隔(d002)、及びc軸方向の結晶子の大きさ(Lc)とともに、結果を表1に示す。
【0037】
(実施例3)
実施例1における金属質物部分が、一次粒子の粒径50〜200nmにある酸化アンチモン(Sb23;高純度化学試薬)と、実施例1で用いた酸化錫(IV)の混合物であり、熱処理後のアンチモンと錫の重量比がSn:Sb=9:1となるように調整し、熱処理後の元素分析から算出された炭素質物/金属質物複合粉体内の金属質物の含有量が、粉体全体を100重量%としたとき、57重量%である以外は、実施例1と同様の操作を行った。
この粉体を走査型顕微鏡で観察したところ、炭素質物マトリックス中に被覆された錫・アンチモン合金微粒子が高分散しているのが見られた。
炭素質物部分の粉末X線広角回折法による(002)面の面間隔(d002)、及びc軸方向の結晶子の大きさ(Lc)とともに、結果を表1に示す。
【0038】
(実施例4)
実施例1で用いた二次粒子の粒径0.6μmの酸化錫(IV)(SnO2;和光純薬試薬)粉を、石油系ピッチであるエチレンヘビーエンド(三菱化学製)とともに、室温で「マイクロス」R分散機により撹拌、均一混合した。得られたスラリー状の混合物を、回分式加熱炉で窒素/酸素混合雰囲気下にて、350℃で1時間熱処理し、その後900℃に保ち、更に1時間熱処理した。不活性雰囲気下で放冷後、得られた粉体を粉砕し、10〜25μmに整えてサンプル粉体とした。該元素分析から算出された該粉体内の金属質物の含有量は、粉体全体を100重量%としたとき、40重量%であった。
この粉体を走査型顕微鏡で観察したところ、炭素質物マトリックス中に被覆された錫金属微粒子が高分散しているのが見られた。
炭素質物部分の粉末X線広角回折法による(002)面の面間隔(d002)、及びc軸方向の結晶子の大きさ(Lc)とともに、結果を表1に示す。
【0039】
(実施例5)
二次粒子の平均粒径2μmの酸化錫(IV)(SnO2;和光純薬試薬)粉と、石油系ピッチであるエチレンヘビーエンド(三菱化学製)を、常温で「マイクロス」R分散機により撹拌、均一混合した以外は、実施例1と同様の操作を行った。元素分析から算出された該粉体内の金属質物の含有量は、粉体全体を100重量%としたとき、57重量%であった。
この粉体を走査型顕微鏡で観察したところ、炭素質物マトリックス中に被覆された錫金属微粒子が高分散しているのが見られた。
炭素質物部分の粉末X線広角回折法による(002)面の面間隔(d002)、及びc軸方向の結晶子の大きさ(Lc)とともに、結果を表1に示す。
【0040】
(実施例6)
実施例5の二次粒子の平均粒径2μmの酸化錫(IV)(SnO2;和光純薬試薬)を用い、石油系ピッチであるエチレンヘビーエンド(三菱化学製)に対する混合量を多くした以外は、実施例5と同様の操作を行った。熱処理後の元素分析から算出された該粉体内の金属質物の含有量は、粉体全体を100重量%としたとき、74重量%であった。
この粉体を走査型顕微鏡で観察したところ、炭素質物マトリックス中に被覆された錫金属微粒子が高分散しているのが見られた。
炭素質物部分の粉末X線広角回折法による(002)面の面間隔(d002)、及びc軸方向の結晶子の大きさ(Lc)とともに、結果を表1に示す。
【0041】
(実施例7)
酸化錫(IV)微粒子の表面を有機物で被覆した一次粒子の平均粒径5nmのものを、石油系ピッチであるエチレンヘビーエンド(三菱化学製)に添加し、室温で「マイクロス」R分散機により均一混合した。得られた粉体を、回分式加熱炉で不活性雰囲気下にて900℃に保ち、1時間熱処理した。撹拌し、均一混合した以外は、実施例1と同様の操作を行った。熱処理後の元素分析から算出された該粉体内の金属質物の含有量は、粉体全体を100重量%としたとき、56重量%であった。
この粉体を走査型顕微鏡で観察したところ、炭素質物マトリックス中に被覆された錫金属微粒子が高分散しているのが見られた。
炭素質物部分の粉末X線広角回折法による(002)面の面間隔(d002)、及びc軸方向の結晶子の大きさ(Lc)とともに、結果を表1に示す。
【0042】
(実施例8)
実施例1における金属質物部分が、酸化錫(IV)・酸化アンチモン分子混合酸化物微粒子の表面を有機物で被覆した一次粒子の平均粒径5nmのものであり、熱処理後のアンチモンと錫の重量比がSn:Sb=9:1となるように調整し、熱処理後の元素分析から算出された炭素質物/金属質物複合粉体内の金属質物の含有量が、粉体全体を100重量%としたとき、52重量%である以外は、実施例1と同様の操作を行った。
この粉体を走査型顕微鏡で観察したところ、炭素質物マトリックス中に被覆された錫・アンチモン合金微粒子が高分散しているのが見られた。
炭素質物部分の粉末X線広角回折法による(002)面の面間隔(d002)、及びc軸方向の結晶子の大きさ(Lc)とともに、結果を表1に示す。
【0043】
(実施例9)
一次粒子の平均粒径5nmの酸化錫(IV)・酸化アンチモンの分子状混合酸化物の微粒子を、アンモニア性水溶液(pH10.8)に分散させたのものを、水溶性フェノール樹脂エマルジョン(群栄化学製)に添加し、ホモディスパーザーにより室温で撹拌した。得られたスラリー状の物を不活性ガス雰囲気下、100℃で3時間熱処理し固化させた。これを軽く解砕し、得られた粉体を回分式加熱炉で不活性雰囲気下にて900℃に保ち、1時間熱処理した。熱処理後のアンチモンと錫の重量比がSn:Sb=93:7となるように調整した。熱処理後の元素分析から算出された炭素質物/金属質物複合粉体内の金属質物の含有量は、粉体全体を100重量%としたとき、57重量%であった。電極製造方法、評価方法は、実施例1と同様の操作を行った。
この粉体を走査型顕微鏡で観察したところ、炭素質物マトリックス中に被覆された錫・アンチモン合金微粒子が高分散しているのが見られた。
炭素質物部分の粉末X線広角回折法による(002)面の面間隔(d002)、及びc軸方向の結晶子の大きさ(Lc)とともに、結果を表1に示す。
【0044】
(実施例10)
実施例9における金属質物部分が、一次粒子の平均粒径5nmの酸化錫(IV)(pH10.7)であり、熱処理後の元素分析から算出された炭素質物/金属質物複合粉体内の金属質物の含有量は、粉体全体を100重量%としたとき、56重量%である以外は、実施例1と同様の操作を行った。
この粉体を走査型顕微鏡で観察したところ、炭素質物マトリックス中に被覆された錫金属微粒子が高分散しているのが見られた。
炭素質物部分の粉末X線広角回折法による(002)面の面間隔(d002)、及びc軸方向の結晶子の大きさ(Lc)とともに、結果を表1に示す。
【0045】
(比較例1)
二次粒子の平均粒径2μmの酸化錫(IV)(SnO2;Aldrich製)粉と、石油系ピッチであるエチレンヘビーエンド(三菱化学製)を、大気中で撹拌、均一混合した。得られたスラリーを回分式加熱炉で不活性雰囲気下にて900℃に保ち、1時間熱処理した。不活性雰囲気下で放冷後、得られた粉体を解砕しようとしたところ、錫粒子の大きな成長(最大6μm程度)がみられ、電極には成形できなかった。また、元素分析から算出された該粉体内の金属質物の含有量は、粉体全体を100重量%としたとき、95重量%であった。
【0046】
(比較例2)
金属質物部分が、二次粒子の平均粒径20μmの酸化錫(IV)であり、元素分析から算出された熱処理後の炭素質物/金属質物複合粉体内の金属質物の含有量が、粉体全体を100重量%としたとき、65重量%である以外は、実施例1と同様の操作を行った。
炭素質物部分の粉末X線広角回折法による(002)面の面間隔(d002)、及びc軸方向の結晶子の大きさ(Lc)とともに、結果を表1に示す。
【0047】
(比較例3)
金属質物部分が、二次粒子の平均粒径10μmの錫金属である以外は、比較例1と同様の操作を行った。得られた粉体を解砕しようとしたところ、錫粒子の大きな成長(最大500μm程度)がみられ、電極には成形できなかった。元素分析から算出された熱処理後の炭素質物/金属質物複合粉体内の金属質物の含有量は、粉体全体を100重量%としたとき、50重量%であった。
【0048】
(比較例4
実施例1で、炭素質物前駆体を熱処理した、炭素質物の水素/炭素の原子比が0.02、学振法によって規定されたX線広角回折法による(002)面の面間隔(d002)が3.41Å、及びc軸方向の結晶子の大きさ(Lc)が280Åであり、元素分析から算出された熱処理後の炭素質物/金属質物複合粉体内の金属質物の含有量は、粉体全体を100重量%としたとき、51重量%である以外は、実施例1と同様の操作を行った。得られた粉体を解砕しようとしたところ、錫粒子の大きな成長(最大200μm程度)がみられ、電極には成形できなかった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous lithium secondary battery, particularly a negative electrode active material for the secondary battery, which is suitable as a power source for small and lightweight electric devices and electric vehicles.
[0002]
[Prior art]
In recent years, with the miniaturization of electronic equipment, a high-capacity secondary battery is required. Therefore, non-aqueous lithium secondary batteries with higher energy density are attracting attention as compared to nickel / cadmium batteries and nickel / hydrogen batteries.
[0003]
Attempts were made to use lithium metal as the negative electrode material, but dendritic lithium precipitated during repeated charging and discharging, could reach the positive electrode through the separator, and could cause a fire accident due to a short circuit. Turned out to be.
[0004]
Japanese Patent Laid-Open No. 57-208079 proposed using lithium as a negative electrode active material and graphite having a high crystallinity as an electrode plate. However, since graphite uses intercalation of lithium ions into graphite crystals for charge / discharge principle, at a normal temperature and normal pressure, the theoretical capacity of graphite calculated from the maximum lithium-introduced compound LiC 6 is 372 mAh / There was a problem that a discharge capacity exceeding g could not be obtained. Moreover, the low wettability of the graphite material with the electrolytic solution has a problem that the lithium dedoping capacity at the initial stage of charge and discharge is lower than the capacity of 350 mAh / g or more that should originally be able to express the graphite material.
[0005]
Therefore, it is known to use a carbonaceous material obtained by coating the surface of a graphitic carbonaceous material with an organic material that can be carbonized and calcining, but this material has a redox potential of lithium metal similar to that of graphite. However, a capacity exceeding 372 mAh / g, which is the theoretical capacity of graphite, has not been obtained.
[0006]
Furthermore, it is known to use a metal capable of doping and undoping lithium, such as Al and Si, as a negative electrode material capable of developing a high capacity. There is a problem in capacity reduction with respect to the cycle.
[0007]
In order to solve these problems, JP-A-1-298645, JP-A-1-255165, and the like disclose lithium secondary batteries using a negative electrode material in which a metal powder is coated with a carbonaceous material. By covering the metal material with a carbonaceous material, it is considered that there is an action capable of suppressing the structural deterioration of the metal part due to charge / discharge. Japanese Patent Application Laid-Open No. 10-3920 discloses that the particle size of the metal particles mixed with the carbonaceous material is 500 nm or less. By reducing the particle size of the metal particles in the carbonaceous material, it is conceivable that the large volume change of the metal part that occurs during charging and discharging is suppressed, contributing to the improvement of cycle efficiency. After firing, the metal is easily melted and aggregated and is difficult to control. Further, JP-A-8-241715 discloses a carbonaceous material / metal composite negative electrode material obtained by firing an organic substance capable of carbonizing or graphitizing a metal oxide or the like in a non-oxidizing atmosphere. The ratio of the metal to the subsequent carbonaceous material is limited to 40% by weight or less, and specifically produced is about 20% by weight or less.
[0008]
[Problems to be solved by the invention]
The object of the present invention is that when lithium charge / discharge is performed, a higher capacity than that of a conventional graphite-based electrode material can be expressed, and the content of the metal material relative to the total weight of the negative electrode material is high. An object of the present invention is to provide a negative electrode active material for a non-aqueous lithium secondary battery that has less cycle degradation than the carbonaceous / metal composite composite negative electrode material.
[0009]
[Means for Solving the Problems]
In the present invention, after the heat treatment, the substance a and the carbonaceous material precursor b capable of electrochemically inserting and extracting lithium ions are mixed and heat-treated, and the metal material particles derived from the substance a are carbonized. A negative electrode active material for a non-aqueous lithium secondary battery coated with a material,
(A) The substance a is selected from Group Ia, Group IIa, Titanium, Vanadium, Tantalum, Group VIa, Manganese, Group VIII, Group Ib, Group IIb, Group IIIb, Group IVb, Arsenic, Antimony, and Bismuth Selected from oxides, sulfides, nitrides, selenides, tellurides, nitrates, sulfates, or complex compounds based on these compounds, and mixtures of these compounds,
(B) and the average particle size of secondary particles of the substance a is 10 μm or less, or the average particle size of primary particles is 500 nm or less,
(C) The carbonaceous material obtained by heat-treating the carbonaceous material precursor b has a (002) plane spacing (d 002 ) of 3.38 mm or more by the X-ray wide angle diffraction method defined by the Gakushin method, and the c-axis direction. And (d) the proportion of the metal material in the negative electrode active material after heat-treating the substance a and the substance b is 5 to 85% by weight. It is a substance.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, details of the present invention will be described.
[0011]
"Metallic material"
The metallic substance of the present invention is selected from Group Ia, Group IIa, Titanium, Vanadium, Tantalum, Group VIa, Manganese, Group VIII, Group Ib, Group IIb, Group IIIb, Group IVb, Arsenic, Antimony, and Bismuth. Elemental oxides, sulfides, nitrides, selenides, tellurides, nitrates, sulfates, complex compounds based on these compounds, or mixtures of these compounds, the average particle size of secondary particles of the compound particles A particle having a diameter of 10 μm or less or a primary particle having an average particle diameter of 500 nm or less is selected.
[0012]
The compound can be used without limitation as long as the above requirements are satisfied. Specifically, Ag 2 O, Al 2 O 3 , Bi 2 O 3 , CdO, CrO 2 , Cr 2 O 3 , Cu 2 O can be used. Fe 2 O 3 , In 2 O 3 , IrO 2 , MgO, MnO 2 , Mn 2 O 3 , OsO 2 , OsO 4 , PbO, Pb 3 O 4 , PbO 2 , PdO, PtO, RuO 2 , SnO, SnO 2, SiO, SiO 2, TaO 2, TiO, Ti 2 O 3, TiO 2, V 2 O 3, V 2 O 4, V 2 O 5, VO 2, V 2 O 3, WO, WO 2, WO 3 Metal oxides such as ZnO; Bi 2 S 3 , CdS, In 2 S 3 , PbS, PtS, SnS, SnS 2 , TaS 2 , TiS 2 , V 2 S 3 , V 2 S 2 , WS 2 , ZnS, etc. metal sulfides; Bi 2 Te 3, SnTe, SnTe 2, WTe 2, ZnTe and the like of the metal ether Iodide; Si 3 N 4, TaSi 2 , TiSi 2, V 3 Si, V 2 Si, a metal silicide such as WSi 2; AlN, TaN, W 2 N, metal nitrides such as WN; these aforementioned metal compounds A composite metal compound of a selected one; or a composite oxide of these and an alkali metal; a composite oxide of an alkaline earth metal; a composite metal compound of any of the aforementioned metal compounds; A mixture of the obtained compounds can be used. Stannic acid, stannate, tin monoxide, tin dioxide, alkali metal stannate, alkaline earth metal stannate, ammonium stannate, antimony stannate, antimony oxide, silicon monoxide, silver oxide, zinc oxide, oxidation Aluminum and silicon dioxide are mentioned.
[0013]
If the average particle size of the substance a is larger than the above range, the heat treatment temperature is raised to a temperature at which it is difficult to completely reduce the metallic material even after the heat treatment, or the entire material having a large particle size can be reduced, or the heat treatment time is lengthened. When a process such as this is performed, there is a compound in which a large amount of insulating carbonaceous material is formed, resulting in a problem that the negative electrode capacity is reduced. In addition, when the metal material itself is mixed with the carbonaceous material precursor and heat-treated instead of the metal compound as described above, the melting point of the metal is often below the temperature at which carbonization starts, so that the metal materials are fused to each other. When it is separated from the carbonaceous material after heat treatment, or even if it is taken into the carbonaceous material, it grows large grains, and when it is used as a negative electrode, the cycle maintenance rate is deteriorated.
[0014]
In the present invention, by using the above-mentioned substance a, which has a stable structure below the temperature at which carbonization begins and is less likely to melt and aggregate, particles of the metal substance derived from the substance a in the carbonaceous substance after heat treatment, It can be kept finer. Further, since the substance a used has a small particle size and generally has a larger surface area than the metal material, it is excellent in dispersibility and / or compatibility in the mixing stage with the carbonaceous material precursor b, and is more homogeneous after heat treatment. You can make the right material.
[0015]
The substance a used in the present invention has an average secondary particle size of 10 to 0.01 μm, preferably 7 to 0.05 μm, more preferably 5 to 0.1 μm, or primary particles. Have an average particle diameter of 500 to 1 nm, preferably 400 to 3 nm. Specifically, ultrafine particles having an average particle diameter of 5 nm, for example, ultrafine particles of silica having a particle diameter of 10 nm, ultrafine particles of aluminosilica, or primary particles of tin oxide or a composite metal oxide of tin oxide and antimony oxide are particularly preferable. Further, a gel in which these particles are dispersed in a solvent, a tin oxide sol having an average particle diameter of 10 nm in which the surface of tin oxide is coated with an organic substance, a gel in which these are dispersed in a solvent, and the like are particularly preferable.
[0016]
“Carbonaceous precursor b”
The “carbonaceous material precursor” described in the present invention refers to a lithium ion that is stored and absorbed after the heat treatment with a substance a that can electrochemically store and release lithium ions after heat treatment, which will be described later. Organic compounds with releasable properties.
[0017]
Specifically, as carbonizable organic substances, coal-tar heavy pitches from soft pitch to hard pitch, where carbonization proceeds in the liquid phase, heavy coal oils such as dry distillation liquefied oil, atmospheric residual oil, reduced pressure DC heavy oil such as residual oil, petroleum heavy oil such as ethylene tar cracked heavy oil produced as a by-product during thermal cracking of crude oil, naphtha, etc. A solidified product by means of distillation, solvent extraction or the like. Furthermore, aromatic hydrocarbons such as acenaphthylene, decacyclene and anthracene; nitrogen-containing cyclic compounds such as phenazine and acridine; sulfur-containing cyclic compounds such as thiophene; and an alicyclic ring such as adamantane although pressure of 30 MPa or more is required. Examples of the carbonizable thermoplastic polymer include polyphenylenes such as biphenyl and terphenyl that undergo a liquid phase in the process of carbonization; polyvinyl esters such as polyvinyl chloride, polyvinyl acetate, and polyvinyl butyral; and polyvinyl alcohol. . Further, organic materials and polymers listed above may be those obtained by adding an appropriate amount of acids such as phosphoric acid, boric acid and hydrochloric acid, and alkalis such as sodium hydroxide. Further, these may be appropriately crosslinked at 100 to 600 ° C., preferably 200 to 400 ° C., with an element selected from oxygen, sulfur, nitrogen or boron. By forming an appropriate cross-linked structure in the carbonaceous material or the carbonaceous material precursor, the metallic material described later can be stably held in the system, and further, an effect of preventing the aggregation of the metallic material that occurs during the heat treatment also occurs.
[0018]
The properties of the carbonaceous material after heat-treating these carbonaceous material precursors are such that the (002) plane spacing (d 002 ) is 3.38 mm or more by the X-ray wide angle diffraction method defined by the Gakushin method, and the c-axis It is preferable to select a crystallite size (Lc) in the direction of 100 mm or less.
[0019]
As a mixing method of the substance a and the carbonaceous material precursor b, a conventional method can be used without limitation, but according to the state of each raw material, “Micros” R disperser, axial mixer, homogenizer , Homodispersers, paint shakers, heated biaxial kneaders, heated blade kneaders, mechano-fusions, ball mills, jet mills, hybridization machines, or V blenders can be used to mix precursors more uniformly. Therefore, it is preferable. These mixing methods may be used in appropriate combination. Some of these mixing methods can be pulverized or pulverized simultaneously with mixing. When these are used, the average particle size of the primary or secondary particles of the substance a before mixing is out of the above range. Even if it exists, it should just be settled in the range of said average particle diameter by mixing, crushing, or grinding | pulverization finally.
After the above mixing, heat treatment is performed at 600 to 2,000 ° C., more preferably 700 to 1,500 ° C., further preferably 800 to 1,300 ° C., preferably in a reducing atmosphere, and then pulverized or pulverized. And used as an electrode active material having an average particle diameter of 1 to 100 μm, preferably 5 to 50 μm.
[0020]
In the electrode material powder finally prepared through processes such as heat treatment, pulverization, and pulverization, when the total powder is 100% by weight, the metal material is 5 to 85% by weight, and the heat treatment product of the carbonaceous material precursor is The content is 15 to 95% by weight. The metallic substance is preferably 15 to 80% by weight, more preferably 35 to 70% by weight, and particularly preferably 40 to 65% by weight. The above range is not the raw material charge ratio but the content at the final preparation stage. Therefore, at the time of preparation, it is necessary to determine the blending amount of the raw material in consideration of the composition ratio in the final stage. If the content of the metallic material is less than this, when the lithium battery is assembled, a practically large increase in discharge capacity cannot be expected, and if the content is more than this, the carbonaceous material may cover the metallic material. In addition, it is difficult to maintain the cycle of the battery because the particle size grows large by melting and agglomerating metal materials in the heat treatment stage.
[0021]
The method for producing the negative electrode active material of the present invention is not limited as long as the material a and the material b are used, and a conventionally known method can be adopted. For example, an organic compound and a metal compound are mixed in a mixer having a heating means at a charging ratio in which the final composition is within the above range, and degassing / devolatilization treatment is performed. It is calcined for 12 hours, preferably 700 to 1,500 ° C., particularly preferably 800 to 1,300 ° C. for 0.5 to 5 hours, and this heat-treated product is preferably in the range of 1 to 100 μm, more preferably 5 to 50 μm. The negative electrode active material powder is obtained by crushing or pulverizing.
[0022]
Next, a method for producing a battery using the negative electrode active material of the present invention will be described. A binder, a solvent or the like is added to the negative electrode active material powder to form a slurry, and this slurry is applied to a substrate of a metal current collector such as a copper foil and dried to form an electrode. Further, the negative electrode active material can be directly formed into the shape of an electrode by a method such as roll molding or compression molding.
[0023]
Binders that can be used for the above-mentioned purposes include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, and cellulose that are stable to solvents; styrene-butadiene rubber, isoprene rubber, butadiene rubber, and ethylene.・ Rubber polymers such as propylene rubber; styrene / butadiene / styrene block copolymer, hydrogenated product thereof, styrene / ethylene / butadiene / styrene copolymer, styrene / isoprene / styrene block copolymer, hydrogenated product thereof Thermoplastic elastomeric polymers such as syndiotactic 1,2-polybutadiene, soft resinous polymers such as ethylene / vinyl acetate copolymer, propylene / α-olefin (carbon number 2 to 12) copolymer; Vinylidene fluoride, polytetrafluoroethylene Fluorine polymers such as ethylene copolymers; alkali metal ions, the polymer composition may be mentioned in particular has an ionic conductivity of lithium ions.
[0024]
Examples of the polymer having ion conductivity include polyether polymer compounds such as polyethylene oxide and polypropylene oxide; crosslinked polymers of polyether compounds; polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinyl pyrrolidone, polyvinylidene carbonate, A compound in which a polymer compound such as polyacrylonitrile is combined with a lithium salt or an alkali metal salt mainly composed of lithium, or an organic compound having a high dielectric constant such as propylene carbonate, ethylene carbonate, or γ-butyrolactone is blended with this. System can be used.
[0025]
As a mixed form of the negative electrode active material powder and the above-mentioned binder, various forms can be taken. That is, a form in which both particles are mixed, a form in which a fibrous binder is entangled with the electrode particles, or a form in which a binder layer is attached to the surface of the electrode particles. The mixing ratio of the electrode powder and the binder is preferably from 0.1 to 30% by weight, more preferably from 0.3 to 20% by weight, particularly preferably from 0.5 to 10%, based on the electrode powder. % By weight. Addition of a binder in an amount larger than this increases the internal resistance of the electrode, which is not preferred. If the amount is less than this, the binding property between the current collector and the electrode powder is poor.
[0026]
A secondary battery is configured by combining the negative electrode plate thus prepared, the electrolyte solution described below, and the positive electrode plate with other battery components such as a separator, a gasket, a current collector, a sealing plate, and a cell case. The battery that can be created is not particularly limited, such as a cylindrical shape, a square shape, a coin shape, etc., but basically a current collector and a negative electrode plate are placed on a cell floor plate, and an electrolyte and a separator are placed thereon. Further, a positive electrode is placed so as to face the negative electrode, and caulked together with a gasket and a sealing plate to obtain a secondary battery.
[0027]
Non-aqueous solvents that can be used for the electrolyte include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, A known organic solvent such as 1,3-dioxolane or a mixture of two or more of them can be used.
[0028]
A known electrolyte such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiCl, LiBr or the like is dissolved in these solvents to obtain an electrolytic solution.
[0029]
A polymer solid electrolyte that is a conductor of an alkali metal cation such as lithium ion can also be used.
[0030]
The positive electrode material is not particularly limited, but is preferably made of a metal chalcogen compound that can occlude and release alkali metal cations such as lithium ions during charge and discharge. Examples of such metal chalcogen compounds include vanadium oxide, vanadium sulfide, molybdenum oxide, molybdenum sulfide, manganese oxide, chromium oxide, titanium oxide, titanium sulfide, and composite oxides and composite sulfides thereof. Etc. Preferably Cr 3 O 8, V 2 O 5, V 5 O 13, VO 2, Cr 2 O 5, MnO 2, TiO 2, MoV 2 O 8, TiS 2 V 2 S 5 MoS 2, MoS 3 VS 2, Cr 0.25 V 0.75 S 2 , Cr 0.5 V 0.5 S 2, etc. LiMY 2 (M is a transition metal such as Co, Ni, Fe, etc., Y is a chalcogen compound such as O, S, etc.), LiM 2 Y 4 (M is Mn, Y is O), or non-stoichiometry of these oxides Compounds, oxides such as WO 3 , sulfides such as CuS, Fe 0.25 V 0.75 S 2 and Na 0.1 CrS 2 , phosphorus such as NiPS 3 and FePS 3 , sulfur compounds, selenium compounds such as VSe 2 and NbSe 3, etc. It can also be used. As with the negative electrode body, these are mixed with a binder and applied onto the current collector to form a positive electrode body.
[0031]
The separator for holding the electrolytic solution is generally a material having excellent liquid retaining properties, and is impregnated with the electrolytic solution using, for example, a polyolefin resin nonwoven fabric or a porous film.
[0032]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
[0033]
The evaluation method of the electrode material was evaluated as follows. The negative electrode body formed into a pellet using a binder was made into a half battery with a separator and an electrolyte solution and a counter electrode made of lithium metal, assembled into a 2016 coin cell, and the charge / discharge capacity was evaluated with a charge / discharge tester. However, the same effect can be expected with all batteries assembled together with the positive electrode body.
[0034]
Example 1
Obtained by heat-treating tin (IV) oxide (SnO 2 ; manufactured by Fukui Shin Material Co., Ltd.) fine particle powder having an average secondary particle diameter of 0.6 μm (average primary particle diameter of 400 nm) and coal tar pitch. A raw material (hereinafter referred to as pitch A) having a volatile content (hereinafter referred to as VM) of 22.1%, a gamma resin amount of 25.0%, and an atomic ratio O / C of 0.009 is used. The solid obtained by processing at 280 ° C. for 1 hour while applying mechanical energy in the presence was pulverized. The obtained powder was heat-treated in a batch heating furnace at 900 ° C. in an inert atmosphere for 1 hour. After cooling in an inert atmosphere, the obtained powder was crushed and adjusted to 10 to 25 μm to obtain a sample powder. The interplanar spacing (d 002 ) of the (002) plane of the carbonaceous part of the particles by a powder X-ray wide angle diffraction method was 3.47 mm, and the crystallite size (Lc) in the c-axis direction was 23 mm. The content of the metallic substance in the powder calculated from elemental analysis was 47% by weight when the entire powder was 100% by weight.
When this powder was observed with a scanning microscope, it was found that tin metal fine particles coated in the carbonaceous material matrix were highly dispersed.
The volatile content (VM) was determined according to JIS-M8812, and the amount of gamma resin was determined by measuring the amount of insoluble toluene according to JIS-K2425.
The oxygen content (atomic ratio O / C) was calculated from the weight content of carbon and oxygen using the respective atomic weights. The carbon content was measured with a fully automatic elemental analyzer ("CHN meter 240C" manufactured by PerkinElmer). Oxygen content is generated by using an oxygen-nitrogen analyzer (“TC436” manufactured by LECO), enclosing 10 mg of a sample in a nickel capsule, heating in a helium stream for 300 seconds at 300 W, and subsequently heating at 5,500 W for 100 seconds. Carbon dioxide in the gas was quantified by infrared absorption.
To 2 g of this electrode material sample, 10% by weight of a dimethylacetamide solution of polyvinylidene fluoride (PVdF) added in terms of solid content was stirred to obtain a slurry. This slurry was applied onto a copper foil and pre-dried at 80 ° C. After further pressure bonding, it was punched into a disk shape having a diameter of 12.5 mm and dried under reduced pressure at 110 ° C. to obtain an electrode.
The obtained electrode was sandwiched with a polypropylene separator impregnated with an electrolytic solution to produce a coin cell facing the lithium metal electrode, and a charge / discharge test was performed. As the electrolytic solution, a solution in which lithium perchlorate was dissolved at a rate of 1.0 mol / L in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used.
Reference charge and discharge test was performed to dope at a current density of 0.16 mA / cm 2 until the interelectrode potential difference becomes to 0V, and subjected to undoping at a current density of 0.33 mA / cm 2 until the interelectrode potential difference becomes 1.5V It was.
The capacity value was obtained by performing a charge / discharge test on each of the three coin-type cells, and dividing the doping capacity in the first charging / discharging cycle, the average of the dedoping capacity, and the fourth discharging capacity by the initial discharging capacity. The value was evaluated at 100 minutes (capacity maintenance rate%). The results are shown in Table 1 together with the (002) plane spacing (d 002 ) and the crystallite size (Lc) in the c-axis direction by powder X-ray wide angle diffraction of the carbonaceous material part.
[0035]
[Table 1]
Figure 0003960691
[0036]
(Example 2)
In Example 1, the amount of tin (IV) oxide (SnO 2 ; manufactured by Fukui Shin Material Co., Ltd.) fine particles with an average secondary particle size of 0.6 μm (average primary particle size of 400 nm) mixed with pitch A The content of the metallic substance in the powder calculated from the elemental analysis after the heat treatment was the same as in Example 1 except that the content was 65% by weight when the whole powder was 100% by weight. Went.
When this powder was observed with a scanning microscope, it was found that tin metal fine particles coated in the carbonaceous material matrix were highly dispersed.
The results are shown in Table 1 together with the (002) plane spacing (d 002 ) and the crystallite size (Lc) in the c-axis direction by powder X-ray wide angle diffraction of the carbonaceous material part.
[0037]
(Example 3)
The metal part in Example 1 is a mixture of antimony oxide (Sb 2 O 3 ; high-purity chemical reagent) having a primary particle size of 50 to 200 nm and tin (IV) oxide used in Example 1, The weight ratio of antimony and tin after heat treatment was adjusted to be Sn: Sb = 9: 1, and the content of the metal material in the carbonaceous material / metal material composite powder calculated from the elemental analysis after the heat treatment was The same operation as in Example 1 was carried out except that the total body was 100% by weight and that it was 57% by weight.
When this powder was observed with a scanning microscope, it was found that the tin / antimony alloy fine particles coated in the carbonaceous material matrix were highly dispersed.
The results are shown in Table 1 together with the (002) plane spacing (d 002 ) and the crystallite size (Lc) in the c-axis direction by powder X-ray wide angle diffraction of the carbonaceous material part.
[0038]
Example 4
The tin (IV) oxide (SnO 2 ; Wako Pure Chemical Reagent) powder with a secondary particle size of 0.6 μm used in Example 1 was mixed with petroleum heavy pitch ethylene heavy end (Mitsubishi Chemical) at room temperature. “Micros” The mixture was stirred and uniformly mixed with an R disperser. The obtained slurry mixture was heat-treated at 350 ° C. for 1 hour in a batch heating furnace in a nitrogen / oxygen mixed atmosphere, then kept at 900 ° C. and further heat-treated for 1 hour. After cooling in an inert atmosphere, the obtained powder was pulverized and adjusted to 10 to 25 μm to obtain a sample powder. The content of the metallic substance in the powder calculated from the elemental analysis was 40% by weight when the entire powder was 100% by weight.
When this powder was observed with a scanning microscope, it was found that tin metal fine particles coated in the carbonaceous material matrix were highly dispersed.
The results are shown in Table 1 together with the (002) plane spacing (d 002 ) and the crystallite size (Lc) in the c-axis direction by powder X-ray wide angle diffraction of the carbonaceous material part.
[0039]
(Example 5)
"Micros" R disperser at room temperature with tin (IV) oxide (SnO 2 ; Wako Pure Chemical Reagents) powder with an average secondary particle size of 2 μm and petroleum heavy pitch ethylene heavy end (Mitsubishi Chemical) The same operation as in Example 1 was performed except that stirring and uniform mixing were performed. The content of the metallic substance in the powder calculated from elemental analysis was 57% by weight when the entire powder was 100% by weight.
When this powder was observed with a scanning microscope, it was found that tin metal fine particles coated in the carbonaceous material matrix were highly dispersed.
The results are shown in Table 1 together with the (002) plane spacing (d 002 ) and the crystallite size (Lc) in the c-axis direction by powder X-ray wide angle diffraction of the carbonaceous material part.
[0040]
(Example 6)
Except for using tin (IV) oxide (SnO 2 ; Wako Pure Chemical Reagent) with an average particle size of 2 μm as secondary particles of Example 5 and increasing the amount of mixing with ethylene heavy end (Mitsubishi Chemical), which is a petroleum pitch. The same operation as in Example 5 was performed. The content of the metallic substance in the powder calculated from elemental analysis after the heat treatment was 74% by weight when the entire powder was 100% by weight.
When this powder was observed with a scanning microscope, it was found that tin metal fine particles coated in the carbonaceous material matrix were highly dispersed.
The results are shown in Table 1 together with the (002) plane spacing (d 002 ) and the crystallite size (Lc) in the c-axis direction by powder X-ray wide angle diffraction of the carbonaceous material part.
[0041]
(Example 7)
"Micros" R disperser is added at room temperature to the particles of tin oxide (IV), whose primary particles are coated with organic matter and have an average particle size of 5nm, and are added to ethylene heavy end (Mitsubishi Chemical), which is a petroleum pitch. To mix evenly. The obtained powder was heat-treated for 1 hour at 900 ° C. in an inert atmosphere in a batch heating furnace. The same operation as in Example 1 was performed except that stirring and uniform mixing were performed. The content of the metallic substance in the powder calculated from elemental analysis after the heat treatment was 56% by weight when the whole powder was 100% by weight.
When this powder was observed with a scanning microscope, it was found that tin metal fine particles coated in the carbonaceous material matrix were highly dispersed.
The results are shown in Table 1 together with the (002) plane spacing (d 002 ) and the crystallite size (Lc) in the c-axis direction by powder X-ray wide angle diffraction of the carbonaceous material part.
[0042]
(Example 8)
The metal part in Example 1 is an average particle diameter of 5 nm of primary particles obtained by coating the surface of tin oxide (IV) / antimony oxide molecule mixed oxide fine particles with an organic substance, and the weight ratio of antimony and tin after heat treatment Is adjusted so that Sn: Sb = 9: 1, and the content of the metallic substance in the carbonaceous substance / metallic substance composite powder calculated from the elemental analysis after the heat treatment is 100% by weight of the whole powder The same operation as in Example 1 was performed except that the content was 52% by weight.
When this powder was observed with a scanning microscope, it was found that the tin / antimony alloy fine particles coated in the carbonaceous material matrix were highly dispersed.
The results are shown in Table 1 together with the (002) plane spacing (d 002 ) and the crystallite size (Lc) in the c-axis direction by powder X-ray wide angle diffraction of the carbonaceous material part.
[0043]
Example 9
A water-soluble phenol resin emulsion (Gunei Chemical Co., Ltd.) obtained by dispersing fine particles of molecular mixed oxide of tin oxide (IV) and antimony oxide with an average primary particle size of 5 nm in an aqueous ammoniacal solution (pH 10.8). And stirred at room temperature with a homodisperser. The obtained slurry was heat-treated at 100 ° C. for 3 hours in an inert gas atmosphere and solidified. This was lightly crushed, and the obtained powder was heat-treated for 1 hour in a batch heating furnace at 900 ° C. in an inert atmosphere. The weight ratio of antimony and tin after heat treatment was adjusted to be Sn: Sb = 93: 7. The content of the metallic material in the carbonaceous material / metallic composite powder calculated from the elemental analysis after the heat treatment was 57% by weight when the entire powder was 100% by weight. The electrode manufacturing method and the evaluation method were the same as in Example 1.
When this powder was observed with a scanning microscope, it was found that the tin / antimony alloy fine particles coated in the carbonaceous material matrix were highly dispersed.
The results are shown in Table 1 together with the (002) plane spacing (d 002 ) and the crystallite size (Lc) in the c-axis direction by powder X-ray wide angle diffraction of the carbonaceous material part.
[0044]
(Example 10)
The metal substance part in Example 9 is tin (IV) oxide (pH 10.7) having an average primary particle diameter of 5 nm, and the metal substance in the carbonaceous substance / metal substance composite powder calculated from the elemental analysis after the heat treatment. The content of was the same as that of Example 1 except that it was 56% by weight when the whole powder was 100% by weight.
When this powder was observed with a scanning microscope, it was found that tin metal fine particles coated in the carbonaceous material matrix were highly dispersed.
The results are shown in Table 1 together with the (002) plane spacing (d 002 ) and the crystallite size (Lc) in the c-axis direction by powder X-ray wide angle diffraction of the carbonaceous material part.
[0045]
(Comparative Example 1)
Tin (IV) oxide (SnO 2 ; manufactured by Aldrich) powder having an average particle size of 2 μm and secondary heavy ethylene ethylene end (manufactured by Mitsubishi Chemical) were stirred and uniformly mixed in the atmosphere. The resulting slurry was heat treated for 1 hour in a batch heating furnace at 900 ° C. in an inert atmosphere. When the obtained powder was allowed to cool after being allowed to cool in an inert atmosphere, large growth of tin particles (about 6 μm at maximum) was observed, and the electrode could not be molded. Further, the content of the metallic substance in the powder calculated from elemental analysis was 95% by weight when the whole powder was 100% by weight.
[0046]
(Comparative Example 2)
The metallic substance part is tin oxide (IV) having an average particle diameter of 20 μm of secondary particles, and the content of the metallic substance in the carbonaceous substance / metallic substance composite powder after heat treatment calculated from elemental analysis is the whole powder. Was 100% by weight, and the same operation as in Example 1 was performed except that the amount was 65% by weight.
The results are shown in Table 1 together with the (002) plane spacing (d 002 ) and the crystallite size (Lc) in the c-axis direction by powder X-ray wide angle diffraction of the carbonaceous material part.
[0047]
(Comparative Example 3)
The same operation as in Comparative Example 1 was performed except that the metallic material part was tin metal having an average particle size of 10 μm of secondary particles. When the obtained powder was crushed, a large growth of tin particles (about 500 μm at the maximum) was observed, and the electrode could not be molded. The content of the metal material in the carbonaceous material / metal material composite powder after the heat treatment calculated from elemental analysis was 50% by weight when the entire powder was 100% by weight.
[0048]
(Comparative Example 4
In Example 1, the carbonaceous material precursor was heat-treated, and the hydrogen / carbon atomic ratio of the carbonaceous material was 0.02, and the (002) plane spacing (d 002 ) by the X-ray wide angle diffraction method defined by the Gakushin method ) Is 3.41 mm, and the crystallite size (Lc) in the c-axis direction is 280 mm, and the content of the metal material in the carbonaceous material / metal material composite powder after heat treatment calculated from elemental analysis is The same operation as in Example 1 was performed except that the total body was 100% by weight and that the amount was 51% by weight. When the obtained powder was crushed, a large growth of tin particles (up to about 200 μm) was observed, and the electrode could not be molded.

Claims (15)

熱処理後には電気化学的にリチウムイオンを吸蔵及び放出することができるようになる物質aと炭素質物前駆体bとを混合、熱処理して、前記物質a由来の金属質物粒子が炭素質物で被覆された非水系リチウム二次電池用負極活物質であって、
(イ)前記物質aが、一酸化錫、二酸化錫、一酸化ケイ素、二酸化ケイ素及び酸化アンチモンからなる群より選ばれる1種以上であり、
(ロ)前記物質aの二次粒子の平均粒径が10μm以下か、又は一次粒子の平均粒径が500nm以下であり、
(ハ)前記物質bを熱処理した炭素質物の、学振法によって規定されたX線広角回折法による(002)面の面間隔(d002)が3.38Å以上、及びc軸方向の結晶子の大きさ(Lc)が100Å以下であり、かつ
(ニ)前記物質aと前記物質bを熱処理した後の負極活物質中の金属質物の割合が35〜85重量%である、
負極活物質。
After the heat treatment, the material a and the carbonaceous material precursor b capable of electrochemically inserting and extracting lithium ions are mixed and heat-treated, and the metal material particles derived from the material a are coated with the carbonaceous material. A negative active material for a non-aqueous lithium secondary battery,
(A) The substance a is one or more selected from the group consisting of tin monoxide, tin dioxide, silicon monoxide, silicon dioxide and antimony oxide,
(B) The average particle size of secondary particles of the substance a is 10 μm or less, or the average particle size of primary particles is 500 nm or less,
(C) The carbonaceous material obtained by heat-treating the substance b has a (002) plane spacing (d 002 ) of 3.38 mm or more by the X-ray wide angle diffraction method defined by the Gakushin method, and a crystallite in the c-axis direction And (d) the proportion of the metallic material in the negative electrode active material after heat-treating the substance a and the substance b is 35 to 85% by weight.
Negative electrode active material.
前記熱処理を600〜2,000℃の温度範囲で行う、請求項1項記載の負極活物質。  The negative electrode active material according to claim 1, wherein the heat treatment is performed in a temperature range of 600 to 2,000 ° C. 前記熱処理を700〜1,500℃の温度範囲で行う、請求項2項記載の負極活物質。  The negative electrode active material according to claim 2, wherein the heat treatment is performed in a temperature range of 700 to 1,500 ° C. 4. 前記物質aが、二酸化錫である、請求項1〜3のいずれか1項記載の負極活物質。  The negative electrode active material according to claim 1, wherein the substance a is tin dioxide. 前記物質aが、粒子表面が有機物で被覆された酸化物粒子、あるいはこの粒子を溶媒に分散させたものである、請求項1〜4のいずれか1項記載の負極活物質。  The negative electrode active material according to any one of claims 1 to 4, wherein the substance a is an oxide particle whose particle surface is coated with an organic substance, or a dispersion of the particle in a solvent. 前記物質bを熱処理した炭素質物の、学振法によって規定されたX線広角回折法による(002)面の面間隔(d002)が、3.38〜3.65Åである、請求項1〜5のいずれか1項記載の負極活物質。The interplanar spacing (d 002 ) of the (002) plane according to the X-ray wide angle diffraction method defined by the Gakushin method of the carbonaceous material obtained by heat-treating the substance b is 3.38 to 3.65 mm. The negative electrode active material according to any one of 5. 前記物質bが、有機化合物の分子を、酸素、硫黄、窒素及び/又はホウ素原子で分子架橋された構造を有する、請求項1〜6のいずれか1項記載の負極活物質。  The negative electrode active material according to claim 1, wherein the substance b has a structure in which molecules of an organic compound are molecularly cross-linked with oxygen, sulfur, nitrogen, and / or boron atoms. 前記架橋構造が、100〜600℃の焼成で形成された、請求項7記載の負極活物質。  The negative electrode active material according to claim 7, wherein the crosslinked structure is formed by firing at 100 to 600 ° C. (ニ)前記物質aと前記物質bを熱処理した後の負極活物質中の金属質物の割合が35〜70重量%である、請求項1〜8のいずれか1項記載の負極活物質。(D) The negative electrode active material of any one of Claims 1-8 whose ratio of the metal substance in the negative electrode active material after heat-processing the said substance a and the said substance b is 35 to 70 weight%. 請求項1〜9のいずれか1項記載の負極活物質からなる負極と、正極及び電解液を含む非水系リチウム二次電池。  A non-aqueous lithium secondary battery comprising a negative electrode comprising the negative electrode active material according to claim 1, a positive electrode, and an electrolytic solution. 熱処理後には電気化学的にリチウムイオンを吸蔵及び放出することができるようになる物質a由来の金属質物粒子が炭素質物で被覆された非水系リチウム二次電池用負極活物質の製造方法であって、
(1)(イ)一酸化錫、二酸化錫、一酸化ケイ素、二酸化ケイ素及び酸化アンチモンからなる群より選ばれる1種以上であり、かつ(ロ)二次粒子の平均粒径が10μm以下か、又は一次粒子の平均粒径が500nm以下である、物質aを準備する工程;
(2)炭素質物前駆体bを準備する工程;
(3)物質aと物質bを混合する工程;
(4)前記混合した混合物を焼成して、物質aを還元して、物質a由来の金属質物粒子が炭素質物で被覆された負極活物質を得る工程;
を含み、
負極活物質が、
(ハ)物質bを熱処理した炭素質物の、学振法によって規定されたX線広角回折法による(002)面の面間隔(d002)が3.38Å以上、及びc軸方向の結晶子の大きさ(Lc)が100Å以下であり、かつ(ニ)物質aと物質bを熱処理した後の負極活物質中の金属質物の割合が35〜85重量%である、
ことを特徴とする方法。
A method for producing a negative electrode active material for a non-aqueous lithium secondary battery in which metal particles derived from the substance a capable of electrochemically inserting and extracting lithium ions after heat treatment are coated with a carbonaceous material. ,
(1) (I) It is at least one selected from the group consisting of tin monoxide, tin dioxide, silicon monoxide, silicon dioxide and antimony oxide, and (b) the average particle size of the secondary particles is 10 μm or less, Or a step of preparing a substance a in which the average particle size of primary particles is 500 nm or less;
(2) preparing a carbonaceous material precursor b;
(3) mixing the substance a and the substance b;
(4) A step of firing the mixed mixture to reduce the substance a to obtain a negative electrode active material in which the metal particles derived from the substance a are coated with a carbonaceous material;
Including
The negative electrode active material
(C) The carbonaceous material obtained by heat-treating the substance b has a (002) plane spacing (d 002 ) of 3.38 mm or more by the X-ray wide angle diffraction method specified by the Gakushin method, and a crystallite in the c-axis direction. The size (Lc) is 100 mm or less, and (d) the ratio of the metallic material in the negative electrode active material after the heat treatment of the material a and the material b is 35 to 85% by weight.
A method characterized by that.
工程(4)で、700〜1,500℃の温度範囲で焼成を行う、請求項11項記載の負極活物質の製造方法。  The manufacturing method of the negative electrode active material of Claim 11 which bakes by the temperature range of 700-1500 degreeC at a process (4). 前記物質aが、二酸化錫である、請求項11又は12に記載の負極活物質の製造方法。  The method for producing a negative electrode active material according to claim 11 or 12, wherein the substance a is tin dioxide. 前記物質aが、粒子表面が有機物で被覆された酸化物粒子、あるいはこの粒子を溶媒に分散させたものである、請求項11〜13のいずれか1項に記載の負極活物質の製造方法。  The method for producing a negative electrode active material according to any one of claims 11 to 13, wherein the substance a is an oxide particle whose particle surface is coated with an organic substance, or a dispersion of the particle in a solvent. 負極活物質が、請求項11〜14のいずれか1項記載の方法で製造されることを特徴とする、負極、正極及び電解液を含む非水系リチウム二次電池の製造方法。  A method for producing a non-aqueous lithium secondary battery comprising a negative electrode, a positive electrode, and an electrolyte, wherein the negative electrode active material is produced by the method according to claim 11.
JP25656298A 1998-09-10 1998-09-10 Anode active material for non-aqueous carbon-coated lithium secondary battery Expired - Fee Related JP3960691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25656298A JP3960691B2 (en) 1998-09-10 1998-09-10 Anode active material for non-aqueous carbon-coated lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25656298A JP3960691B2 (en) 1998-09-10 1998-09-10 Anode active material for non-aqueous carbon-coated lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007061589A Division JP2007214137A (en) 2007-03-12 2007-03-12 Negative electrode active material for nonaqueous carbon-coated lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000090916A JP2000090916A (en) 2000-03-31
JP3960691B2 true JP3960691B2 (en) 2007-08-15

Family

ID=17294373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25656298A Expired - Fee Related JP3960691B2 (en) 1998-09-10 1998-09-10 Anode active material for non-aqueous carbon-coated lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3960691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859553B2 (en) 2012-03-26 2018-01-02 Kabushiki Kaisha Toshiba Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792618B2 (en) * 2000-05-31 2011-10-12 日立化成工業株式会社 Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JP2002270170A (en) * 2001-03-07 2002-09-20 Osaka Gas Co Ltd Carbonaceous negative electrode material for lithium secondary battery and producing method thereof
JP3520921B2 (en) 2001-03-27 2004-04-19 日本電気株式会社 Negative electrode for secondary battery and secondary battery using the same
EP1575104A4 (en) * 2002-12-17 2008-05-07 Mitsubishi Chem Corp Nonaqueous electrolyte secondary battery-use cathode and nonaqueous electrolyte secondary battery
US7491467B2 (en) 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5142452B2 (en) * 2003-09-29 2013-02-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery charge / discharge control method
KR100570648B1 (en) * 2004-01-26 2006-04-12 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
KR100814880B1 (en) 2006-11-22 2008-03-18 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery comprising the same
KR100778450B1 (en) 2006-11-22 2007-11-28 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery comprising same
KR100805123B1 (en) 2007-02-15 2008-02-21 삼성에스디아이 주식회사 Lithium secondary battery
JP5511128B2 (en) 2007-06-07 2014-06-04 三星エスディアイ株式会社 Anode material for non-aqueous secondary battery and non-aqueous secondary battery
CN101771146B (en) * 2009-01-07 2012-08-29 清华大学 Lithium ion battery anode material and preparation method thereof
KR101322165B1 (en) * 2009-03-03 2013-10-28 칭화대학교 Process for preparing alloy composite negative electrode material for lithium ion batteries
JP2011253620A (en) * 2009-09-30 2011-12-15 K & W Ltd Negative electrode active material, its manufacturing method, and lithium ion secondary battery using negative electrode active material
US10312544B2 (en) 2010-03-26 2019-06-04 Toyota Jidosha Kabushiki Kaisha Method for manufacturing electrode active material
JP2012025997A (en) * 2010-07-22 2012-02-09 Sachihiro Tsubakihara Method for manufacturing alloy powder, and electric device and lithium ion secondary battery using material obtained by the manufacturing method
JP5636351B2 (en) 2011-09-27 2014-12-03 株式会社東芝 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for producing negative electrode active material for nonaqueous electrolyte secondary battery
JPWO2020071428A1 (en) * 2018-10-04 2021-09-02 株式会社クラレ Carbon precursor and method for producing carbon precursor
CN113750991B (en) * 2020-06-05 2023-07-14 中国石油化工股份有限公司 Catalyst of carbon-coated nickel oxide, preparation method and application thereof
CN113036121B (en) * 2021-03-05 2022-02-15 大连理工大学 Carbon-coated transition metal sulfide nanoflower structure, preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859553B2 (en) 2012-03-26 2018-01-02 Kabushiki Kaisha Toshiba Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack

Also Published As

Publication number Publication date
JP2000090916A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP2007214137A (en) Negative electrode active material for nonaqueous carbon-coated lithium secondary battery
JP3960691B2 (en) Anode active material for non-aqueous carbon-coated lithium secondary battery
JP5823790B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4446510B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery
JP5081375B2 (en) Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same
EP1644999B1 (en) Anode material for lithium secondary cell with high capacity
JP4040381B2 (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4740753B2 (en) Lithium battery for charging / discharging, and method for producing negative electrode active material contained in negative electrode of lithium battery for charging / discharging
JP3973300B2 (en) Non-aqueous secondary battery
JP3633257B2 (en) Lithium ion secondary battery
KR20130094853A (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
WO2007000982A1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
JP2007242630A (en) Nonaqueous secondary battery
KR20130095228A (en) Non-aqueous secondary battery having a blended cathode active material
JP3969164B2 (en) Negative electrode material for lithium secondary battery and negative electrode body produced therefrom
WO2018110263A1 (en) Composite graphite particles, method for producing same, and use thereof
US20030134201A1 (en) Lithium ion secondary battery
JP2002231225A (en) Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
KR20200073208A (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, paste for negative electrode, negative electrode sheet and lithium ion secondary battery
KR101417588B1 (en) Anode active material with high electrical conductivity and method for preparing the same
JPH07302595A (en) Manufacture of carbon particle and negative electrode containing this carbon particle
JP2000090926A (en) Nonaqueous secondary battery
JP2003176115A (en) Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery
JP2000260428A (en) Lithium secondary battery using nonaqueous cabon- coated negative electrode
JP3719286B2 (en) Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees