JPH0928220A - Production of mutated plant body - Google Patents

Production of mutated plant body

Info

Publication number
JPH0928220A
JPH0928220A JP20514195A JP20514195A JPH0928220A JP H0928220 A JPH0928220 A JP H0928220A JP 20514195 A JP20514195 A JP 20514195A JP 20514195 A JP20514195 A JP 20514195A JP H0928220 A JPH0928220 A JP H0928220A
Authority
JP
Japan
Prior art keywords
ion beam
plant
pollination
irradiating
ovary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20514195A
Other languages
Japanese (ja)
Other versions
JP3577530B2 (en
Inventor
Tomoko Abe
知子 阿部
Shigeo Yoshida
茂男 吉田
Naohito Inabe
尚人 稲辺
Masayuki Kase
昌之 加瀬
Akira Goto
彰 後藤
Yasushige Yano
安重 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP20514195A priority Critical patent/JP3577530B2/en
Publication of JPH0928220A publication Critical patent/JPH0928220A/en
Application granted granted Critical
Publication of JP3577530B2 publication Critical patent/JP3577530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To induce a mutated plant body exhibiting various forms in high yield, with suppressing the damage to the plant body minimum by irradiating the ovary of a plant after its pollination with a heavy ion beam. SOLUTION: This method for producing a mutated plant body is constituted by irradiating the ovary of a plant such as a tobacoo, a white whitlow grass, a rice and an orchid after their pollination with a heavy ion beam such as a nitrogen ion beam, a carbon ion beam, a neon ion beam and an argon ion beam at preferably a radiation dose of 5-100 Gy in an irradiating range of 5-20mm diameter, and selecting the plants generating an abnormality from among the plants treated with the irradiation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、植物体の損傷を最
小限に抑え、多様な形態を示す突然変異体植物を高率で
誘導する方法に関し、詳しくは重イオンビーム照射によ
る突然変異体植物の作出方法に関する。
The present invention relates to a method for minimizing plant damage and inducing a mutant plant exhibiting various morphologies at a high rate. More specifically, the present invention relates to a mutant plant irradiated with heavy ion beams. About the method of production.

【0002】[0002]

【従来の技術】ガンマ線やエックス線を植物に照射した
り、エチルメタンスルフォン酸(EMS)などの薬剤で
植物を処理することにより、人為的に植物に突然変異を
起こさせることができる〔Euphytica 69 : 95 〜101 (1
993)〕。このような突然変異体の中には従来の植物には
ない優れた形質を有するものがあることから、従来から
突然変異を利用した植物育種が行われてきた。
BACKGROUND OF THE INVENTION Irradiation of plants with gamma rays or X-rays or treatment of the plants with agents such as ethyl methanesulfonate (EMS) can artificially mutate plants [Euphytica 69: 95 to 101 (1
993)]. Since some of such mutants have excellent traits not found in conventional plants, plant breeding using mutations has been conventionally performed.

【0003】しかし、ガンマ線やエックス線などの放射
線は植物の特定の組織を正確に照射することが困難なの
で、一部の細胞に起こった遺伝子変異を個体全体の遺伝
形質として固定するために、大変な労力を必要とする。
また、EMS等の薬剤は、突然変異を誘発するとともに
植物体自体を損傷させ、発芽率を低下させるので、多数
の突然変異体を得るのは困難である。
However, since it is difficult to accurately irradiate specific tissues of a plant with radiations such as gamma rays and X-rays, it is very difficult to fix gene mutations occurring in some cells as genetic traits of the whole individual. Requires effort.
In addition, drugs such as EMS induce mutations and damage the plants themselves and reduce the germination rate, so that it is difficult to obtain a large number of mutants.

【0004】ところで、サイクロトンを用いて炭素や窒
素を始めとした各種の元素をイオン化して加速すること
により重イオンビームという放射線を作ることができ
る。そしてこの重イオンビーム照射による植物の突然変
異体作製例として、稲の種子に重イオンビームを照射し
て稲の白葉枯病に耐性の突然変異株を得た例がある(R
IKEN Accel. Prog. Rep. 26:109,1992)。
Meanwhile, radiation called a heavy ion beam can be produced by ionizing and accelerating various elements such as carbon and nitrogen using a cycloton. As an example of producing a mutant of a plant by heavy ion beam irradiation, there is an example in which a rice seed is irradiated with a heavy ion beam to obtain a mutant strain resistant to white blight of rice (R
IKEN Accel. Prog. Rep. 26: 109, 1992).

【0005】しかし、この方法は種子に重イオンビーム
を照射するので、植物体として成長する種子胚部分はす
でに多くの細胞に分化しており、遺伝支配をする細胞の
みに変異を起こすことが困難である。また、乾燥した種
子では遺伝子が安定構造に固定されており、変異で状態
を変えると致死的になることが多いなど欠点を有する。
However, in this method, the seeds are irradiated with a heavy ion beam, so that the seed embryo part which grows as a plant has already differentiated into many cells, and it is difficult to cause mutation only in the cells that carry out genetic control. It is. In addition, genes are fixed in a stable structure in dried seeds, and have a drawback such that when the state is changed by mutation, they often become lethal.

【0006】[0006]

【発明が解決しようとする課題】以上述べたように、人
為的に突然変異を誘発させることは、形質的に優れた植
物を作出するために極めて有用な技術であるが、従来の
方法では、未だ満足のいく頻度で突然変異体を誘導する
ことができなかった。本発明は、このような従来技術の
問題を背景としてなされたものであり、その目的とする
ところは、植物体の損傷を最小限に抑え、多様な形態を
示す突然変異体を高率で誘導できる方法を提供すること
にある。
As described above, artificially inducing mutation is an extremely useful technique for producing a trait-excellent plant. Mutants could not yet be induced with a satisfactory frequency. The present invention has been made in view of such problems of the prior art, and aims at minimizing plant damage and inducing mutants exhibiting various morphologies at a high rate. It is to provide a method that can be performed.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意検討を重ねた結果、受粉後の植物子房
に重イオンビームを照射することにより、極めて高い頻
度で多様な形態を示す突然変異体を誘導できることを見
出し、本発明を完成した。即ち、本発明は、受粉後の植
物子房に重イオンビームを照射し、当該照射処理をした
植物の中から形態異常が生じた植物を選抜することを特
徴とする突然変異体植物の作出方法である。
The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, by irradiating the plant ovary after pollination with a heavy ion beam, it is possible to use various varieties at a very high frequency. The present inventors have found that a mutant showing a morphology can be induced, and completed the present invention. That is, the present invention provides a method for producing a mutant plant, which comprises irradiating a plant ovary after pollination with a heavy ion beam and selecting a plant having a morphological abnormality from the irradiated plants. It is.

【0008】また、本発明は、受粉後の植物子房に重イ
オンビームを照射し、当該照射処理をした植物の中から
クロロフィル欠損植物を選抜することを特徴とするクロ
ロフィル欠損植物の作出方法である。以下、本発明を詳
細に説明する。本発明に用いる重イオンビームとして
は、突然変異体を誘導できるものであれば特に制限はな
く、例えば、窒素イオンビーム、炭素イオンビーム、ネ
オンイオンビーム、アルゴンイオンビームなどを使用で
きる。重イオンビームの線量は、用いるイオンビームの
種類、照射する植物の種類などに応じて決めればよい
が、200グレイ以上では植物体の損傷が大きくなり、
また、5グレイ以下では、突然変異体の誘導頻度が低い
ため、5〜100グレイの範囲とするのが好ましい。重
イオンビームの照射範囲は、あまり範囲が広いと植物体
の損傷が大きくなるので、直径5〜20mm程度とする
のが好ましい。
[0008] The present invention also provides a method for producing a chlorophyll-deficient plant, comprising irradiating a pollinated plant ovary with a heavy ion beam and selecting a chlorophyll-deficient plant from the irradiated plants. is there. Hereinafter, the present invention will be described in detail. The heavy ion beam used in the present invention is not particularly limited as long as it can induce a mutant. For example, a nitrogen ion beam, a carbon ion beam, a neon ion beam, an argon ion beam, or the like can be used. The dose of the heavy ion beam may be determined according to the type of ion beam used, the type of plant to be irradiated, and the like.
In addition, since the induction frequency of the mutant is low at 5 Gray or less, the range is preferably 5 to 100 Gray. If the irradiation range of the heavy ion beam is too wide, damage to the plant body becomes large. Therefore, it is preferable that the irradiation range is about 5 to 20 mm in diameter.

【0009】重イオンビーム照射の対象とする植物とし
ては、特に制限はないが、タバコ、シロイヌナズナ、イ
ネ、ラン等を好ましい植物として例示することができ
る。重イオンビームの照射時期は、変異の起こりやすい
受精直後の卵細胞に照射するのが好ましい。より具体的
には、受粉から2〜108時間(受精直後〜80時間)
が好ましい。
The plant to be subjected to heavy ion beam irradiation is not particularly limited, but preferred examples include tobacco, Arabidopsis, rice, and orchid. The irradiation time of the heavy ion beam is preferably to irradiate the egg cell immediately after fertilization, where mutation is likely to occur. More specifically, 2 to 108 hours after pollination (just after fertilization to 80 hours)
Is preferred.

【0010】重イオンビームを受粉後の植物子房に照射
した後、その植物の種子を播種し、発芽させる。発芽段
階で、形態あるいは生理異常が発生した個体を選抜する
ことにより、突然変異体を得ることができる。ここでい
う形態異常とは、正常な植物と外観上異なることを意味
し、例えば、クロロフィルの欠損、針状葉、重力非感受
性、矮性、早生など、また生理異常は薬剤耐性、環境ス
トレス耐性などである。なお、ここでいうクロロフィル
の欠損の中には、全くクロロフィルを含まないもののほ
か、いわゆる斑入りといわれる一部にクロロフィルを欠
くもの、及びクロロフィル量が正常な植物より少ないた
め薄緑色を呈するものをも含む。
After irradiating the plant ovary after pollination with a heavy ion beam, seeds of the plant are sown and germinated. At the germination stage, a mutant can be obtained by selecting an individual having a morphological or physiological abnormality. The morphological abnormality here means different from the normal plant in appearance, for example, chlorophyll deficiency, needle-like leaves, gravity insensitivity, dwarfism, early birth, etc., and physiological abnormalities include drug resistance, environmental stress resistance, etc. It is. Among the deficiencies of chlorophyll mentioned here, in addition to those that do not contain chlorophyll at all, those that lack so-called variegated chlorophyll and those that exhibit light green color because the amount of chlorophyll is less than that of normal plants are also included. Including.

【0011】[0011]

【実施例】【Example】

〔実施例1〕窒素イオン(7+:135MeV/u)を
理研サイクロトロンで加速し10mmの直径でタバコ品
種BY−4の子房に照射した(図1参照)。実験は、照
射時期を受粉後36時間、48〜60時間、72〜84
時間、96〜108時間の5段階に分け、線量を5、1
0、50、100、200グレイを5段階に分けて行っ
た。なお、この時のLET(linear energy transfer)
は28.5KeV/mmであった。窒素イオンビーム照
射してから1カ月後にM1種子を収穫し、その種子の発
芽率を求めた。この結果を図2に示す。図2に示すよう
に線量が200グレイでは、発芽率が極端に低くなって
おり、植物体に大きな損傷が生じたものと推定される。
[Example 1] Nitrogen ions (7+: 135 MeV / u) were accelerated by a RIKEN cyclotron and irradiated to the ovary of a tobacco variety BY-4 at a diameter of 10 mm (see FIG. 1). In the experiment, the irradiation time was set to 36 hours after pollination, 48 to 60 hours,
Time, 96-108 hours, divided into 5 doses
0, 50, 100, and 200 grays were performed in five stages. At this time, LET (linear energy transfer)
Was 28.5 KeV / mm. One month after irradiation with the nitrogen ion beam, M1 seeds were harvested, and the germination rate of the seeds was determined. The result is shown in FIG. As shown in FIG. 2, when the dose is 200 Gray, the germination rate is extremely low, and it is estimated that a large damage has occurred to the plant.

【0012】発芽した植物体には、形態的な異常を示す
個体が含まれていた。これらの外観を図3〜図6に示
す。図3は、受粉後96〜108時間後に10グレイの
線量で窒素イオンビームを照射した個体を示すものであ
り、クロロフィルを全く含まない状態(アルビノ)であ
った。図4は、受粉後72〜84時間後に10グレイの
線量で窒素イオンビームを照射した個体を示すものであ
り、クロロフィルが少なく、薄緑色を呈していた。図5
は、受粉後72〜84時間後に10グレイの線量で窒素
イオンビームを照射した個体を示すものであり、針状葉
を有していた。図6は、受粉後96〜108後に200
グレイの線量で窒素イオンビームを照射した個体を示す
ものであり、針状葉を有していた。なお、図7は、受粉
後72〜84時間後に10グレイの線量で窒素イオンビ
ームを照射した個体を示すものであり、正常な形態を示
した。
The germinated plants contained individuals showing morphological abnormalities. These appearances are shown in FIGS. FIG. 3 shows an individual irradiated with a nitrogen ion beam at a dose of 10 Grays 96 to 108 hours after pollination, in a state containing no chlorophyll (albino). FIG. 4 shows an individual irradiated with a nitrogen ion beam at a dose of 10 Grays 72 to 84 hours after pollination, showing a small amount of chlorophyll and a pale green color. FIG.
Shows an individual irradiated with a nitrogen ion beam at a dose of 10 Grays 72 to 84 hours after pollination, and had needle-like leaves. FIG. 6 shows that 200 to 96 to 108 after pollination.
This shows an individual irradiated with a nitrogen ion beam at a gray dose, and had needle-like leaves. FIG. 7 shows an individual irradiated with a nitrogen ion beam at a dose of 10 Grays 72 to 84 hours after pollination, and showed a normal form.

【0013】上記の如く発芽した植物は様々な形態異常
を示したが、これらの形態異常の中からクロロフィルの
欠損にのみ着目し、全発芽個体中のクロロフィル欠損個
体の占める割合を求めた。この結果を図8に示す。図8
が示すように、受粉後48〜60時間後及び96〜10
8時間後に照射した場合は、線量が100グレイのとき
に最もクロロフィル欠損個体の占める割合が高かった
が、受粉後72〜84時間後に照射した場合は、線量が
10グレイのときに最もクロロフィル欠損個体の占める
割合がが高かった。受粉後32時間後に照射した場合は
いずれの線量においても、クロロフィル欠損個体の占め
る割合は低かった。 〔比較例1〕供試植物としては、タバコの2品種(Xant
hiおよびBY−4)を用いた。
The plants that germinated as described above exhibited various morphological abnormalities. Of these morphological abnormalities, attention was paid only to the chlorophyll deficiency, and the proportion of chlorophyll-deficient individuals in all germinated individuals was determined. The result is shown in FIG. FIG.
As shown, 48 to 60 hours after pollination and 96 to 10
When irradiated 8 hours later, the proportion of chlorophyll-deficient individuals was highest when the dose was 100 Gray, but when irradiated 72 to 84 hours after pollination, the highest percentage of chlorophyll-deficient individuals was obtained when the dose was 10 Gray. Accounted for a large percentage of the total. Irradiation 32 hours after pollination, the occupancy of chlorophyll-deficient individuals was low at all doses. [Comparative Example 1] As test plants, two tobacco varieties (Xant
hi and BY-4) were used.

【0014】0.1%EMSをしみ込ませた脱脂綿で花
柱を除去した子房を被い、1日間放置した。このとき乾
燥を防ぐためにマイクロチューブで処理部分を被った。
このEMSによる処理は、受粉後36、48、54、6
0時間後の5段階に分けて行った。変異剤処理から1カ
月後にM1種子を収穫し、その発芽率を求めた。この結
果を図9に示す。図9が示すようにXanthiにおいてはど
の段階においても発芽率の低下は認められなかったが、
BY−4においては、受粉後36時間後および48時間
後に処理を行った場合には発芽率の低下が認められた。
The ovary from which the style was removed was covered with absorbent cotton impregnated with 0.1% EMS, and allowed to stand for 1 day. At this time, the treated portion was covered with a microtube to prevent drying.
This EMS treatment is performed after pollination at 36, 48, 54, 6
The test was performed in five stages after 0 hour. One month after the treatment with the mutagen, M1 seeds were harvested and the germination rate was determined. The result is shown in FIG. As shown in FIG. 9, the germination rate was not reduced at any stage in Xanthi,
In BY-4, when the treatment was performed 36 hours and 48 hours after pollination, a decrease in the germination rate was observed.

【0015】発芽した個体には、実施例1と同様に様々
な形態異常を示す個体が含まれていたが、クロロフィル
欠損個体はみられなかった。全発芽個体中の形態異常個
体の占める割合を求めた。また、形態異常をA)1葉
型、B)3葉型、C)その他の3形態に分類し、それぞ
れの示す割合を求めた。この結果を図10及び図11に
示す。図109が示すように形態異常個体が最も多かっ
たのはBY−4においては36時間、Xanthiにおいては
48時間後に処理を行った場合であった。観察される形
態異常はXanthiにおいては1葉型の形態異常が、またB
Y−4においては3葉型の形態異常が多く観察された。
The germinated individuals included individuals showing various morphological abnormalities as in Example 1, but no chlorophyll-deficient individuals were found. The percentage of morphologically abnormal individuals in all germinated individuals was determined. In addition, the morphological abnormalities were classified into A) one-leaf type, B) three-leaf type, C) and other three types, and the indicated ratios were determined. The results are shown in FIGS. As shown in FIG. 109, the most morphologically abnormal individuals were the case where the processing was performed 36 hours in BY-4 and 48 hours in Xanthi. The observed morphological abnormalities were the one-lobe type abnormalities in Xanthi, and B
In Y-4, many trilobular morphological abnormalities were observed.

【0016】[0016]

【発明の効果】本発明は、突然変異体植物の新規な作出
方法を提供する。そして、この方法は次に列挙するよう
な特徴を有する。 (1)子房に重イオンビームを照射するので、変異種子
を多量、確実に作れる。そのため植物固体での新機能の
確認ができる。 (2)受精後の遺伝子増殖期に重イオンビームを照射す
るので、致死的変異を軽減できる。 (3)子房に重イオンビームを限定、瞬時に照射するの
で致死的変異を軽減できる。 (4)アルビノ変異植物を効率よく作出できる。 (5)始原(卵)細胞に重イオンビームを照射するの
で、遺伝形質が均一なホモ体を得やすい。
The present invention provides a novel method for producing a mutant plant. This method has the following features. (1) Since the ovary is irradiated with a heavy ion beam, a large amount of mutant seeds can be reliably produced. Therefore, new functions can be confirmed in plant solids. (2) Since the heavy ion beam is irradiated during the gene growth phase after fertilization, lethal mutation can be reduced. (3) The heavy ion beam is limited to the ovary and is irradiated immediately, so that lethal mutation can be reduced. (4) Albino mutant plants can be efficiently produced. (5) Since the primordial (egg) cells are irradiated with a heavy ion beam, it is easy to obtain a homozygote having a uniform genetic trait.

【0017】このように本作出方法は、植物体の損傷を
最小限に抑え、多様な形態を示す突然変異体植物を高率
で誘導することが可能であり、植物育種分野において極
めて有用な技術である。
As described above, the present production method is capable of minimizing plant damage and inducing mutant plants exhibiting various morphologies at a high rate, and is a very useful technique in the field of plant breeding. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】重イオンビームの受粉後の植物子房への照射方
法を示す図である。
FIG. 1 is a diagram showing a method of irradiating a plant ovary after pollination with a heavy ion beam.

【図2】窒素イオンビームの線量と発芽率との関係を示
す図である。
FIG. 2 is a diagram showing a relationship between a dose of a nitrogen ion beam and a germination rate.

【図3】形態異常個体の生物の形態を示す写真である。FIG. 3 is a photograph showing the morphology of a morphologically abnormal individual.

【図4】形態異常個体の生物の形態を示す写真である。FIG. 4 is a photograph showing the morphology of a morphologically abnormal individual.

【図5】形態異常個体の生物の形態を示す写真である。FIG. 5 is a photograph showing a morphology of a morphologically abnormal individual.

【図6】形態異常個体の生物の形態を示す写真である。FIG. 6 is a photograph showing the morphology of a morphologically abnormal individual.

【図7】正常個体の生物の形態を示す写真である。FIG. 7 is a photograph showing the form of a normal individual organism.

【図8】窒素イオンビームの線量とクロロフィル欠損個
体の発生頻度との関係を示す図である。
FIG. 8 is a diagram showing the relationship between the dose of a nitrogen ion beam and the frequency of occurrence of chlorophyll-deficient individuals.

【図9】EMSの処理時期と発芽率との関係を示す図で
ある。
FIG. 9 is a diagram showing the relationship between the EMS treatment time and the germination rate.

【図10】EMSの処理時期と形態異常個体の発生頻度
との関係を示す図である。
FIG. 10 is a diagram showing the relationship between the processing time of EMS and the frequency of occurrence of abnormal morphological individuals.

【図11】1葉型形態異常個体及び3葉型形態異常個体
の全形態異常個体中に占める割合を示す図である。
FIG. 11 is a diagram showing the proportion of single-lobe morphologically abnormal individuals and three-lobe morphologically abnormal individuals in all morphologically abnormal individuals.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加瀬 昌之 埼玉県和光市広沢2番1号 理化学研究所 内 (72)発明者 後藤 彰 埼玉県和光市広沢2番1号 理化学研究所 内 (72)発明者 矢野 安重 埼玉県和光市広沢2番1号 理化学研究所 内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayuki Kase 2-1 Hirosawa, Wako-shi, Saitama Prefecture, RIKEN (72) Inventor Akira Goto 2-1 Hirosawa, Wako-shi, Saitama RIKEN, (72) Inventor Yasushi Yano 2-1 Hirosawa, Wako-shi, Saitama Pref. RIKEN

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 受粉後の植物子房に重イオンビームを照
射し、当該照射処理をした植物の中から形態異常が生じ
た植物を選抜することを特徴とする突然変異体植物の作
出方法。
1. A method for producing a mutant plant, comprising irradiating a pollinated plant ovary with a heavy ion beam and selecting a plant having a morphological abnormality from the irradiated plants.
【請求項2】 受粉後の植物子房に重イオンビームを照
射し、当該照射処理をした植物の中からクロロフィル欠
損植物を選抜することを特徴とするクロロフィル欠損植
物の作出方法。
2. A method for producing a chlorophyll-deficient plant, comprising irradiating a pollinated plant ovary with a heavy ion beam and selecting a chlorophyll-deficient plant from the irradiated plants.
JP20514195A 1995-07-20 1995-07-20 How to create mutant plants Expired - Lifetime JP3577530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20514195A JP3577530B2 (en) 1995-07-20 1995-07-20 How to create mutant plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20514195A JP3577530B2 (en) 1995-07-20 1995-07-20 How to create mutant plants

Publications (2)

Publication Number Publication Date
JPH0928220A true JPH0928220A (en) 1997-02-04
JP3577530B2 JP3577530B2 (en) 2004-10-13

Family

ID=16502107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20514195A Expired - Lifetime JP3577530B2 (en) 1995-07-20 1995-07-20 How to create mutant plants

Country Status (1)

Country Link
JP (1) JP3577530B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056905A1 (en) * 2002-01-08 2003-07-17 Riken Method of constructing chimeric plant by heavy ion beam irradiation
US20160032341A1 (en) * 2008-04-30 2016-02-04 Xyleco, Inc. Processing biomass and petroleum containing materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429740B2 (en) 2009-06-01 2014-02-26 独立行政法人理化学研究所 Method for recovering metals using raw silk of moss plants

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056905A1 (en) * 2002-01-08 2003-07-17 Riken Method of constructing chimeric plant by heavy ion beam irradiation
US7851771B2 (en) 2002-01-08 2010-12-14 Riken Method of constructing chimeric plant by heavy-ion beam irradiation
US20160032341A1 (en) * 2008-04-30 2016-02-04 Xyleco, Inc. Processing biomass and petroleum containing materials
US9517444B2 (en) * 2008-04-30 2016-12-13 Xyleco, Inc. Processing biomass and petroleum containing materials
US9700868B2 (en) 2008-04-30 2017-07-11 Xyleco, Inc. Processing biomass and petroleum containing materials
US9919282B2 (en) 2008-04-30 2018-03-20 Xyleco, Inc. Processing biomass and petroleum containing materials
US10092890B2 (en) 2008-04-30 2018-10-09 Xyleco, Inc. Processing biomass and petroleum containing materials
US10500560B2 (en) 2008-04-30 2019-12-10 Xyleco, Inc. Processing biomass and petroleum containing materials

Also Published As

Publication number Publication date
JP3577530B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
Poethig et al. Cell lineage patterns in maize embryogenesis: a clonal analysis
Yu et al. Mutation breeding by ion implantation
Mohler et al. Radiation response of mammalian cells grown in culture: III. Modification of X-ray survival of Chinese hamster cells by 5-bromodeoxyuridine
Kehr Genetic tumors in Nicotiana
Marks The cytology of Oxalis dispar (Brown)
Goodspeed Cytological and other features of variant plants produced from X-rayed sex cells of Nicotiana tabacum
JPH0928220A (en) Production of mutated plant body
Ding et al. Low-dose gamma-irradiation promotes wheat anther culture response
Cheng et al. Effect of mutagenic treatments on somaclonal variation in wheat (Triticum aestivum L.)
Sanders et al. Somatic reduction of tetraploid sorghum to diploid mutants following colchicine treatment
Gupta et al. Induced mutations in foxtail millet (Setaria italica Beauv.) I. Chlorophyll mutations induced by gamma rays, EMS and DES
SRIPICHITT et al. The effects of exposure dose and dose rate of gamma radiation on in vitro shoot-forming capacity of cotyledon explants in red pepper (Capsicum annuum L. cv. Yatsufusa)
ES8605358A1 (en) Genetic factor capable of altering leaf number and distribution in maize
Conger et al. Plantlet formation from cultured inflorescences of Dactylis glomerata L.
VERMA et al. Lethal dose (LD50) fixation and sensitivity of fenugreek (Trigonella foenum-graecum L.) to gamma radiation for induction of mutation
Inagaki et al. Factors affecting the frequencies of embryo formation and haploid plant regeneration in crosses of hexaploid wheat with pearl millet
Hirono et al. Tumor induction by heavy ionizing particles and x-rays in Arabidopsis
Widoretno et al. In Vitro Induction and Identification of Polyploid Amorphophallus muelleri Blume Plants by Colchicine Treatment
Ahuja et al. The effects of X-irradiation on seedling tumor production in Nicotiana species and hybrids
Singh Some Radiation Induced Changes at ‘Q’Locus in Bread Wheat: Triticum aestivum L.
Miller et al. The radiosensitivity of thalli of Marchantia polymorpha L. to acute gamma irradiation
HU202709B (en) Method for producing and protecting cultivated plants resistant to herbicide agents
Therman et al. Polytene chromosomes in cultured pea roots (Pisum, Fabaceae)
Mehta et al. Improvement of genetic architecture of a local cultivar Kalitur of soybean by mutation
Raghuvanshi et al. Effect of Gamma Rays on Growth and Karyokinetic Activity in Trigonella foenum-graecum L.

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040622

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150723

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term