JP3577530B2 - How to create mutant plants - Google Patents

How to create mutant plants Download PDF

Info

Publication number
JP3577530B2
JP3577530B2 JP20514195A JP20514195A JP3577530B2 JP 3577530 B2 JP3577530 B2 JP 3577530B2 JP 20514195 A JP20514195 A JP 20514195A JP 20514195 A JP20514195 A JP 20514195A JP 3577530 B2 JP3577530 B2 JP 3577530B2
Authority
JP
Japan
Prior art keywords
plant
ion beam
pollination
chlorophyll
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20514195A
Other languages
Japanese (ja)
Other versions
JPH0928220A (en
Inventor
知子 阿部
茂男 吉田
尚人 稲辺
昌之 加瀬
彰 後藤
安重 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP20514195A priority Critical patent/JP3577530B2/en
Publication of JPH0928220A publication Critical patent/JPH0928220A/en
Application granted granted Critical
Publication of JP3577530B2 publication Critical patent/JP3577530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、植物体の損傷を最小限に抑え、多様な形態を示す突然変異体植物を高率で誘導する方法に関し、詳しくは重イオンビーム照射による突然変異体植物の作出方法に関する。
【0002】
【従来の技術】
ガンマ線やエックス線を植物に照射したり、エチルメタンスルフォン酸(EMS)などの薬剤で植物を処理することにより、人為的に植物に突然変異を起こさせることができる〔Euphytica 69 : 95 〜101 (1993)〕。このような突然変異体の中には従来の植物にはない優れた形質を有するものがあることから、従来から突然変異を利用した植物育種が行われてきた。
【0003】
しかし、ガンマ線やエックス線などの放射線は植物の特定の組織を正確に照射することが困難なので、一部の細胞に起こった遺伝子変異を個体全体の遺伝形質として固定するために、大変な労力を必要とする。また、EMS等の薬剤は、突然変異を誘発するとともに植物体自体を損傷させ、発芽率を低下させるので、多数の突然変異体を得るのは困難である。
【0004】
ところで、サイクロトンを用いて炭素や窒素を始めとした各種の元素をイオン化して加速することにより重イオンビームという放射線を作ることができる。そしてこの重イオンビーム照射による植物の突然変異体作製例として、稲の種子に重イオンビームを照射して稲の白葉枯病に耐性の突然変異株を得た例がある(RIKEN Accel. Prog. Rep. 26:109,1992)。
【0005】
しかし、この方法は種子に重イオンビームを照射するので、植物体として成長する種子胚部分はすでに多くの細胞に分化しており、遺伝支配をする細胞のみに変異を起こすことが困難である。また、乾燥した種子では遺伝子が安定構造に固定されており、変異で状態を変えると致死的になることが多いなど欠点を有する。
【0006】
【発明が解決しようとする課題】
以上述べたように、人為的に突然変異を誘発させることは、形質的に優れた植物を作出するために極めて有用な技術であるが、従来の方法では、未だ満足のいく頻度で突然変異体を誘導することができなかった。
本発明は、このような従来技術の問題を背景としてなされたものであり、その目的とするところは、植物体の損傷を最小限に抑え、多様な形態を示す突然変異体を高率で誘導できる方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、受粉後の植物子房に重イオンビームを照射することにより、極めて高い頻度で多様な形態を示す突然変異体を誘導できることを見出し、本発明を完成した。
即ち、本発明は、受粉後の植物子房に重イオンビームを照射し、当該照射処理をした植物の中から形態異常が生じた植物を選抜することを特徴とする突然変異体植物の作出方法である。
【0008】
また、本発明は、受粉後の植物子房に重イオンビームを照射し、当該照射処理をした植物の中からクロロフィル欠損植物を選抜することを特徴とするクロロフィル欠損植物の作出方法である。
以下、本発明を詳細に説明する。
本発明に用いる重イオンビームとしては、突然変異体を誘導できるものであれば特に制限はなく、例えば、窒素イオンビーム、炭素イオンビーム、ネオンイオンビーム、アルゴンイオンビームなどを使用できる。重イオンビームの線量は、用いるイオンビームの種類、照射する植物の種類などに応じて決めればよいが、200グレイ以上では植物体の損傷が大きくなり、また、5グレイ以下では、突然変異体の誘導頻度が低いため、5〜100グレイの範囲とするのが好ましい。重イオンビームの照射範囲は、あまり範囲が広いと植物体の損傷が大きくなるので、直径5〜20mm程度とするのが好ましい。
【0009】
重イオンビーム照射の対象とする植物としては、特に制限はないが、タバコ、シロイヌナズナ、イネ、ラン等を好ましい植物として例示することができる。重イオンビームの照射時期は、変異の起こりやすい受精直後の卵細胞に照射するのが好ましい。より具体的には、受粉から2〜108時間(受精直後〜80時間)が好ましい。
【0010】
重イオンビームを受粉後の植物子房に照射した後、その植物の種子を播種し、発芽させる。発芽段階で、形態あるいは生理異常が発生した個体を選抜することにより、突然変異体を得ることができる。ここでいう形態異常とは、正常な植物と外観上異なることを意味し、例えば、クロロフィルの欠損、針状葉、重力非感受性、矮性、早生など、また生理異常は薬剤耐性、環境ストレス耐性などである。なお、ここでいうクロロフィルの欠損の中には、全くクロロフィルを含まないもののほか、いわゆる斑入りといわれる一部にクロロフィルを欠くもの、及びクロロフィル量が正常な植物より少ないため薄緑色を呈するものをも含む。
【0011】
【実施例】
〔実施例1〕
窒素イオン(7+:135MeV/u)を理研サイクロトロンで加速し10mmの直径でタバコ品種BY−4の子房に照射した(図1参照)。実験は、照射時期を受粉後36時間、48〜60時間、72〜84時間、96〜108時間の5段階に分け、線量を5、10、50、100、200グレイを5段階に分けて行った。なお、この時のLET(linear energy transfer)は28.5KeV/mmであった。窒素イオンビーム照射してから1カ月後にM1種子を収穫し、その種子の発芽率を求めた。この結果を図2に示す。図2に示すように線量が200グレイでは、発芽率が極端に低くなっており、植物体に大きな損傷が生じたものと推定される。
【0012】
発芽した植物体には、形態的な異常を示す個体が含まれていた。これらの外観を図3〜図6に示す。図3は、受粉後96〜108時間後に10グレイの線量で窒素イオンビームを照射した個体を示すものであり、クロロフィルを全く含まない状態(アルビノ)であった。図4は、受粉後72〜84時間後に10グレイの線量で窒素イオンビームを照射した個体を示すものであり、クロロフィルが少なく、薄緑色を呈していた。図5は、受粉後72〜84時間後に10グレイの線量で窒素イオンビームを照射した個体を示すものであり、針状葉を有していた。図6は、受粉後96〜108後に200グレイの線量で窒素イオンビームを照射した個体を示すものであり、針状葉を有していた。なお、図7は、受粉後72〜84時間後に10グレイの線量で窒素イオンビームを照射した個体を示すものであり、正常な形態を示した。
【0013】
上記の如く発芽した植物は様々な形態異常を示したが、これらの形態異常の中からクロロフィルの欠損にのみ着目し、全発芽個体中のクロロフィル欠損個体の占める割合を求めた。この結果を図8に示す。図8が示すように、受粉後48〜60時間後及び96〜108時間後に照射した場合は、線量が100グレイのときに最もクロロフィル欠損個体の占める割合が高かったが、受粉後72〜84時間後に照射した場合は、線量が10グレイのときに最もクロロフィル欠損個体の占める割合がが高かった。受粉後32時間後に照射した場合はいずれの線量においても、クロロフィル欠損個体の占める割合は低かった。
〔比較例1〕
供試植物としては、タバコの2品種(XanthiおよびBY−4)を用いた。
【0014】
0.1%EMSをしみ込ませた脱脂綿で花柱を除去した子房を被い、1日間放置した。このとき乾燥を防ぐためにマイクロチューブで処理部分を被った。このEMSによる処理は、受粉後36、48、54、60時間後の5段階に分けて行った。変異剤処理から1カ月後にM1種子を収穫し、その発芽率を求めた。この結果を図9に示す。図9が示すようにXanthiにおいてはどの段階においても発芽率の低下は認められなかったが、BY−4においては、受粉後36時間後および48時間後に処理を行った場合には発芽率の低下が認められた。
【0015】
発芽した個体には、実施例1と同様に様々な形態異常を示す個体が含まれていたが、クロロフィル欠損個体はみられなかった。
全発芽個体中の形態異常個体の占める割合を求めた。また、形態異常をA)1葉型、B)3葉型、C)その他の3形態に分類し、それぞれの示す割合を求めた。この結果を図10及び図11に示す。図109が示すように形態異常個体が最も多かったのはBY−4においては36時間、Xanthiにおいては48時間後に処理を行った場合であった。観察される形態異常はXanthiにおいては1葉型の形態異常が、またBY−4においては3葉型の形態異常が多く観察された。
【0016】
【発明の効果】
本発明は、突然変異体植物の新規な作出方法を提供する。そして、この方法は次に列挙するような特徴を有する。
(1)子房に重イオンビームを照射するので、変異種子を多量、確実に作れる。
そのため植物固体での新機能の確認ができる。
(2)受精後の遺伝子増殖期に重イオンビームを照射するので、致死的変異を軽減できる。
(3)子房に重イオンビームを限定、瞬時に照射するので致死的変異を軽減できる。
(4)アルビノ変異植物を効率よく作出できる。
(5)始原(卵)細胞に重イオンビームを照射するので、遺伝形質が均一なホモ体を得やすい。
【0017】
このように本作出方法は、植物体の損傷を最小限に抑え、多様な形態を示す突然変異体植物を高率で誘導することが可能であり、植物育種分野において極めて有用な技術である。
【図面の簡単な説明】
【図1】重イオンビームの受粉後の植物子房への照射方法を示す図である。
【図2】窒素イオンビームの線量と発芽率との関係を示す図である。
【図3】形態異常個体の生物の形態を示す写真である。
【図4】形態異常個体の生物の形態を示す写真である。
【図5】形態異常個体の生物の形態を示す写真である。
【図6】形態異常個体の生物の形態を示す写真である。
【図7】正常個体の生物の形態を示す写真である。
【図8】窒素イオンビームの線量とクロロフィル欠損個体の発生頻度との関係を示す図である。
【図9】EMSの処理時期と発芽率との関係を示す図である。
【図10】EMSの処理時期と形態異常個体の発生頻度との関係を示す図である。
【図11】1葉型形態異常個体及び3葉型形態異常個体の全形態異常個体中に占める割合を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for minimizing plant damage and inducing a mutant plant exhibiting various morphologies at a high rate, and more particularly to a method for producing a mutant plant by irradiation with heavy ion beams.
[0002]
[Prior art]
Irradiation of the plant with gamma rays or X-rays or treatment of the plant with an agent such as ethyl methanesulfonate (EMS) can artificially mutate the plant [Euphytica 69: 95-101 (1993) )]. Since some of such mutants have superior traits not found in conventional plants, plant breeding using mutations has been conventionally performed.
[0003]
However, it is difficult to accurately irradiate specific tissues of plants with radiation such as gamma rays and X-rays, so a great deal of work is required to fix genetic mutations that occurred in some cells as genetic traits of the entire individual And In addition, drugs such as EMS induce mutations, damage plants themselves, and reduce germination rates, so that it is difficult to obtain a large number of mutants.
[0004]
Incidentally, radiation called a heavy ion beam can be produced by ionizing and accelerating various elements such as carbon and nitrogen using a cycloton. As an example of producing a mutant of a plant by heavy ion beam irradiation, there is an example of irradiating a rice seed with a heavy ion beam to obtain a mutant strain resistant to bacterial blight of rice (RIKEN Accel. Prog. Rep. 26: 109, 1992).
[0005]
However, since this method irradiates the seeds with a heavy ion beam, the seed embryo part that grows as a plant has already differentiated into many cells, and it is difficult to cause mutation only in the cells that carry out genetic control. In addition, genes are fixed in a stable structure in dried seeds, and have a drawback such that when the state is changed by mutation, they often become lethal.
[0006]
[Problems to be solved by the invention]
As described above, artificially inducing a mutation is a very useful technique for producing a plant with excellent traits, but the conventional method still has a satisfactory frequency of mutants. Could not be induced.
The present invention has been made in view of such problems of the prior art, and it is an object of the present invention to minimize the damage to plants and to induce mutants exhibiting various morphologies at a high rate. It is to provide a method that can be performed.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, by irradiating the plant ovary after pollination with a heavy ion beam, it is possible to induce mutants exhibiting various forms at extremely high frequency. And completed the present invention.
That is, the present invention provides a method for producing a mutant plant, comprising irradiating a plant ovary after pollination with a heavy ion beam and selecting a plant having a morphological abnormality from the irradiated plants. It is.
[0008]
The present invention also provides a method for producing a chlorophyll-deficient plant, which comprises irradiating a plant ovary after pollination with a heavy ion beam, and selecting a chlorophyll-deficient plant from the irradiated plants.
Hereinafter, the present invention will be described in detail.
The heavy ion beam used in the present invention is not particularly limited as long as it can induce a mutant, and for example, a nitrogen ion beam, a carbon ion beam, a neon ion beam, an argon ion beam and the like can be used. The dose of the heavy ion beam may be determined according to the type of ion beam to be used, the type of plant to be irradiated, and the like. Since the induction frequency is low, it is preferable to set the range of 5 to 100 gray. If the irradiation range of the heavy ion beam is too wide, damage to the plant is increased. Therefore, it is preferable to set the diameter to about 5 to 20 mm.
[0009]
The plant to be subjected to heavy ion beam irradiation is not particularly limited, but preferred examples include tobacco, Arabidopsis, rice, orchid, and the like. The irradiation time of the heavy ion beam is preferably to irradiate the egg cell immediately after fertilization, which is likely to cause mutation. More specifically, it is preferably 2 to 108 hours from pollination (immediately after fertilization to 80 hours).
[0010]
After irradiating the plant ovary after pollination with a heavy ion beam, seeds of the plant are sown and germinated. At the germination stage, a mutant can be obtained by selecting an individual having a morphological or physiological abnormality. The morphological abnormality here means different from the normal plant in appearance, for example, chlorophyll deficiency, needle-like leaves, gravity insensitivity, dwarfism, premature birth, etc., and physiological abnormalities include drug resistance, environmental stress resistance, etc. It is. In addition, among the deficiencies of chlorophyll referred to here, in addition to those that do not contain chlorophyll at all, those that lack so-called variegated chlorophyll and those that exhibit light green color because the amount of chlorophyll is less than that of normal plants are also included. Including.
[0011]
【Example】
[Example 1]
Nitrogen ions (7+: 135 MeV / u) were accelerated by a RIKEN cyclotron and irradiated to the ovary of tobacco variety BY-4 at a diameter of 10 mm (see FIG. 1). In the experiment, the irradiation time was divided into five stages of 36 hours, 48 to 60 hours, 72 to 84 hours, and 96 to 108 hours after pollination, and the dose was divided into five stages of 5, 10, 50, 100, and 200 gray. Was. The LET (linear energy transfer) at this time was 28.5 KeV / mm. One month after irradiation with the nitrogen ion beam, M1 seeds were harvested and the germination rate of the seeds was determined. The result is shown in FIG. As shown in FIG. 2, when the dose is 200 Gray, the germination rate is extremely low, and it is estimated that the plant body has been seriously damaged.
[0012]
Germinated plants contained individuals exhibiting morphological abnormalities. These appearances are shown in FIGS. FIG. 3 shows an individual irradiated with a nitrogen ion beam at a dose of 10 Grays 96 to 108 hours after pollination, in a state without any chlorophyll (albino). FIG. 4 shows an individual irradiated with a nitrogen ion beam at a dose of 10 Grays 72 to 84 hours after pollination, showing a small amount of chlorophyll and a pale green color. FIG. 5 shows an individual irradiated with a nitrogen ion beam at a dose of 10 Grays 72 to 84 hours after pollination, and had needle-like leaves. FIG. 6 shows an individual irradiated with a nitrogen ion beam at a dose of 200 Gray 96 to 108 days after pollination, and had needle-like leaves. FIG. 7 shows an individual irradiated with a nitrogen ion beam at a dose of 10 Grays 72 to 84 hours after pollination, and showed a normal form.
[0013]
Plants that germinated as described above exhibited various morphological abnormalities, but by focusing on chlorophyll deficiency among these morphological abnormalities, the proportion of chlorophyll-deficient individuals in all germinated individuals was determined. The result is shown in FIG. As shown in FIG. 8, when irradiation was performed 48 to 60 hours and 96 to 108 hours after pollination, the proportion of chlorophyll-deficient individuals was highest when the dose was 100 Gray, but 72 to 84 hours after pollination. When the irradiation was performed later, the proportion of chlorophyll-deficient individuals was highest when the dose was 10 Gray. When irradiation was performed 32 hours after pollination, the proportion of chlorophyll-deficient individuals was low at all doses.
[Comparative Example 1]
As test plants, two tobacco varieties (Xanthi and BY-4) were used.
[0014]
The ovary from which the style was removed was covered with absorbent cotton impregnated with 0.1% EMS, and left for 1 day. At this time, the treated portion was covered with a microtube to prevent drying. This treatment by EMS was performed in five stages 36, 48, 54 and 60 hours after pollination. One month after the treatment with the mutagen, M1 seeds were harvested and the germination rate was determined. The result is shown in FIG. As shown in FIG. 9, no reduction in the germination rate was observed at any stage in Xanthi, but in BY-4, when the treatment was performed 36 hours and 48 hours after pollination, the germination rate was reduced. Was observed.
[0015]
The germinated individuals included individuals showing various morphological abnormalities as in Example 1, but no chlorophyll-deficient individuals were found.
The percentage of morphologically abnormal individuals in all germinated individuals was determined. Further, the morphological abnormalities were classified into A) one-lobe type, B) three-lobe type, C) and other three types, and the ratios indicated for each were determined. The results are shown in FIGS. As shown in FIG. 109, the morphologically abnormal individuals were the most frequent when the processing was performed 36 hours in BY-4 and 48 hours in Xanthi. Among the observed morphological abnormalities, a one-lobe type morphological abnormality was frequently observed in Xanthi, and a three-lobe type morphological abnormality was frequently observed in BY-4.
[0016]
【The invention's effect】
The present invention provides a novel method for producing a mutant plant. This method has the following features.
(1) Since the ovary is irradiated with a heavy ion beam, a large amount of mutant seeds can be reliably produced.
Therefore, new functions can be confirmed in plant solids.
(2) Since the heavy ion beam is irradiated during the gene growth phase after fertilization, lethal mutation can be reduced.
(3) A heavy ion beam is limited to the ovary and is irradiated instantaneously, so that lethal mutation can be reduced.
(4) Albino mutant plants can be efficiently produced.
(5) Since the primordial (egg) cells are irradiated with a heavy ion beam, it is easy to obtain homozygotes having a uniform genetic trait.
[0017]
As described above, the present production method is capable of minimizing plant damage and inducing mutant plants exhibiting various morphologies at a high rate, and is an extremely useful technique in the field of plant breeding.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method of irradiating a plant ovary after pollination with a heavy ion beam.
FIG. 2 is a diagram showing a relationship between a dose of a nitrogen ion beam and a germination rate.
FIG. 3 is a photograph showing the morphology of a morphologically abnormal individual.
FIG. 4 is a photograph showing the morphology of a morphologically abnormal individual.
FIG. 5 is a photograph showing a morphology of a morphologically abnormal individual.
FIG. 6 is a photograph showing the morphology of a morphologically abnormal individual.
FIG. 7 is a photograph showing the form of a normal individual organism.
FIG. 8 is a diagram showing the relationship between the dose of a nitrogen ion beam and the frequency of occurrence of chlorophyll-deficient individuals.
FIG. 9 is a diagram showing the relationship between EMS treatment time and germination rate.
FIG. 10 is a diagram showing the relationship between the processing time of EMS and the frequency of occurrence of abnormal morphological individuals.
FIG. 11 is a view showing the ratio of single-lobe abnormal morphological individuals and three-lobe abnormal morphological individuals to all abnormal morphological individuals.

Claims (2)

受粉後の植物子房に重イオンビームを照射し、当該照射処理をした植物子房に由来する種子を発芽させて得た植物の中から形態異常が生じた植物を選抜することを特徴とする突然変異体植物の作出方法。Irradiating the plant ovary after pollination with a heavy ion beam, and selecting plants having morphological abnormalities from plants obtained by germinating seeds derived from the irradiated plant ovary. A method for producing a mutant plant. 受粉後の植物子房に重イオンビームを照射し、当該照射処理をした植物子房に由来する種子を発芽させて得た植物の中からクロロフィル欠損植物を選抜することを特徴とするクロロフィル欠損植物の作出方法。A chlorophyll-deficient plant, wherein a chlorophyll-deficient plant is selected from plants obtained by irradiating a plant ovary after pollination with a heavy ion beam and germinating seeds derived from the irradiated plant ovary. How to create.
JP20514195A 1995-07-20 1995-07-20 How to create mutant plants Expired - Lifetime JP3577530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20514195A JP3577530B2 (en) 1995-07-20 1995-07-20 How to create mutant plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20514195A JP3577530B2 (en) 1995-07-20 1995-07-20 How to create mutant plants

Publications (2)

Publication Number Publication Date
JPH0928220A JPH0928220A (en) 1997-02-04
JP3577530B2 true JP3577530B2 (en) 2004-10-13

Family

ID=16502107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20514195A Expired - Lifetime JP3577530B2 (en) 1995-07-20 1995-07-20 How to create mutant plants

Country Status (1)

Country Link
JP (1) JP3577530B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140701A1 (en) 2009-06-01 2010-12-09 独立行政法人理化学研究所 A metal recovery method using protonemata of moss plants

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3787697B2 (en) * 2002-01-08 2006-06-21 独立行政法人理化学研究所 Production method of chimera plant by heavy ion beam irradiation
US7931784B2 (en) 2008-04-30 2011-04-26 Xyleco, Inc. Processing biomass and petroleum containing materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140701A1 (en) 2009-06-01 2010-12-09 独立行政法人理化学研究所 A metal recovery method using protonemata of moss plants

Also Published As

Publication number Publication date
JPH0928220A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
Yu et al. Mutation breeding by ion implantation
Kehr Genetic tumors in Nicotiana
Lee et al. Determination of mutagenic sensitivity to gamma rays in ginseng (Panax ginseng) dehiscent seeds, roots, and somatic embryos
JP3577530B2 (en) How to create mutant plants
Marks The cytology of Oxalis dispar (Brown)
Gharyal et al. Plantlet formation from callus cultures of a legume, Lathyrus sativus cv. LSD-3
Micheli et al. Encapsulation of in vitro proliferated buds of olive
WO2001080638A1 (en) Cell- or organ-differentiation controllers and method of controlling morphogenesis by using the same
Hodson de Jaramillo et al. In vitro regeneration of three chrysanthemum (Dendrathema grandiflora) varieties" via" organogenesis and somatic embryogenesis
Sareen et al. Mutation breeding in improvement of Plantago ovata Forsk
Datta et al. Cytomixis and a trisomic in Nigella sativa L.
Rao et al. Gamma-ray induced meiotic chromosome stickiness in tomato
SRIPICHITT et al. The effects of exposure dose and dose rate of gamma radiation on in vitro shoot-forming capacity of cotyledon explants in red pepper (Capsicum annuum L. cv. Yatsufusa)
Gupta et al. Induced mutations in foxtail millet (Setaria italica Beauv.) I. Chlorophyll mutations induced by gamma rays, EMS and DES
ÇAvuşoğlu et al. Role of L-Ornithine in Mitigation of Salt Stress In Allium Cepa L.
VERMA et al. Lethal dose (LD50) fixation and sensitivity of fenugreek (Trigonella foenum-graecum L.) to gamma radiation for induction of mutation
Meiselman et al. The general morphology and growth responses of two species of Nicotiana and their interspecific hybrid after chronic gamma irradiation
Ahuja et al. The effects of X-irradiation on seedling tumor production in Nicotiana species and hybrids
Macdonald et al. The biological effects of gamma irradiation on secondary embryoids of Brassica napus ssp. oleifera (Metzg.) Sinsk., winter oilseed rape
Abdullah et al. Effect of gamma rays on seed germination, survival rate and morphology of Stevia rebaudiana Hybrid
Miller et al. The radiosensitivity of thalli of Marchantia polymorpha L. to acute gamma irradiation
HU202709B (en) Method for producing and protecting cultivated plants resistant to herbicide agents
Rao et al. A comparative study of the differential radiosensitivity of seeds, seedlings and tissue cultures of the Japanese morning glory (Pharbitis nil)
JP2002125496A (en) Method for producing sterile plant
Siddiqi et al. Cytomorphological effects of colchicine on wheat (Triticum aestivum).

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150723

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term