JPH09281455A - Magnetic fluid light control device and lighting fixture with light control device - Google Patents

Magnetic fluid light control device and lighting fixture with light control device

Info

Publication number
JPH09281455A
JPH09281455A JP9440796A JP9440796A JPH09281455A JP H09281455 A JPH09281455 A JP H09281455A JP 9440796 A JP9440796 A JP 9440796A JP 9440796 A JP9440796 A JP 9440796A JP H09281455 A JPH09281455 A JP H09281455A
Authority
JP
Japan
Prior art keywords
magnetic fluid
magnetic
film
magnetic field
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9440796A
Other languages
Japanese (ja)
Inventor
Mitsugi Aeba
貢 饗庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
R D S KK
RDS KK
Original Assignee
R D S KK
RDS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by R D S KK, RDS KK filed Critical R D S KK
Priority to JP9440796A priority Critical patent/JPH09281455A/en
Publication of JPH09281455A publication Critical patent/JPH09281455A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to execute the light control of particularly the discharge lamp among lighting fixtures of a large capacity used in a theater, motion picture studio, television studio, etc., in the state of producing less light control sounds or the entirely absent state of these sounds if possible and to execute the light control at a high light control speed and analogically in multiple stages (or fine stages). SOLUTION: This lighting fixture has a magnetic fluid film 1, a pair of polarizing plates 2a, 2b which are arranged on the entire surface of the film and the rear surface thereof across the film plane of the magnetic fluid film and vary in the polarization directions from each other, means 3a, 3b for impressing magnetic fields in parallel with the film plane of the magnetic fluid film and a means 7 for controlling the magnitude of the magnetic fields by noticing the cotton mouton effect that the quantity of the light passing a pair of the polarizing plates across the magnetic fluid film changes with the magnitude of the magnetic fields impressed on the magnetic fluid film. The quantity of the light perpendicularly passing the magnetic fluid film plane is variably adjusted by controlling the magnitude of the magnetic fields.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、演出空間の照明と
して使用されている機械的シャッタや、半導体を有する
電子回路による調光を行う照明器具、例えば、劇場、映
画スタジオ、テレビスタジオ等で使用される大容量の照
明器具、特に放電灯照明器具において、調光音・調光動
作時間・器具大きさの改善を行った調光装置、及びその
調光装置を備えた照明器具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical shutter used as lighting for a production space, and a lighting device for adjusting light by an electronic circuit having a semiconductor, for example, used in a theater, a movie studio, a television studio or the like. The present invention relates to a large-capacity lighting fixture, particularly a discharge lamp lighting fixture, in which a dimming sound, a dimming operation time, and a size of the fixture are improved, and a lighting fixture including the dimming device.

【0002】[0002]

【従来の技術】従来の照明器具に於ける調光は、トラン
ジスタを使ってランプ電流を制御することにより、発光
量を可変にする電子回路方式か、又は、発光量は不変の
ままで機械的なシャッタを用いて遮光することにより通
過光量を調節する方式かの2つに大別される。トランジ
スタを用いた電子回路方式の調光器では、電流の断続動
作に起因して発生する電磁波が、音声・映像機器の電子
回路に潜入してノイズの発生又は波形歪み等の障害を与
える問題が指摘されている。
2. Description of the Related Art The dimming of a conventional luminaire is an electronic circuit system in which the light emission amount is made variable by controlling a lamp current by using a transistor, or mechanical adjustment while the light emission amount remains unchanged. It is roughly classified into two methods, that is, a method of adjusting the amount of passing light by blocking light using a different shutter. In an electronic circuit type dimmer using a transistor, there is a problem that electromagnetic waves generated due to intermittent operation of current infiltrate into an electronic circuit of audio / video equipment and cause troubles such as noise generation or waveform distortion. It has been pointed out.

【0003】特に、放電灯の発光周波数域での調光は、
トランジスタを使った電子回路方式の調光器では難しい
ため、機械的シャッタ方式の調光器で行うことが多い。
このため調光音が大きく障害となる問題と、調光(光量
変更)の所要時間が長いと言う問題とがある。その上、
調光の可変範囲が大まかな段階でしか行えないのも不都
合である。
In particular, dimming in the emission frequency range of a discharge lamp is
Since it is difficult for an electronic circuit type dimmer using a transistor, a mechanical shutter type dimmer is often used.
For this reason, there are problems that the dimming sound is a major obstacle and that the time required for dimming (changing the amount of light) is long. Moreover,
It is also inconvenient that the variable range of dimming can be performed only at a rough stage.

【0004】[0004]

【発明が解決しようとする課題】本発明は、照明器具の
うち特に放電灯の調光が、調光音の少ない状態、又は可
能なら皆無のような状態で行いうるようにすること、及
び調光速度を大きく、且つアナログ的に多段階に(又
は、細かく)に行えるようにすること、及び小型化する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a lighting fixture, in particular, a discharge lamp, which can be dimmed in a state with little dimming sound or, if possible, in a state where there is no dimming sound. It is an object of the present invention to increase the speed of light and enable analog multi-step (or fine) and miniaturization.

【0005】[0005]

【課題を解決するための手段】本発明は、磁性流体が呈
する磁気光学効果に着目し、その効果をシャッタ手段と
して利用することを提案する。
The present invention focuses on the magneto-optical effect exhibited by a magnetic fluid and proposes to utilize the effect as a shutter means.

【0006】磁性流体とは、1960年代にアメリカ航
空宇宙局(NASA)のパペルによって発明された磁性
を持った液体である。磁性流体は磁性体であり、通常の
磁性体と同じ様な特性もあわせ持っている。その中で、
本発明で利用するのは磁気光学効果である。磁性体の磁
気光学効果とは、磁性体に磁界を加えることによって光
学特性が変化することを一般に指す。
A magnetic fluid is a magnetic liquid that was invented by Papel of the National Aeronautics and Space Administration (NASA) in the 1960s. A magnetic fluid is a magnetic substance, and has the same characteristics as an ordinary magnetic substance. inside that,
The magneto-optical effect is used in the present invention. The magneto-optical effect of a magnetic material generally means that the optical characteristics are changed by applying a magnetic field to the magnetic material.

【0007】磁性流体は磁界に反応する(引き寄せられ
る)性質を持ち、水ベースの磁性流体に関しては、一般
に磁気光学効果(この場合、直線偏光された光を水平垂
直成分の2つの波に分けたとき、磁界を加えることによ
って2つの波の間に生じる位相差)が大きいといわれて
いたニトロベンゼンの約108 倍であり、磁性流体の磁
気光学効果が非常に大きいことが知られている。
Ferrofluids have the property of reacting (attracting) to a magnetic field, and for water-based ferrofluids the magneto-optical effect (in this case linearly polarized light is split into two waves of horizontal and vertical components). At this time, the phase difference produced between two waves by applying a magnetic field is about 10 8 times that of nitrobenzene, which is said to be large, and it is known that the magneto-optical effect of the magnetic fluid is very large.

【0008】本発明は、この大きな磁気光学効果を利用
して調光装置などの照明光デバイスへ応用することを提
案する。ところで、磁性流体にとって磁気光学効果が生
じるということは、磁性微粒子がクラスタを形成する、
つまり磁性微粒子が凝固するということであり、磁性流
体としては起こって欲しくない現象である。このよう
な、磁性流体の特性としては悪い部分を逆手に取って利
用しようとする点で、発想の転換と独創性を打ち出して
いることに注目されたい。
The present invention proposes application to an illumination light device such as a light control device by utilizing this large magneto-optical effect. By the way, the fact that a magneto-optical effect occurs for a magnetic fluid means that magnetic fine particles form clusters,
In other words, it means that the magnetic particles are solidified, which is a phenomenon that magnetic fluids do not want to occur. It should be noted that the concept is changed and originality is devised in that it tries to take advantage of such a bad part as a characteristic of the magnetic fluid.

【0009】磁性流体は、単相の液体ではなく、例え
ば、マグネタイト(磁鉄鉱)などの強磁性微粒子を、例
えば、ケロシンや水などの液体に分散させた懸濁液であ
る。磁界の作用を受けて液体が磁化する役割を強磁性微
粒子が担い、自由な変形と流動といった液体固有の特性
を液体が担う。したがって、厳密に言うと、磁性流体は
固体と液体の混合体、つまり、固・液二相流体である
が、分散している強磁性微粒子があまりにも小さいの
で、通常の単相の液体とほとんど変わらない。強磁性微
粒子の大きさは平均して100Å程度である。
The magnetic fluid is not a single-phase liquid, but is a suspension in which ferromagnetic fine particles such as magnetite (magnetite) are dispersed in a liquid such as kerosene or water. The ferromagnetic fine particles play a role of magnetizing the liquid under the action of the magnetic field, and the liquid plays unique properties of the liquid such as free deformation and flow. Therefore, strictly speaking, a magnetic fluid is a mixture of solid and liquid, that is, a solid-liquid two-phase fluid, but since the dispersed ferromagnetic fine particles are too small, it is almost the same as an ordinary single-phase liquid. does not change. The size of the ferromagnetic particles is about 100Å on average.

【0010】強磁性微粒子の大きさが100Å位の小さ
さになると、各強磁性微粒子が飽和にまで磁化されたい
わゆる単磁区(1粒子1磁区)構造をとるようになる。
このため、強磁性微粒子を単に液体に溶かし込んでも、
強磁性微粒子同士が磁気的引力で吸引しあい凝集沈澱し
てしまう。そこで、凝集を防ぐために、強磁性微粒子相
互の接触を阻止することが必要となる。
When the size of the ferromagnetic fine particles becomes as small as about 100Å, each ferromagnetic fine particle has a so-called single magnetic domain (1 particle 1 magnetic domain) structure in which it is magnetized to saturation.
Therefore, even if the ferromagnetic particles are simply dissolved in the liquid,
The ferromagnetic fine particles are attracted to each other by a magnetic attractive force and coagulate and precipitate. Therefore, in order to prevent aggregation, it is necessary to prevent the ferromagnetic particles from contacting each other.

【0011】このため、個々の強磁性微粒子を界面活性
剤の分子でコーティングして、強磁性微粒子同士がある
距離よりも近くには接近できないようにする。強磁性微
粒子の大きさは溶媒の分子の大きさの約100倍程度で
あるから、溶媒分子のランダムな衝突によりブラウン運
動を行う強磁性微粒子は沈澱することが阻止される。か
くて磁性流体は、界面活性剤の働きとブラウン運動によ
って、安定したコロイド溶液として存在することにな
る。
Therefore, the individual ferromagnetic fine particles are coated with a molecule of a surfactant so that the ferromagnetic fine particles cannot come closer than a certain distance. Since the size of the ferromagnetic fine particles is about 100 times the size of the solvent molecules, the random collision of the solvent molecules prevents the ferromagnetic fine particles that perform Brownian motion from precipitating. Thus, the magnetic fluid exists as a stable colloidal solution due to the action of the surfactant and the Brownian motion.

【0012】磁気光学効果とは、一般に磁性体に磁界を
加えることによって、その磁性体の光学特性が変化する
ことを指す。磁気光学効果にもいくつか種類があり、例
えば狭い間隔を保った2枚の平行ガラス板の間に磁性流
体を入れ、磁界を加えると特異な界面変化を示す。磁界
の加え方を変えると、直線偏光した入射光に対して異な
った磁気光学効果を呈する。
The magneto-optical effect generally means that when a magnetic field is applied to a magnetic material, the optical characteristics of the magnetic material change. There are several types of magneto-optical effects, and for example, when a magnetic fluid is put between two parallel glass plates with a narrow gap and a magnetic field is applied, a unique interface change is exhibited. Changing the way the magnetic field is applied produces different magneto-optical effects for linearly polarized incident light.

【0013】平行ガラス板の間に入れられた磁性流体の
厚さ方向に磁化して、直線偏光した光を厚さ方向に入射
させると、磁性体を透過した後の偏光面が厚さに比例し
た角度θだけ回転する。この現象をファラデー効果と呼
ぶ。次に、磁化された磁性体に直線変更された光を入射
させると、反射光は楕円偏光となる。この現象をカー効
果と呼ぶ。
When the magnetic fluid put between the parallel glass plates is magnetized in the thickness direction and linearly polarized light is made incident in the thickness direction, the polarization plane after passing through the magnetic body has an angle proportional to the thickness. Rotate by θ. This phenomenon is called the Faraday effect. Next, when linearly modified light is incident on the magnetized magnetic material, the reflected light becomes elliptically polarized light. This phenomenon is called the Kerr effect.

【0014】また、図3に示すように磁化の方向と光の
進行方向が直交する場合、磁界と水平な方向と垂直な方
向では磁性体の屈折率が異なり、磁化に垂直な直線偏光
と平行な直線偏光とに分かれ、両者の間に位相差が生
じ、磁性体を通過した光は直線偏光ではなくなる。この
現象をコットン・ムートン効果と呼ぶ。
As shown in FIG. 3, when the magnetization direction and the light traveling direction are orthogonal to each other, the refractive index of the magnetic substance is different in the direction perpendicular to the magnetic field and parallel to the linearly polarized light perpendicular to the magnetization. The light that has passed through the magnetic substance is no longer linearly polarized light. This phenomenon is called the Cotton-Mouton effect.

【0015】本発明は、コットン・ムートン効果を利用
するものであって、電磁石によって磁界を作り、電磁石
を流れる電流を調節することによって、磁界の大きさを
制御する。光源ランプを出て偏光板を透過した光が、磁
化された磁性体を透過することによって、光の偏りが生
じる。この光の偏りは磁化の大きさ、つまり電磁石を流
れる電流の大きさに比例して大きくなり、更に、偏光板
で検出することで位相差によって、入射した直線偏光が
磁性流体を通過して、偏光板からは、楕円偏光となって
出てくる。
The present invention utilizes the Cotton-Mouton effect, in which the magnitude of the magnetic field is controlled by creating a magnetic field with the electromagnet and adjusting the current flowing through the electromagnet. The light emitted from the light source lamp and transmitted through the polarizing plate is transmitted through the magnetized magnetic substance, so that the light is biased. The deviation of this light increases in proportion to the magnitude of the magnetization, that is, the magnitude of the current flowing through the electromagnet.Furthermore, by detecting it with a polarizing plate, the incident linearly polarized light passes through the magnetic fluid due to the phase difference, It emerges as elliptically polarized light from the polarizing plate.

【0016】かくて、本発明の技術的思想は、磁性流体
膜を挟んだ1対の偏光板を通過する光の光量が、磁性流
体膜に印加される磁界の大きさを変えると変化するとい
う自然法則を、照明技術分野における調光に利用しょう
とするものである。
Thus, the technical idea of the present invention is that the amount of light passing through the pair of polarizing plates sandwiching the magnetic fluid film changes when the magnitude of the magnetic field applied to the magnetic fluid film changes. It tries to use the law of nature for dimming in the field of lighting technology.

【0017】[0017]

【実施例】【Example】

<構成>本発明の磁性流体調光装置は、シャッタ機能を
生じさせるための要素として、磁性流体膜1と、磁性流
体膜の膜面を挟んで前面及び後面に配置された互いに偏
光方向が異なる1対の偏光板2a、2bと、前記磁性流
体膜の膜面に平行に磁界を印加する手段3a、3bと、
印加する磁界の大きさを可変的に制御する手段7とを設
けて構成される。
<Structure> The magnetic fluid dimming device of the present invention has, as an element for generating the shutter function, the magnetic fluid film 1 and the polarization directions which are arranged on the front surface and the rear surface with the film surface of the magnetic fluid film interposed therebetween. A pair of polarizing plates 2a, 2b, and means 3a, 3b for applying a magnetic field parallel to the film surface of the magnetic fluid film,
And a means 7 for variably controlling the magnitude of the applied magnetic field.

【0018】一実施例として使用した磁性流体膜1は、
強磁性微粒子を液体に分散させてなる懸濁液を、相互に
近接して(例えば、12μm の間隔で)並行配置された
2枚の透光非磁性板(例えば、ガラス板)間に、封入し
て構成される。この例での磁性流体膜の膜厚は12μm
と言うことになる。
The magnetic fluid film 1 used as an example is
A suspension of ferromagnetic particles dispersed in a liquid is enclosed between two translucent non-magnetic plates (eg, glass plates) that are arranged in parallel with each other (eg, at intervals of 12 μm). Configured. The thickness of the magnetic fluid film in this example is 12 μm
Will be said.

【0019】磁性流体としての懸濁液の例としては、ケ
ロシンや水などを使用するが、本実施例の懸濁液は、
(株)シグマハイケミカル社製のN−304MOであ
り、イソパラフィンベースで、飽和磁化272ガウス
(15 K Oe のとき)、重量濃度30.0%、体積濃度
6.34%、比重1.06、粘度6.14cp(20℃の
とき)という組成のものである。その中に含まれる強磁
性微粒子の一例は、平均粒径100Åのマグネタイト
(磁鉄鉱)などであるが、この粒子は単に液体に溶かし
込んでも、強磁性微粒子同士が磁気的引力で吸引し合っ
て、凝集沈殿してしまう。このような凝集を防止するた
めには、強磁性微粒子相互の接触を阻止すれば良いこと
になる。そこで、磁性流体膜1を形成すべき強磁性微粒
子は、その個々の表面を界面活性剤の分子でコーティン
グし、強磁性微粒子同士がある距離よりも近くには接近
出来ないものである。このようにコーティングすること
により、溶媒の分子の大きさの約100倍程度の大きさ
を持つ強磁性微粒子は、溶媒分子のランダムな衝突によ
りブラウン運動を行うので、強磁性微粒子は沈殿するこ
となく安定したコロイド溶液として働く。
As an example of the suspension as the magnetic fluid, kerosene, water, etc. are used.
N-304MO manufactured by Sigma High Chemical Co., Ltd., isoparaffin base, saturation magnetization 272 gauss (at 15 K Oe), weight concentration 30.0%, volume concentration 6.34%, specific gravity 1.06, It has a viscosity of 6.14 cp (at 20 ° C.). An example of the ferromagnetic fine particles contained therein is magnetite (magnetite) having an average particle size of 100Å, but even if these particles are simply dissolved in a liquid, the ferromagnetic fine particles attract each other by a magnetic attractive force, Aggregate and settle. In order to prevent such aggregation, it is sufficient to prevent the mutual contact of the ferromagnetic fine particles. Therefore, the ferromagnetic fine particles to form the magnetic fluid film 1 are such that the individual surfaces of the ferromagnetic fine particles are coated with a molecule of a surfactant so that the ferromagnetic fine particles cannot come closer than a certain distance. By coating in this manner, the ferromagnetic fine particles having a size of about 100 times the size of the solvent molecules perform Brownian motion due to random collision of solvent molecules, so that the ferromagnetic fine particles do not precipitate. Acts as a stable colloidal solution.

【0020】磁界を印加する手段は永久磁石、又は電磁
石の何れであっても良い。磁界の大きさの制御は、例え
ば、前者の場合には1対の永久磁石の相互位置の変更、
又は磁石相互位置関係の回転等により、後者の場合は電
流強度の変更により、実現可能である。電源として電池
の記号で例示したが、商用交流電源を使用し得ることは
勿論である。
The means for applying the magnetic field may be either a permanent magnet or an electromagnet. The control of the magnitude of the magnetic field can be performed by changing the mutual position of a pair of permanent magnets in the former case,
Alternatively, the latter case can be realized by rotating the mutual positional relationship of the magnets, and the latter case can be realized by changing the current intensity. Although a battery is used as an example of the power source, it goes without saying that a commercial AC power source can be used.

【0021】調光装置付き照明器具は、光源ランプ4
(例えば、放電灯又はハロゲン電球)とその光源ランプ
の少なくとも光軸後面を覆うように配置された光反射板
5と必要に応じてその光軸前面に配置される集光レンズ
6とで構成される光源と、その光源の前記光軸前面に、
前記の偏光方向の異なる1対の偏光板に挟まれた磁性流
体膜1に対し、その膜面に平行に磁界を印加する磁界印
加手段3a、3bを設けてなる磁性流体膜1を含む調光
装置を配置して構成される。
The light fixture with the dimmer is a light source lamp 4
(For example, a discharge lamp or a halogen bulb), a light reflection plate 5 arranged to cover at least the rear surface of the light axis of the light source lamp, and a condenser lens 6 arranged on the front surface of the light axis as necessary. A light source, and in front of the optical axis of the light source,
Light control including a magnetic fluid film 1 which is provided with magnetic field applying means 3a and 3b for applying a magnetic field parallel to the magnetic fluid film 1 sandwiched by a pair of polarizing plates having different polarization directions. It is configured by arranging the device.

【0022】<動作>図1に図示したように、磁性流体
の膜面1に平行に(即ち、膜の厚さ方向に対して垂直
に)磁界を加えると、磁性流体による透過率が図2に示
す一点鎖線のような透過率を示す。このために、破線の
ような光学エネルギーの波長特性の透過率であったもの
が、実線のような透過率に変化する。従って、波長の短
い可視光線では、ほぼ光の制御が可能となる。
<Operation> As shown in FIG. 1, when a magnetic field is applied in parallel to the film surface 1 of the magnetic fluid (that is, perpendicular to the thickness direction of the film), the transmittance by the magnetic fluid is reduced as shown in FIG. The transmittance is indicated by the one-dot chain line shown in FIG. Therefore, the transmittance of the wavelength characteristic of the optical energy as shown by the broken line changes to the transmittance as shown by the solid line. Therefore, visible light with a short wavelength can be controlled almost.

【0023】磁界の変化によって生じる磁性流体の透過
光量の変化特性を図4に示す。膜厚が4μmのものが最
も透過光束が多いが、初期透過光束からの変化率は、1
2μmの薄膜が最も大きいことが分かる。この関係は、
初期値(電界0)からの変化量をシミュレーションした
結果、
FIG. 4 shows the change characteristic of the amount of transmitted light of the magnetic fluid caused by the change of the magnetic field. The maximum transmitted light flux is 4 μm thick, but the rate of change from the initial transmitted light flux is 1
It can be seen that the 2 μm thin film is the largest. This relationship is
As a result of simulating the amount of change from the initial value (electric field 0),

【0024】[0024]

【数1】 [Equation 1]

【0025】但し、n‖は磁界に平行な方向の屈折率
(異常光に対する屈折率)を表わし、n⊥は磁界に垂直
な方向の屈折率(正常光に対する屈折率)を表わす。で
示されることが分かった。
However, n ∥ represents the refractive index in the direction parallel to the magnetic field (refractive index for extraordinary light), and n ⊥ represents the refractive index in the direction perpendicular to the magnetic field (refractive index for normal light). It turned out that it is shown by.

【0026】図5は、磁性流体の透過率と磁界特性との
関係を、光源ランプとして蛍光ランプ〔東芝ライテツク
(株)製のFLR40S・D/M〕を用いた場合と、ハ
ロゲンランプ〔岩崎電気(株)製の3000K/E1
7〕を用いた場合とにおける照度比−磁束密度特性で示
す。蛍光ランプを用いたときは、磁性流体薄膜による磁
界の変化により、初期照度(無磁界時の照度)を100
に換算した場合の照度変化比は、磁束密度0.15
〔T〕で4倍も大きくなっている。磁界を加えることで
磁気光学効果によって、透過率が良くなったことを示
す。
FIG. 5 shows the relationship between the transmittance of magnetic fluid and the magnetic field characteristics when a fluorescent lamp [FLR40S.D / M manufactured by Toshiba Lighting & Technology Corporation] is used as a light source lamp and a halogen lamp [Iwasaki Electric Co., Ltd.]. 3000K / E1 manufactured by Co., Ltd.
7] is used to show the illuminance ratio-magnetic flux density characteristics. When a fluorescent lamp is used, the initial illuminance (illuminance when no magnetic field is applied) is 100 due to the change in magnetic field due to the magnetic fluid thin film.
The illuminance change ratio when converted to is the magnetic flux density of 0.15
[T] is four times larger. It is shown that the transmittance is improved by the magneto-optical effect by applying the magnetic field.

【0027】本発明のように、非機械的(電気的)な制
御方式を用いることによって、遠隔操作やコンピュータ
などを使った電気的自動制御が可能となり、一連の制限
系に組み込むことが可能になる。従って、本発明は現在
目まぐるしいほど高性能・多機能化・コンピュータ化し
続けている舞台やテレビスタジオなどの新しい調光制御
方式に組み込むための、大変有効、かつ、新しい方法で
ある。
By using a non-mechanical (electrical) control system as in the present invention, remote operation or electrical automatic control using a computer or the like becomes possible, and it is possible to incorporate it into a series of limiting systems. Become. Therefore, the present invention is a very effective and new method for incorporating into a new dimming control system such as a stage or a television studio, which continues to be dizzyingly high-performance, multifunctional, and computerized at present.

【0028】照明器具に調光装置を組み込む場合には、
図6に示すように照明筒の長い器具(例えば、アールデ
イエス(株)社製のフォロースポットライトMH6−2
M、光源HM1−575W)の前部に組み込み、磁界を
可変制御する電源を内蔵した電磁石を収納すると良い。
また、電源には、リモートコントロール方式の磁界を調
節する制御系装置も付加出来る。調光制御は、アナログ
的可変が必要であるが、基本的には100段階程度の照
度比の目盛を設定するものとする。
When the dimmer is incorporated in the lighting equipment,
As shown in FIG. 6, a fixture having a long illumination tube (for example, follow spotlight MH6-2 manufactured by Art Dees Co., Ltd.)
M, a light source HM1-575W) may be incorporated in the front part to house an electromagnet having a power source for variably controlling the magnetic field.
Further, a control system device for adjusting a magnetic field of a remote control system can be added to the power source. The dimming control requires analog variable, but basically, the scale of the illuminance ratio of about 100 steps is set.

【0029】[0029]

【発明の効果】従来の照明器具に於けるトランジスタを
用いた電子回路方式の調光器では、電流の断続動作に起
因して発生する電磁波が、音声・映像機器の電子回路に
潜入してノイズの発生又は波形歪み等の障害を与える問
題があったため、敢えて機械式シャッタ方式の調光器で
行うことが多かった。しかし、本発明はこのような問題
を解決し、放電灯の調光が、調光音の少ない状態でしか
も調光速度を大きく、且つアナログ的に多段階に行うこ
と、及び小型化することを可能にした。下記の表は、本
発明の磁性流体調光装置と従来の機械的シャッタの諸元
を対比して、本発明の格別な効果を示すものである。
According to the electronic circuit type dimmer using the transistor in the conventional lighting equipment, the electromagnetic wave generated due to the intermittent operation of the current infiltrates into the electronic circuit of the audio / video equipment to cause noise. Since there is a problem of occurrence of noise or disturbance of waveform, it is often done by a mechanical shutter type dimmer. However, the present invention solves such a problem, and the dimming of a discharge lamp can be performed in a multi-step analog manner and with a small dimming sound, a high dimming speed, and miniaturization. Made possible The following table shows the special effects of the present invention by comparing the specifications of the magnetic fluid dimming device of the present invention and the conventional mechanical shutter.

【0030】[0030]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁性流体調光装置を備えた照明器具を
示す概略図である。
FIG. 1 is a schematic diagram showing a lighting fixture including a magnetic fluid dimming device of the present invention.

【図2】磁性流体膜の透過率と波長との関係を示す図で
ある。
FIG. 2 is a diagram showing a relationship between a transmittance of a magnetic fluid film and a wavelength.

【図3】コットン・ムートン効果の模式図である。FIG. 3 is a schematic diagram of the Cotton-Mouton effect.

【図4】磁性流体の透過率と磁性特性との関係を示す図
である。
FIG. 4 is a diagram showing the relationship between the permeability of magnetic fluid and magnetic properties.

【図5】照度比と磁束密度との関係を示す図である。FIG. 5 is a diagram showing a relationship between an illuminance ratio and a magnetic flux density.

【図6】照明器具の調光部を示す図であって、(a)は
縦断面図、(b)は(a)に記入したA−A線で切断し
て示す横断面図。
6A and 6B are views showing a light control section of the lighting fixture, wherein FIG. 6A is a vertical cross-sectional view, and FIG. 6B is a cross-sectional view cut along the line AA shown in FIG.

【符号の説明】[Explanation of symbols]

1 磁性流体膜 2a、2b 第1偏光板、第2偏光板 3a、3b 電磁石 4 光源ランプ 5 反射板 6 レンズ 7 制御手段 8 レンズ 9 外函 DESCRIPTION OF SYMBOLS 1 Magnetic fluid film 2a, 2b 1st polarizing plate, 2nd polarizing plate 3a, 3b Electromagnet 4 Light source lamp 5 Reflector 6 Lens 7 Control means 8 Lens 9 Outer box

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 偏光方向が異なる1対の偏光板に挟まれ
た磁性流体膜に対して、その膜面に平行に磁界を可変的
に印加する手段を設けてなる磁性流体シャッタを、光源
の光軸前面に配置してなる磁性流体調光装置。
1. A magnetic fluid shutter comprising: a magnetic fluid film sandwiched between a pair of polarizing plates having different polarization directions; and a means for variably applying a magnetic field parallel to the film surface. A magnetic fluid dimming device arranged in front of the optical axis.
【請求項2】 磁性流体膜と、前記磁性流体膜の膜面を
挟んでその前面及び後面に配置された互いに偏光方向が
異なる1対の偏光板と、前記磁性流体膜の膜面に平行に
磁界を印加する手段と、前記磁界の大きさを制御する手
段とを備え、前記磁界の大きさを制御することにより前
記磁性流体膜面を垂直に通過する光量を可変的に調整す
ることを特徴とする磁性流体調光装置。
2. A magnetic fluid film, a pair of polarizing plates arranged on the front surface and the rear surface of the magnetic fluid film sandwiching the film surface and having different polarization directions, and parallel to the film surface of the magnetic fluid film. A means for applying a magnetic field and a means for controlling the magnitude of the magnetic field are provided, and by controlling the magnitude of the magnetic field, the amount of light vertically passing through the surface of the magnetic fluid film is variably adjusted. Magnetic fluid dimmer.
【請求項3】 前記磁性流体膜が、強磁性微粒子を液体
に分散させてなる懸濁液を、相互に近接して並行配置さ
れた1対の透光非磁性板間に封入して構成されているこ
とと、前記強磁性微粒子の個々の表面が界面活性剤の分
子でコーティングされ強磁性微粒子同士がある距離より
も近くには接近出来ないようにされていることとを特徴
とする、請求項1又は2に記載の磁性流体調光装置。
3. The magnetic fluid film is formed by enclosing a suspension obtained by dispersing ferromagnetic fine particles in a liquid between a pair of translucent non-magnetic plates arranged in parallel in close proximity to each other. And that each surface of the ferromagnetic fine particles is coated with a molecule of a surfactant so that the ferromagnetic fine particles cannot come closer than a certain distance. Item 1. The magnetic fluid dimming device according to Item 1 or 2.
【請求項4】 光源と、前記光源の光軸前面に配置され
た請求項1、2又は3に記載の磁性流体調光装置と、少
なくとも光源の光軸後面を覆うように配置された光反射
手段とを含み、前記磁性流体調光装置が、偏光方向の異
なる1対の偏光板に挟まれた磁性流体膜に対し、その膜
面に平行に磁界を印加する磁界印加手段を設けてなるこ
とと、前記磁界印加手段が印加する磁界の大きさを可変
的に制御することにより、前記磁性流体調光装置を通過
する光量を変更しうるようにしたこととを特徴とする調
光装置付き照明装置。
4. A light source, the magnetic fluid dimming device according to claim 1, 2 or 3 arranged in front of the optical axis of the light source, and light reflection arranged so as to cover at least the rear surface of the optical axis of the light source. And a magnetic field applying means for applying a magnetic field parallel to the film surface of the magnetic fluid film sandwiched by a pair of polarizing plates having different polarization directions. And an amount of light passing through the magnetic fluid dimming device can be changed by variably controlling the magnitude of the magnetic field applied by the magnetic field applying means. apparatus.
JP9440796A 1996-04-16 1996-04-16 Magnetic fluid light control device and lighting fixture with light control device Pending JPH09281455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9440796A JPH09281455A (en) 1996-04-16 1996-04-16 Magnetic fluid light control device and lighting fixture with light control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9440796A JPH09281455A (en) 1996-04-16 1996-04-16 Magnetic fluid light control device and lighting fixture with light control device

Publications (1)

Publication Number Publication Date
JPH09281455A true JPH09281455A (en) 1997-10-31

Family

ID=14109393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9440796A Pending JPH09281455A (en) 1996-04-16 1996-04-16 Magnetic fluid light control device and lighting fixture with light control device

Country Status (1)

Country Link
JP (1) JPH09281455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195395A (en) * 2012-03-22 2013-09-30 Ricoh Co Ltd Shape measuring method and shape measuring device
US11561173B2 (en) 2017-09-29 2023-01-24 Cotton Mouton Diagnostics Limited Magneto-optical method and apparatus for detecting analytes in a liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195395A (en) * 2012-03-22 2013-09-30 Ricoh Co Ltd Shape measuring method and shape measuring device
US11561173B2 (en) 2017-09-29 2023-01-24 Cotton Mouton Diagnostics Limited Magneto-optical method and apparatus for detecting analytes in a liquid

Similar Documents

Publication Publication Date Title
CN107340559B (en) High efficiency and broad band circular polarization switching device and method based on super clever surface
US3752563A (en) Magnetic film stripe domain diffraction
CN112103756B (en) Spin terahertz transmitter with controllable polarization direction
JP2009538516A (en) Extraction of light with a preferred radiation pattern from a light emitting medium
CN111830748B (en) Backlight module and display panel
US11237465B2 (en) Optical module and projector with same
JP2012027326A (en) Suspended particle device and driving method thereof
JPH09281455A (en) Magnetic fluid light control device and lighting fixture with light control device
CN109633973B (en) Array substrate, manufacturing method thereof and display device
Zaman et al. Optoelectronic tweezers with a non-uniform background field
CN207704182U (en) A kind of vibration screen for eliminating laser speckle
KR100345323B1 (en) Composite body comprising nano magnetic material particles
CN107275478B (en) The modulator approach of spin wave in a kind of automatic biasing magnon waveguide
US3531185A (en) Liquid lens optical guide employing neutral particles supported in the liquid
CN103363403A (en) Direct type backlight module and electronic equipment
CN216670419U (en) Movement device suitable for optical adjustment
WO2017140144A1 (en) Dual-way inverting optical clock signal generator on the basis of photonic crystal cross waveguide
Joy et al. Direct-Current High-Intensity Arcs with Non-Rotating Positive Carbons
Mehta et al. Magnetically induced spatial filtering effect with magnetic fluids
TWI448814B (en) Camera module
CN108769860A (en) A kind of magnetic suspension is rechargeable can lighting sound box
JP4972982B2 (en) Polarization control device and polarization operation device
JPS5894136A (en) Magnetic transferring recorder
CN111162163B (en) Construction method of one-dimensional magnetic vortex chain
Gotschall Light Modulation by P-Type Crystals