JPH09281030A - Apparatus for estimating coefficient of friction of road surface - Google Patents

Apparatus for estimating coefficient of friction of road surface

Info

Publication number
JPH09281030A
JPH09281030A JP8120968A JP12096896A JPH09281030A JP H09281030 A JPH09281030 A JP H09281030A JP 8120968 A JP8120968 A JP 8120968A JP 12096896 A JP12096896 A JP 12096896A JP H09281030 A JPH09281030 A JP H09281030A
Authority
JP
Japan
Prior art keywords
steering
road surface
yaw rate
value
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8120968A
Other languages
Japanese (ja)
Other versions
JP3690871B2 (en
Inventor
Nobuo Sugitani
伸夫 杉谷
Yukihiro Fujiwara
幸広 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP12096896A priority Critical patent/JP3690871B2/en
Priority to US08/697,233 priority patent/US5869753A/en
Publication of JPH09281030A publication Critical patent/JPH09281030A/en
Application granted granted Critical
Publication of JP3690871B2 publication Critical patent/JP3690871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the estimation accuracy of a road surface frictional coeffe without bringing about an increase in calculation quantity by estimating the road surface frictional coeff. (μ) based only on yaw rate value at a time when a steering wheel is turned incrementally. SOLUTION: An interface 4 reads respective physical quantities of a steering angle, a tire rotational speed and a real yaw rate to operate a car speed and steering angular velocity and a steering discrimination circuit 6 discriminates a steering direction from the steering angle and the steering angular velocity. For example, when rightward steering is set to a positive direction, a steering angle always becomes a positive code in rightward steering and steering angular velocity is positive when a steering wheel is turned incrementally and becomes negative when turned to be returned. Therefore, in a negative case, return steering is discriminated to to inhibit the identification of a parameter and the previously sampled road surface μ estimate value held by a holding circuit 7 is outputted as a this time value. As a result, trouble such that the road surface μ estimate value becomes high at a time of return turning is eliminated and a true road surface μ is estimated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、操舵角および車速
から求めた標準ヨーレイト値と、ヨーレイトセンサ等で
求めた実ヨーレイト値との比較に基づいて路面の摩擦係
数を推定する路面摩擦係数推定装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a road surface friction coefficient estimating device for estimating a road surface friction coefficient based on a comparison between a standard yaw rate value obtained from a steering angle and a vehicle speed and an actual yaw rate value obtained by a yaw rate sensor or the like. It is about.

【0002】[0002]

【従来の技術】路面の摩擦係数(以下路面μ)の変化に
応じて、同一操舵条件下でのタイヤのコーナリングフォ
ース(またはタイヤのコーナリングパワー)が変化する
ことを利用して、路面μを推定する方法が知られてい
る。特に、本出願人が特願平7−240810号で出願
した、ヨーレイトセンサから得た実ヨーレイトと、その
時の操舵角および車速から算出した高摩擦係数の乾燥路
面(以下高μ路)を走行した際に発生するであろう理論
的な標準ヨーレイト(以下ヨーレイトドライモデル)と
に基づいてパラメータを同定し、路面μの推定を行う手
法は、量産車両に一般的に使用されているセンサ類の出
力値をそのまま利用し得るので、その適用範囲が大きく
期待されている。
2. Description of the Related Art A road surface μ is estimated by utilizing a change in tire cornering force (or tire cornering power) under the same steering conditions in response to a change in road friction coefficient (hereinafter referred to as road surface μ). It is known how to do it. In particular, the present applicant traveled on a dry road surface (hereinafter referred to as high μ road) having a high friction coefficient calculated from the actual yaw rate obtained from the yaw rate sensor and the steering angle and the vehicle speed at that time, which was filed in Japanese Patent Application No. 7-240810. Parameter estimation based on the theoretical standard yaw rate (hereinafter referred to as yaw rate dry model) that may occur when estimating the road surface μ is the output of sensors commonly used in mass-produced vehicles. Since the value can be used as it is, its application range is expected to be large.

【0003】具体的には、高μ路に於いては、図4に示
すように、実ヨーレイト(点線)がヨーレイトドライモ
デル(実線)と概ね等しくなるのに対し、低μ路では図
5に示すように、路面とタイヤとの間の滑りに起因して
ヨーレイトドライモデルに対して実ヨーレイトのゲイン
が低くなり、かつ位相も遅れぎみとなる。このようなヨ
ーレイトドライモデルと実ヨーレイトとの差から路面μ
を推定し得るが、最少の計算量で路面μを推定しようと
いうことから、従来、位相差は計算に加えずに、ゲイン
差を比として路面摩擦係数を推定するためのパラメータ
を同定する方法が考えられていた。
Specifically, as shown in FIG. 4, on the high μ road, the actual yaw rate (dotted line) becomes almost equal to the yaw rate dry model (solid line), while on the low μ road, the actual yaw rate is shown in FIG. As shown, due to the slip between the road surface and the tire, the gain of the actual yaw rate becomes lower than that of the yaw rate dry model, and the phase also becomes delayed. From the difference between the yaw rate dry model and the actual yaw rate, the road surface μ
However, since the road surface μ is estimated with the minimum amount of calculation, conventionally, the method of identifying the parameter for estimating the road surface friction coefficient using the gain difference as a ratio without adding the phase difference to the calculation has been proposed. Was being considered.

【0004】[0004]

【発明が解決しようとする課題】しかるに、上記従来の
手法によると、例えば図6に示したような、低μ路に於
いて比較的速い切り返し操舵を行うような場合には、ヨ
ーレイトドライモデルは主に操舵角から算出しているの
で操舵角の変化に追従して瞬時に減少するが、実ヨーレ
イトは位相遅れを伴っているために切り返し点を過ぎて
も直ちには減少せず、ヨーレイトドライモデルよりも実
ヨーレイトが大きな値となる逆転現象が生じる場合があ
り、また、位相遅れが極端に大きくならない操舵速度が
低い領域であっても、ステアリングホイールを切り増し
ていく時はヨーレイトドライモデルと実ヨーレイトとの
差が拡大していく方向なので路面μの正確な推定値が得
られるが、ステアリングホイールを切り戻し始めると、
実ヨーレイトの位相遅れにより、路面μの推定値がそれ
に伴って実際よりも高くなってしまうという結果になっ
ていた。
However, according to the above-mentioned conventional method, the yaw rate dry model is used when relatively fast reverse steering is performed on a low μ road as shown in FIG. 6, for example. Since it is mainly calculated from the steering angle, it decreases instantaneously following changes in the steering angle, but the actual yaw rate does not decrease immediately after the turning point because it is accompanied by a phase delay. The actual yaw rate may be larger than that of the yaw rate, and even if the steering speed is low where the phase delay does not become extremely large, the actual yaw rate may be larger than that of the yaw rate dry model. An accurate estimate of the road surface μ can be obtained because the difference from the yaw rate is increasing, but when you start turning back the steering wheel,
Due to the phase delay of the actual yaw rate, the estimated value of the road surface μ was higher than it actually was.

【0005】本発明は、このような従来技術の問題点を
解消し、計算量の増大を招くことなく路面μの推定精度
を高めることのできる路面摩擦係数推定装置を提供する
ことを目的に案出されたものである。
An object of the present invention is to solve the problems of the prior art and to provide a road surface friction coefficient estimating device capable of improving the estimation accuracy of the road surface μ without increasing the calculation amount. It was issued.

【0006】[0006]

【課題を解決するための手段】このような目的を果たす
ために、本発明に於いては、その時の操舵状況、即ち舵
角を切り増す状態か、切り戻す状態かを判別し、ステア
リングホイールを戻し始めた時には、切り戻す寸前に得
た路面摩擦係数推定値を保持してこれを出力するものと
した。
In order to achieve such an object, according to the present invention, the steering state at that time, that is, the state of increasing the steering angle or the state of returning the steering angle is determined, and the steering wheel is When starting to return, the road surface friction coefficient estimated value obtained just before turning back is held and output.

【0007】[0007]

【発明の実施の形態】以下に添付の図面を参照して本発
明の構成を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail with reference to the accompanying drawings.

【0008】図1は、本発明に基づく路面摩擦係数推定
装置の概略構成を示している。本装置は、ステアリング
ホイールの操舵角センサ1、タイヤ回転速度センサ2、
並びにヨーレイトセンサ3と、これら各センサの出力値
を入力し、所望のデータ量に変換するための入力インタ
ーフェース4と、入力インターフェース4で処理した各
物理量に基づいて路面μの推定値を演算する路面μ推定
回路5と、現在の操舵状況、即ち舵角を切り増す状態
か、切り戻す状態かを判別する操舵判別回路6と、前回
サンプリングした路面μ推定値を保持する保持回路7
と、保持回路7が保持している前回の路面μ値と、路面
μ推定回路5が算出した今回の路面μ値とを選択的に出
力する推定値切換回路8とからなっている。
FIG. 1 shows a schematic structure of a road surface friction coefficient estimating device according to the present invention. This device is provided with a steering angle sensor 1 for a steering wheel, a tire rotation speed sensor 2,
In addition, the yaw rate sensor 3, an input interface 4 for inputting the output values of these sensors and converting it into a desired data amount, and a road surface for calculating an estimated value of the road surface μ based on each physical quantity processed by the input interface 4 The μ estimation circuit 5, the steering determination circuit 6 that determines the current steering state, that is, whether the steering angle is increased or returned, and the holding circuit 7 that holds the previously estimated road surface μ estimation value.
And the estimated value switching circuit 8 that selectively outputs the previous road surface μ value held by the holding circuit 7 and the current road surface μ value calculated by the road surface μ estimation circuit 5.

【0009】次に本発明の基本的な処理フローを図2を
参照して説明する。先ず操舵角センサ1の出力、タイヤ
回転速度センサ2の出力、並びにヨーレイトセンサ3の
出力から、入力インターフェース4にて操舵角、タイヤ
回転速度、並びに実ヨーレイトの各物理両を読み込む
(ステップ1)。これらの各出力から、車速及び操舵角
速度を演算する(ステップ2)。次いで操舵判別回路6
は、操舵角θと操舵角速度VH とを次式に代入してaを
求める(ステップ3)。 a=θ・VH
Next, a basic processing flow of the present invention will be described with reference to FIG. First, from the output of the steering angle sensor 1, the output of the tire rotation speed sensor 2, and the output of the yaw rate sensor 3, the input interface 4 reads the physical angles of the steering angle, the tire rotation speed, and the actual yaw rate (step 1). The vehicle speed and the steering angular velocity are calculated from these outputs (step 2). Next, the steering discrimination circuit 6
Calculates a by substituting the steering angle θ and the steering angular velocity V H into the following equation (step 3). a = θ ・ V H

【0010】この結果からaの符号により操舵方向を判
別する(ステップ4)。例えば、右転舵を正方向とする
と、右転舵に於いては操舵角θは常に正の符号となり、
操舵角速度VH は切り増す時は正であるが、切り戻す時
は負となる。従って、ここでaの符号が負の場合は戻し
操舵と判定してパラメータの同定を禁止し(ステップ
5)、保持回路7が保持している前回サンプリングした
路面μ推定値を今回の値として出力する(ステップ
6)。
From this result, the steering direction is determined by the sign of a (step 4). For example, if the right turn is in the positive direction, the steering angle θ always has a positive sign in the right turn.
The steering angular velocity V H is positive when the steering is increased, but is negative when the steering is returned. Therefore, if the sign of a is negative here, it is judged to be the return steering and the parameter identification is prohibited (step 5), and the previously sampled road surface μ estimation value held by the holding circuit 7 is output as the current value. (Step 6).

【0011】他方、aの符号が正、即ち切り増している
と判別された場合は、パラメータの同定を行い(ステッ
プ7)、路面μ推定回路が今回算出した推定値を出力し
て前回の値を更新する(ステップ8)。
On the other hand, when it is determined that the sign of a is positive, that is, it is increased, the parameters are identified (step 7), the road surface μ estimation circuit outputs the estimated value calculated this time, and the previous value is output. Is updated (step 8).

【0012】このようにして、図3に2点鎖線で示した
ように、切り戻し操舵の直前の値を保持してこれを出力
するものとすることにより、切り戻し操舵後はヨーレイ
トドライモデル(太線)と実ヨーレイト(点線)との値
が接近・逆転し、この結果、実線で示したような路面μ
推定値が切り戻し時に高くなってしまう不都合が解消さ
れ、実際に即した路面μが出力されるようになる。
In this way, as shown by the chain double-dashed line in FIG. 3, by holding the value immediately before the return steering and outputting this, the yaw rate dry model ( The values of the thick line) and the actual yaw rate (dotted line) approach and reverse, and as a result, the road surface μ as shown by the solid line
The inconvenience that the estimated value becomes high at the time of switching back is solved, and the road surface μ that actually matches is output.

【0013】[0013]

【発明の効果】このように本発明によれば、ステアリン
グホイールを切り増していく時のヨーレイト値のみに基
づいて路面μを推定するので、ステアリングホイールを
戻す際の実ヨーレイトの位相遅れによるヨーレイトドラ
イモデルとの比の接近・逆転現象が無視されることとな
り、路面μの推定値が実際よりも高い値となることが防
止される。また、操舵時のヨーレイトドライモデルと実
ヨーレイトとの比で路面μを推定する推定方法に於いて
は、基本的にこの2つの量が大きいほどS/N比が高く
なり、かつ推定精度も高くなる。従って、ステアリング
ホイールの切れ角が最大でヨーレイトも最大値となる時
点の値を採用することにより、推定精度が高まるので、
路面μ推定値の信頼性をより一層高めることができる。
As described above, according to the present invention, since the road surface μ is estimated based only on the yaw rate value when the steering wheel is increased, the yaw rate drive due to the phase delay of the actual yaw rate when returning the steering wheel is performed. The approach / reversal phenomenon of the ratio with the model is ignored, and the estimated value of the road surface μ is prevented from becoming higher than the actual value. In addition, in the estimation method for estimating the road surface μ by the ratio of the yaw rate dry model and the actual yaw rate during steering, basically, the larger the two amounts, the higher the S / N ratio and the higher the estimation accuracy. Become. Therefore, by adopting the value at the time when the steering wheel has the maximum turning angle and the yaw rate also has the maximum value, the estimation accuracy increases,
The reliability of the road surface μ estimation value can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の概略構成を示すブロック図。FIG. 1 is a block diagram showing a schematic configuration of a device of the present invention.

【図2】本発明装置の処理フロー図。FIG. 2 is a processing flowchart of the apparatus of the present invention.

【図3】μ推定値と実ヨーレイトとヨーレイトドライモ
デルとの比較線図。
FIG. 3 is a comparison diagram of μ estimated value, actual yaw rate, and yaw rate dry model.

【図4】高μ路での実ヨーレイトとヨーレイトドライモ
デルとの比較線図。
FIG. 4 is a comparative diagram of a yaw rate on a high μ road and a yaw rate dry model.

【図5】低μ路での実ヨーレイトとヨーレイトドライモ
デルとの比較線図。
FIG. 5 is a comparison diagram of an actual yaw rate on a low μ road and a yaw rate dry model.

【図6】低μ路で切り返しを行った際の実ヨーレイトと
ヨーレイトドライモデルとの比較線図。
FIG. 6 is a comparison diagram of an actual yaw rate and a yaw rate dry model when switching is performed on a low μ road.

【符号の説明】[Explanation of symbols]

1 操舵角センサ 2 タイヤ回転速度センサ 3 ヨーレイトセンサ 4 入力インターフェース 5 路面μ推定回路 6 操舵判別回路 7 保持回路 8 推定値切換回路 1 Steering Angle Sensor 2 Tire Rotation Speed Sensor 3 Yaw Rate Sensor 4 Input Interface 5 Road Surface μ Estimating Circuit 6 Steering Discriminating Circuit 7 Holding Circuit 8 Estimated Value Switching Circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 車両の実ヨーレイト信号を出力する実ヨ
ーレイト出力手段と、標準タイヤで標準路面を走行した
際に表れることになる標準ヨーレイト信号を出力するヨ
ーレイトモデル出力手段と、少なくとも前記実ヨーレイ
ト信号と前記標準ヨーレイト信号との差から路面摩擦係
数を推定する演算手段とを備える路面摩擦係数推定装置
であって、 ステアリングホイールの操舵状況を判別する操舵判別手
段と、前回算出された路面摩擦係数推定値の保持手段
と、該保持手段の値と今回算出された路面摩擦係数推定
値とを選択して出力する切換手段とを有し、 ステアリングホイールの切り戻し操作が前記操舵判別手
段で判別されると、切り戻す直前に前記保持手段が保持
した値が前記切換手段から出力されることを特徴とする
路面摩擦係数推定装置。
1. A real yaw rate output means for outputting a real yaw rate signal of a vehicle, a yaw rate model output means for outputting a standard yaw rate signal that appears when a vehicle runs on a standard road surface with standard tires, and at least the actual yaw rate signal. And a standard yaw rate signal, the road surface friction coefficient estimating device is provided with a calculating means for estimating a road surface friction coefficient, the steering determining means for determining a steering state of a steering wheel, and the road surface friction coefficient estimation previously calculated. It has a value holding means and a switching means for selecting and outputting the value of the holding means and the road surface friction coefficient estimated value calculated this time, and the steering wheel turning back operation is discriminated by the steering discriminating means. And a value held by the holding means immediately before switching back is output from the switching means. .
JP12096896A 1995-08-25 1996-04-17 Road friction coefficient estimation device Expired - Fee Related JP3690871B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12096896A JP3690871B2 (en) 1996-04-17 1996-04-17 Road friction coefficient estimation device
US08/697,233 US5869753A (en) 1995-08-25 1996-08-21 System for estimating the road surface friction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12096896A JP3690871B2 (en) 1996-04-17 1996-04-17 Road friction coefficient estimation device

Publications (2)

Publication Number Publication Date
JPH09281030A true JPH09281030A (en) 1997-10-31
JP3690871B2 JP3690871B2 (en) 2005-08-31

Family

ID=14799484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12096896A Expired - Fee Related JP3690871B2 (en) 1995-08-25 1996-04-17 Road friction coefficient estimation device

Country Status (1)

Country Link
JP (1) JP3690871B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221943A (en) * 2009-03-25 2010-10-07 Honda Motor Co Ltd Friction condition estimation device
JP2010221740A (en) * 2009-03-19 2010-10-07 Honda Motor Co Ltd Friction condition estimation device
EP2883771A1 (en) * 2013-12-16 2015-06-17 Volvo Car Corporation Vehicle tyre to road friction value estimation arrangement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221740A (en) * 2009-03-19 2010-10-07 Honda Motor Co Ltd Friction condition estimation device
JP2010221943A (en) * 2009-03-25 2010-10-07 Honda Motor Co Ltd Friction condition estimation device
EP2883771A1 (en) * 2013-12-16 2015-06-17 Volvo Car Corporation Vehicle tyre to road friction value estimation arrangement

Also Published As

Publication number Publication date
JP3690871B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
US6802226B2 (en) Physical amount estimating apparatus, road surface friction condition estimating apparatus, steering angle neutral point estimating apparatus and air pressure reduction estimating apparatus
JP2590169B2 (en) Vehicle reference wheel speed calculator
CN111762261B (en) Vehicle steering control method, device and system
JPH0358938B2 (en)
KR950028978A (en) Shift pattern control device and method for steep slope and steep curve
JP3059827B2 (en) Road surface condition determination device
US6260405B1 (en) System for detecting abnormality of yaw rate sensor and lateral acceleration sensor
JP5263068B2 (en) Vehicle slip determination device
JPS6198664A (en) Method and device for controlling brake slip of automobile
JP3690871B2 (en) Road friction coefficient estimation device
JP3204107B2 (en) Yaw rate sensor neutral point estimation device
JP2009119958A (en) Vehicle state estimation unit
JP3196686B2 (en) Road surface friction coefficient estimation device
JP3188323B2 (en) Body speed estimation device
KR100262587B1 (en) Noise detection method of wheel speed sensor
CN114585544B (en) Control device for vehicle anti-lock braking system
JP4258162B2 (en) Method for determining operation of antilock brake system in brake control device, brake control device, four-wheel drive vehicle, program, recording medium
JP2000130206A (en) Evaluating method of automobile driving torque capable of maximum output and device therefor
JP3196685B2 (en) Road surface friction coefficient estimation device
JP3449031B2 (en) Control device for automatic transmission
JP3194763B2 (en) Method and apparatus for estimating vehicle speed in vehicle
JP3417099B2 (en) Road surface friction coefficient state detector
JPH03224860A (en) Target slip rate estimating device
JP2714864B2 (en) Control method of electric power steering device
JPH09311036A (en) Detector for steering angle for vehicle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees