JPH09281003A - Apparatus for measuring phase matter - Google Patents

Apparatus for measuring phase matter

Info

Publication number
JPH09281003A
JPH09281003A JP8087771A JP8777196A JPH09281003A JP H09281003 A JPH09281003 A JP H09281003A JP 8087771 A JP8087771 A JP 8087771A JP 8777196 A JP8777196 A JP 8777196A JP H09281003 A JPH09281003 A JP H09281003A
Authority
JP
Japan
Prior art keywords
wave
waves
test
beam splitter
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8087771A
Other languages
Japanese (ja)
Other versions
JP3441292B2 (en
Inventor
Tomoko Nakase
知子 仲瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP08777196A priority Critical patent/JP3441292B2/en
Publication of JPH09281003A publication Critical patent/JPH09281003A/en
Application granted granted Critical
Publication of JP3441292B2 publication Critical patent/JP3441292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable measurement of high accuracy and high resolving power even if the refractive index difference of phase matter is large by simultaneously measuring Mach-Zehnder interference and shearing interference by the coherence light from the same light source and to reduce the disturbance of a transmission wave surface by optical elements by reducing the number of optical elements. SOLUTION: The laser beam emitted from a laser beam source 1 is separated into reference waves (a) and waves (b) to be inspected by a beam splitter BS1 and the waves (b) to be inspected pass through matter A to be inspected to be split into transmitted waves and reflecting waves by the BS2. The reflecting waves are superposed on the reference waves (a) passed through a minutely displaceable high reflecting mirror 9 in a BS3 to be measured as Mach-Zehnder interference by a detector 15. The transmitted waves are split in light path by a shearing generating part 80 to be measured as shearing interference by a detector 75. If the BS1 and the BS3 are replaced with polarizing beam splitters, interference contrast or the like is further enhanced. Computer tomography analysis by the rotation of waves to be inspected is also possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学素子や液体、
気体等の位相物体の測定装置に関するもので、特に、干
渉縞の解析により光学レンズその他の光学素子の屈折率
分布の測定に適したものである。
TECHNICAL FIELD The present invention relates to an optical element, a liquid,
The present invention relates to a measuring device for a phase object such as gas, and is particularly suitable for measuring the refractive index distribution of an optical lens or other optical element by analyzing interference fringes.

【0002】[0002]

【従来の技術】近年、レーザプリンタ、カメラなどの光
学機器に使用される光学レンズその他の光学素子とし
て、プラスチック材料による成形品が普及している。こ
のプラスチック成形レンズは、ガラス研磨レンズに比し
て非球面レンズの製作性に優れ、安価であるが、製造上
の屈折率の分布が不安定で、レンズ内部に不均一性を生
じることが多い。レンズ内部の屈折率の不均一性は、光
学特性に大きく影響を及ぼし、画質、解像度の劣化やボ
ケといった原因につながる。このようなことから、光学
レンズ内部の屈折率の分布を高精度に測定し、光学レン
ズの均質性を評価する必要がある。
2. Description of the Related Art In recent years, molded articles made of plastic materials have become popular as optical lenses and other optical elements used in optical devices such as laser printers and cameras. This plastic molded lens is superior to an aspherical lens in terms of manufacturability and is less expensive than a glass-polished lens, but the distribution of the refractive index during manufacture is unstable, and unevenness often occurs inside the lens. . The non-uniformity of the refractive index inside the lens greatly affects the optical characteristics, leading to deterioration of image quality, resolution, and blurring. For this reason, it is necessary to measure the distribution of the refractive index inside the optical lens with high accuracy and evaluate the homogeneity of the optical lens.

【0003】光学レンズの屈折率を測定する方法として
は、精密示差屈折計などを使用してVブロック法などに
より屈折角を計測して屈折率を求める方法や、トワイマ
ン・グリーン干渉計などの二光束干渉計を使用して干渉
縞より屈折率を測定する方法などがあり、また、光学的
均質性の測定方法として、フィゾ干渉計、マハツェンダ
干渉計などの二光束干渉計を使用し、干渉縞の解析より
透過波面を測定し、屈折率分布から光学的均質性を求め
る方法が知られている。
As a method for measuring the refractive index of an optical lens, there is a method such as using a precision differential refractometer to obtain the refractive index by measuring the refraction angle by the V-block method or the like, or a Twyman-Green interferometer or the like. There is a method of measuring the refractive index from the interference fringes using a light flux interferometer, and as a method of measuring optical homogeneity, a two-beam interferometer such as a Fizeau interferometer or a Maha-Zehnder interferometer is used. A method is known in which the transmitted wavefront is measured by the analysis of 1 and the optical homogeneity is obtained from the refractive index distribution.

【0004】しかしながら、上述の何れの方法において
も、被検物、すなわち測定対象である光学素子を所定の
形状に高精度に加工する必要があり、測定対象である光
学素子を破壊しなければならない。また、透過波面より
求められる屈折率分布は光路進行方向に積算された平均
値となり、3次元空間的な屈折率分布を測定することは
できない。よって、屈折率の不均一部分を3次元空間的
に特定することができない。
However, in any of the above-mentioned methods, the object to be measured, that is, the optical element to be measured must be processed into a predetermined shape with high precision, and the optical element to be measured must be destroyed. . Further, the refractive index distribution obtained from the transmitted wavefront is an average value integrated in the traveling direction of the optical path, and the three-dimensional spatial refractive index distribution cannot be measured. Therefore, it is not possible to specify the non-uniform portion of the refractive index three-dimensionally.

【0005】そこで、本出願人は、光学素子の屈折率分
布を、形状にかかわらず、非破壊で、3次元空間的な屈
折率分布として効率よく高精度に測定することができ、
屈折率の不均一部分を3次元空間的に特定することが可
能な屈折率分布の測定方法およびその装置を開発した。
これは、同一光源からの可干渉光を用い、これを基準と
なる参照波と、屈折率がほぼ同一の試液中に浸した測定
対象の光学素子よりなる被検物を透過する被検波とに分
割し、参照波と被検波との重畳による干渉縞像を形成
し、被検物を試液中に浸した状態にて被検波の光軸に対
して直交する軸線周りに回転させ、少なくとも二つの回
転角位置のそれぞれにて上記干渉縞の解析により透過波
面を測定し、この複数方向からの透過波面の測定結果か
ら光学素子の屈折率分布を測定することを特徴としてい
る。
Therefore, the applicant of the present invention can measure the refractive index distribution of an optical element efficiently as a non-destructive three-dimensional spatial refractive index distribution regardless of the shape with high accuracy.
We have developed a refractive index distribution measuring method and device that can spatially identify a non-uniform portion of the refractive index.
This uses coherent light from the same light source, and uses this as a reference wave and a test wave that passes through a test object consisting of an optical element to be measured that is dipped in a test solution with almost the same refractive index. Divide and form an interference fringe image by superimposing the reference wave and the test wave, and rotate the sample around the axis orthogonal to the optical axis of the test wave while the sample is immersed in the test solution. The transmission wavefront is measured by analyzing the interference fringes at each rotation angle position, and the refractive index distribution of the optical element is measured from the measurement results of the transmission wavefront from a plurality of directions.

【0006】[0006]

【発明が解決しようとする課題】本出願人による上記光
学素子の屈折率分布の測定方法および装置によれば、屈
折率差がわずかに生じている場合でも高精度に計測が可
能であるという利点を有している。
According to the method and apparatus for measuring the refractive index distribution of the optical element by the applicant of the present invention, it is possible to measure with high accuracy even if there is a slight difference in refractive index. have.

【0007】本発明は、上記光学素子の屈折率分布の測
定方法および装置の利点に加えて、光学素子の屈折率差
が大きい場合でも、高精度にかつ高分解能で測定するこ
とが可能であり、かつ、光学素子数を少なくすることに
より、素子自身による透過波面の乱れの影響を小さくす
ることが可能な位相物体の測定装置を提供することを目
的とする。
In addition to the advantages of the above-described method and apparatus for measuring the refractive index distribution of an optical element, the present invention enables high-precision and high-resolution measurement even when the refractive index difference between optical elements is large. It is also an object of the present invention to provide a phase object measuring apparatus capable of reducing the influence of disturbance of a transmitted wave front due to the elements themselves by reducing the number of optical elements.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
同一光源からの可干渉光を用いて、参照波と被検波とに
分割し、参照波と被検物を透過または反射した被検波と
を再び重畳する干渉計と、重畳する前に被検波を分割す
る手段を設け、その分割した一方の波面を横ずらしして
重畳し干渉縞を形成する干渉計とを用いた2種類の干渉
計測が可能であることを特徴とする。
According to the first aspect of the present invention,
Using coherent light from the same light source, the reference wave and the test wave are split, and the interferometer that superimposes the reference wave and the test wave that has transmitted or reflected the test object again, and the test wave before superimposing It is characterized in that it is possible to perform two types of interferometry using a dividing means and an interferometer that forms one of the divided wavefronts by laterally shifting and superposing them.

【0009】請求項2記載の発明は、請求項1記載の発
明において、参照波と被検物を透過または反射する被検
波とに分割する偏光ビームスプリッタと、被検波を二分
割するビームスプリッタ又はハーフミラーと、一方の参
照波と被検波を重畳して干渉縞を形成する偏光ビームス
プリッタと、もう一方の被検波を、わずかにずらして重
畳して干渉縞を形成する手段を有することを特徴とす
る。
According to a second aspect of the present invention, in the first aspect of the invention, a polarization beam splitter that splits the reference wave and a test wave that transmits or reflects the test object, and a beam splitter that splits the test wave in two, or A half mirror, a polarization beam splitter that superimposes one reference wave and a test wave to form an interference fringe, and a means that forms another interference fringe by slightly shifting the other test wave And

【0010】請求項3記載の発明は、請求項1記載の発
明において、被検波を回転させながら次々に透過波面を
測定し、CT(コンピュータトモグラフィ)解析を用い
て再構成することを特徴とする。
According to a third aspect of the present invention, in the first aspect of the invention, the transmitted wave front is measured one after another while rotating the wave to be detected, and reconstructed using CT (Computer Tomography) analysis. To do.

【0011】[0011]

【発明の実施の形態】以下、図面を参照しながら本発明
にかかる位相物体の測定装置の実施の形態について説明
する。図1に示す実施の形態は、請求項1記載の発明に
対応するもので、マハツェンダ干渉計とシェアリング干
渉計の組み合わせで構成されている。図1に示す測定装
置は、レーザー光を図において左右方向(x方向)に出
射するレーザ光源1と、ビームエキスパンダ3と、光束
分離用のビームスプリッタBS1と、このビームスプリ
ッタBS1でy方向に反射された光束をx方向に反射す
る高反射ミラー9と、ビームスプリッタBS1を透過
し、かつ、位相物体からなる被検物Aを透過し又は反射
した光束を二分割するビームスプリッタBS2と、この
ビームスプリッタBS2でy方向に反射された光束と高
反射ミラー9からの光束とを重畳するビームスプリッタ
BS3と、重畳された光束を収束させる結像レンズ13
と、この結像レンズ13によって受光面に像が結ばれる
CCDなどのエリアイメージセンサによる干渉縞検出器
15とを有する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a phase object measuring apparatus according to the present invention will be described below with reference to the drawings. The embodiment shown in FIG. 1 corresponds to the invention described in claim 1, and is configured by a combination of a Maha-Zehnder interferometer and a sharing interferometer. The measuring apparatus shown in FIG. 1 includes a laser light source 1 that emits laser light in the left-right direction (x direction) in the figure, a beam expander 3, a beam splitter BS1 for separating a light beam, and a beam splitter BS1 in the y direction. A high-reflecting mirror 9 that reflects the reflected light flux in the x direction, a beam splitter BS2 that splits the light flux that is transmitted through the beam splitter BS1 and that is transmitted or reflected by the inspection object A, which is a phase object, into two parts. A beam splitter BS3 that superimposes the light flux reflected by the beam splitter BS2 in the y direction and the light flux from the high-reflection mirror 9 and an imaging lens 13 that converges the superposed light flux.
And an interference fringe detector 15 by an area image sensor such as a CCD whose image is formed on the light receiving surface by the imaging lens 13.

【0012】さらに、上記ビームスプリッタBS2を透
過した他方の光束をy方向に反射させる2枚の平行平板
81、82からなるシェアリング発生部80と、このシ
ェアリング発生部80からの光束を収束させる結像レン
ズ73と、この結像レンズ73によって受光面に像が結
ばれるCCDなどのエリアイメージセンサによる干渉縞
検出器75とを有してなる。
Further, a shearing generator 80 composed of two parallel flat plates 81 and 82 for reflecting the other light flux transmitted through the beam splitter BS2 in the y direction and a light flux from the shearing generator 80 are converged. It has an image forming lens 73 and an interference fringe detector 75 by an area image sensor such as a CCD whose image is formed on the light receiving surface by the image forming lens 73.

【0013】レーザ光源1より出射される可干渉光とし
てのレーザ光は、ビームエキスパンダ3によって光束径
を拡大され、ビームスプリッタBS1によって図の下方
y方向に反射される参照波aと、上記ビームスプリッタ
BS1を直進する被検波bとに分離される。上記参照波
aは、高反射ミラー9により図の右方x方向に反射さ
れ、被検物Aを透過することなくビームスプリッタBS
2に至る。上記被検波bは、被検物Aを透過したあとビ
ームスプリッタBS2で二分割され、ビームスプリッタ
BS2で図の下方に直角に反射された光束は上記ビーム
スプリッタBS3に至る。
The laser beam as the coherent light emitted from the laser light source 1 has a beam diameter expanded by the beam expander 3 and is reflected by the beam splitter BS1 in the downward y direction in the figure, and the above-mentioned beam. The splitter BS1 is separated into a wave b to be detected which goes straight. The reference wave a is reflected by the high-reflecting mirror 9 in the right x direction in the drawing, and does not pass through the object A to be measured by the beam splitter BS.
Leads to 2. The test wave b passes through the test object A and is then split into two by the beam splitter BS2. The light beam reflected by the beam splitter BS2 at a right angle in the lower part of the drawing reaches the beam splitter BS3.

【0014】上記高反射ミラー9は、ピエゾ素子などか
らなる電気−変位変換素子19によって支持され、位相
シフト法による干渉縞解析を行うために、被検波bの光
路長を波長オーダーで可変設定すべく光路方向に微動変
位可能に配置されている。ビームスプリッタBS2で反
射された上記被検波bはビームスプリッタBS3で参照
波aと重畳され、結像レンズ13を通過後、検出器15
上に干渉縞を形成する。この干渉縞を形成する光学系は
マハツェンダ干渉計を構成している。
The high-reflection mirror 9 is supported by an electric-displacement conversion element 19 composed of a piezo element or the like, and the optical path length of the test wave b is variably set in wavelength order in order to perform interference fringe analysis by the phase shift method. Therefore, it is arranged so that it can be finely displaced in the optical path direction. The test wave b reflected by the beam splitter BS2 is superposed on the reference wave a by the beam splitter BS3, passes through the imaging lens 13, and then the detector 15
An interference fringe is formed thereon. The optical system that forms the interference fringes constitutes a Maha-Zehnder interferometer.

【0015】一方、上記ビームスプリッタBS2を透過
した被検波は、ある一定の間隔をあけて配置された前記
2枚の平行平板81、82によって反射される。この平
行平板81、82の内側の2面は面精度の高い研磨面で
あり、外側の2面は無反射面となっている。この構成に
より平行平板81、82の内側の面によって光路が分割
され、内側の2面の距離に比例して横シフトした2つの
被検波が干渉するシェアリング干渉計となっている。干
渉縞に応じた強度信号は、結像レンズ73によって収束
され、検出器75に取り込まれる。各検出器15、75
は、リニアCCDや2次元CCDといったアレイ状のセ
ンサを用いる。また、参照波a側の光路に減衰板を用い
るとコントラストの良い干渉縞を得やすい利点がある。
On the other hand, the test wave transmitted through the beam splitter BS2 is reflected by the two parallel flat plates 81 and 82 arranged at a certain fixed interval. The inner two surfaces of the parallel flat plates 81 and 82 are polished surfaces with high surface accuracy, and the outer two surfaces are non-reflective surfaces. With this configuration, the optical paths are divided by the inner surfaces of the parallel plates 81 and 82, and the shearing interferometer interferes with two test waves laterally shifted in proportion to the distance between the two inner surfaces. The intensity signal corresponding to the interference fringes is converged by the imaging lens 73 and taken into the detector 75. Each detector 15, 75
Uses an array sensor such as a linear CCD or a two-dimensional CCD. Further, the use of an attenuating plate in the optical path on the side of the reference wave a has an advantage that it is easy to obtain an interference fringe with good contrast.

【0016】図1に示す実施の形態によれば、マハツェ
ンダ干渉とシェアリング干渉の同時計測が可能である。
波長をλとしたとき透過波面量が数λ程度以下というよ
うに比較的小さい位相物体を計測する場合は、検出器1
5で位相シフト法により縞解析を行う。透過波面量が大
きい位相物体を計測する場合には干渉縞の本数が多く検
出器15の分解能を越えてしまうことがある。この場合
は、シェアリング干渉により解析する。シェアリング干
渉は被検波b同士の干渉であるため感度を落とす効果が
ある。すなわち検出器75上での透過波面量は小さくな
り、検出器15では縞解析できない位相物体であっても
計測可能となる。
According to the embodiment shown in FIG. 1, it is possible to simultaneously measure Maha-Zehnder interference and sharing interference.
When measuring a relatively small phase object such that the amount of transmitted wavefront is several λ or less when the wavelength is λ, the detector 1
In step 5, fringe analysis is performed by the phase shift method. When measuring a phase object having a large amount of transmitted wavefront, the number of interference fringes is large and the resolution of the detector 15 may be exceeded. In this case, analysis is performed by sharing interference. Since the sharing interference is the interference between the waves to be detected b, it has the effect of reducing the sensitivity. That is, the amount of transmitted wavefront on the detector 75 becomes small, and even a phase object that cannot be fringe-analyzed by the detector 15 can be measured.

【0017】次に、請求項2記載の発明に対応した実施
の形態について図2を参照しながら説明する。図2に示
す実施の形態は、図1に示す実施の形態におけるビーム
スプリッタBS1を偏光ビームスプリッタPBS1に置
き換え、ビームスプリッタBS3を偏光ビームスプリッ
タPBS2に置き換え、また、ビームスプリッタBS3
と結像レンズ13との間に偏光子51を配置した点が図
1に示す実施の形態と異なる点である。図2において、
ビームエキスパンダ3によって広げられたレーザ光は偏
光ビームスプリッタPBS1によって参照波aと被検波
bの比がほぼ2対1になるように直線偏光面の入射角度
が調整されている。偏光ビームスプリッタPBS1で反
射された光は参照波aとなり、その光路を波長オーダで
可変設定可能な駆動素子(例えばピエゾ素子)19がつ
いたミラー9で反射され、偏光ビームスプリッタPBS
2に至る。
Next, an embodiment corresponding to the invention described in claim 2 will be described with reference to FIG. In the embodiment shown in FIG. 2, the beam splitter BS1 in the embodiment shown in FIG. 1 is replaced with a polarization beam splitter PBS1, the beam splitter BS3 is replaced with a polarization beam splitter PBS2, and the beam splitter BS3 is used.
The difference from the embodiment shown in FIG. 1 lies in that a polarizer 51 is arranged between the lens and the imaging lens 13. In FIG.
The incident angle of the linear polarization plane of the laser beam expanded by the beam expander 3 is adjusted by the polarization beam splitter PBS1 so that the ratio of the reference wave a to the test wave b becomes approximately 2: 1. The light reflected by the polarization beam splitter PBS1 becomes a reference wave a, which is reflected by a mirror 9 having a drive element (for example, a piezo element) 19 whose optical path can be variably set in the wavelength order, and the polarization beam splitter PBS.
Leads to 2.

【0018】一方、偏光ビームスプリッタPBS1を透
過した光は被検物Aを透過しビームスプリッタBS2に
よって二分割される。このBS2で反射された被検波b
と、上記参照波aは偏光ビームスプリッタPBS2で重
ね合わされる。このとき被検波aの光量と参照波bの光
量はほぼ1対1の関係にある。また、偏光面と偏光ビー
ムスプリッタPBS1、PBS2の効果で光量のロスな
く参照波aと被検波bが偏光子51側に達する。参照波
aと被検波bは偏光子51と結像レンズ13を通過後検
出器15上に干渉縞を形成する。一方、ビームスプリッ
タBS2を透過した被検波bはシェアリング干渉を起こ
し、結像レンズ73を経て検出器75上に受光される。
各検出器15、75上の干渉縞に応じた強度信号は、図
示されないA−D変換器でデジタル信号に変換され演算
装置で処理される。
On the other hand, the light transmitted through the polarization beam splitter PBS1 passes through the object A to be inspected and is split into two by the beam splitter BS2. Test wave b reflected by this BS2
And the reference wave a is superposed by the polarization beam splitter PBS2. At this time, the light quantity of the test wave a and the light quantity of the reference wave b have a substantially one-to-one relationship. Further, the reference wave a and the test wave b reach the polarizer 51 side without loss of light quantity due to the effects of the polarization plane and the polarization beam splitters PBS1 and PBS2. The reference wave a and the test wave b form an interference fringe on the detector 15 after passing through the polarizer 51 and the imaging lens 13. On the other hand, the test wave b that has passed through the beam splitter BS2 causes sharing interference, and is received by the detector 75 via the imaging lens 73.
The intensity signal corresponding to the interference fringes on the detectors 15 and 75 is converted into a digital signal by an AD converter (not shown) and processed by the arithmetic unit.

【0019】図2に示す実施の形態によれば、マハツェ
ンダ干渉とシェアリング干渉の同時計測が可能である。
透過波面量が比較的小さい位相物体を計測する場合は、
検出器15で位相シフト法により縞解析を行う。透過波
面量が大きい位相物体を計測する場合は、シェアリング
干渉により解析する。前述のように、シェアリング干渉
は被検波b同士の干渉であるため感度を落とす効果があ
る。すなわち検出器75上での透過波面量は小さくな
り、検出器15では縞解析できない位相物体であっても
計測可能となる。
According to the embodiment shown in FIG. 2, it is possible to simultaneously measure Maha-Zehnder interference and sharing interference.
When measuring a phase object with a relatively small amount of transmitted wave front,
The detector 15 performs fringe analysis by the phase shift method. When measuring a phase object with a large amount of transmitted wave front, analysis is performed by shearing interference. As described above, the sharing interference is an interference between the waves b to be detected and therefore has an effect of reducing the sensitivity. That is, the amount of transmitted wavefront on the detector 75 becomes small, and even a phase object that cannot be fringe-analyzed by the detector 15 can be measured.

【0020】次に、請求項3記載の発明に対応した実施
の形態について図3を参照しながら説明する。図3に示
す実施の形態は、CT解析を用いて計測するようにした
もので、図2に示す実施の形態における被検物Aを、図
3に示すように、屈折率が被検物Aとほぼ一致した試液
Bを満たした容器21中に浸したものである。光束の入
射窓25及び出射窓27は面精度の良いオプティカルフ
ラット29、31を用いて密閉している。被検物Aは光
軸に対して垂直、図3において紙面に垂直な回転軸を持
つ被検台23上に設置されており、容器21は固定の状
態で被検物Aが上記回転軸を中心に回転可能な構造にな
っている。その他の構成は図2に示す実施の形態と同じ
である。
Next, an embodiment corresponding to the invention described in claim 3 will be described with reference to FIG. The embodiment shown in FIG. 3 is designed to be measured using CT analysis. As shown in FIG. 3, the object A to be measured in the embodiment shown in FIG. It is immersed in the container 21 filled with the test solution B which is almost the same as the above. The incident window 25 and the exit window 27 for the light flux are hermetically sealed using optical flats 29 and 31 having good surface accuracy. The inspection object A is installed on an inspection table 23 having a rotation axis perpendicular to the optical axis, that is, perpendicular to the paper surface in FIG. 3, and the container 21 is fixed and the inspection object A has the above rotation axis. It has a rotatable structure. Other configurations are the same as those of the embodiment shown in FIG.

【0021】ビームエキスパンダ3によって広げられた
レーザ光は偏光ビームスプリッタPBS1によって、参
照波aと、被検物を透過する被検波bとなる。参照波a
は光路が波長オーダで可変設定可能なピエゾ素子等から
なる駆動素子19のついたミラー9で反射され、偏光ビ
ームスプリッタPBS2に至る。被検波bは被検物Aを
透過した後ビームスプリッタBS2によって二分割され
る。ビームスプリッタBS2で反射された光束は、偏光
ビームスプリッタPBS2で参照波aと重ね合わされ、
結像レンズ13を通過後検出器15上に干渉縞を形成す
る。よって、この光学系はマハツェンダ干渉計を構成し
ている。一方、ビームスプリッタBS2を透過した被検
波bは、ある一定の間隔をあけて配置された2枚の平行
平板81、82からなるシェアリング発生部80で反射
され、この平行平板81、82の内側の2面の距離に比
例して横シフトした2つの被検波が干渉する。よって、
この光学系はシェアリング干渉計を構成している。
The laser beam expanded by the beam expander 3 becomes the reference wave a and the test wave b which passes through the test object by the polarization beam splitter PBS1. Reference wave a
Is reflected by a mirror 9 having a drive element 19 such as a piezo element whose optical path can be variably set in the wavelength order, and reaches the polarization beam splitter PBS2. The test wave b is divided into two by the beam splitter BS2 after passing through the test object A. The light beam reflected by the beam splitter BS2 is superimposed on the reference wave a by the polarization beam splitter PBS2,
After passing through the imaging lens 13, interference fringes are formed on the detector 15. Therefore, this optical system constitutes a Maha-Zehnder interferometer. On the other hand, the test wave b that has passed through the beam splitter BS2 is reflected by the shearing generator 80 composed of two parallel flat plates 81 and 82 arranged at a certain interval, and the inside of the parallel flat plates 81 and 82 is reflected. Two test waves laterally shifted in proportion to the distance between the two surfaces interfere with each other. Therefore,
This optical system constitutes a sharing interferometer.

【0022】図3に示す実施の形態では、あらかじめ被
検物Aを被検台23にセットしない状態で透過波面を測
定することにより、装置自身の定常的な誤差成分を排除
する。次に、被検物Aを被検台23にセットし透過波面
を測定する。このとき被検物Aの屈折率が完全に均一で
試液の屈折率と等しい場合、縞解析結果は0となる。し
かし、被検物が試液の屈折率よりわずかにずれている場
合、以下の関係式が成り立つ。 φ(y)=(2π/λ)∫Δn(x,y)dx ただし φ(y):透過波面(rad) Δn(x,y):被検物と試液との屈折率差 λ:レーザ光の波長 である。
In the embodiment shown in FIG. 3, the transmitted wavefront is measured in a state where the object A to be inspected is not set on the table 23 to be inspected in advance, thereby eliminating the steady error component of the apparatus itself. Next, the inspection object A is set on the inspection table 23 and the transmitted wave front is measured. At this time, when the refractive index of the test object A is completely uniform and equal to the refractive index of the test solution, the fringe analysis result is 0. However, when the sample is slightly deviated from the refractive index of the test solution, the following relational expression holds. φ (y) = (2π / λ) ∫Δn (x, y) dx where φ (y) is the transmitted wavefront (rad) Δn (x, y) is the refractive index difference between the sample and the test solution λ is the laser beam Is the wavelength of.

【0023】屈折率分布が一様でない被検物に光を透過
し、検出器上に生じた干渉縞を取り込み縞解析を行うこ
とで、得られた透過波面から屈折率分布を求めることが
できる。しかし、一度の測定で得られる結果は、被検物
Aの厚み方向(x方向)に積算された透過波面である。
従って不均一部分の空間的な位置を決定するためには被
検物Aを回転させ、同様の縞解析を複数回行う必要があ
る。すなわち被検物Aを干渉計の光軸に対して相対的に
Z軸の回りに回転させ、入射方向に対して180゜(あ
るいは360゜)にわたる範囲で測定し、コンピュータ
上で再合成する。これにより、被検物Aの3次元屈折率
分布を測定することができる。
The refractive index distribution can be obtained from the obtained transmitted wave front by transmitting light to an object having a non-uniform refractive index distribution, capturing the interference fringes generated on the detector, and performing fringe analysis. . However, the result obtained by one measurement is the transmitted wavefront accumulated in the thickness direction (x direction) of the test object A.
Therefore, in order to determine the spatial position of the non-uniform portion, it is necessary to rotate the test object A and perform the same fringe analysis a plurality of times. That is, the inspection object A is rotated around the Z axis relative to the optical axis of the interferometer, measured in a range of 180 ° (or 360 °) with respect to the incident direction, and recombined on a computer. Thereby, the three-dimensional refractive index distribution of the test object A can be measured.

【0024】コンピュータ上の処理方法としては、X線
CT(Computed Tomography)解析
と同様の手法を用いる。CT解析の手法の一例としてフ
ーリエ変換法があり、その演算の手順を図4に、フーリ
エ変換法の概念を図5に示す。図4、図5において、角
度φの方向から入射した透過波面データP(y,φ)
(0≦φ<2π(またはπでも可))を1次元フーリエ
変換する。フーリエ変換された各断面の極座標のデータ
を直交座標に変換した後、2次元逆フーリエ変換を施す
ことにより、被検物の2次元屈折率分布を再構成するこ
とができる。この再構成された2次元屈折率分布をディ
スプレイ等に出力させて表示することにより、あるいは
適宜の出力手段を用いて出力させることにより、被検物
の屈折率分布を測定することができる。
As the processing method on the computer, the same method as the X-ray CT (Computed Tomography) analysis is used. There is a Fourier transform method as an example of a CT analysis method, and the calculation procedure is shown in FIG. 4 and the concept of the Fourier transform method is shown in FIG. 4 and 5, the transmitted wavefront data P (y, φ) incident from the direction of the angle φ
One-dimensional Fourier transform of (0 ≦ φ <2π (or π is acceptable)) is performed. The two-dimensional refractive index distribution of the test object can be reconstructed by converting the Fourier-transformed polar coordinate data of each section into rectangular coordinates and then performing the two-dimensional inverse Fourier transform. The refractive index distribution of the test object can be measured by outputting and displaying the reconstructed two-dimensional refractive index distribution on a display or the like, or by using an appropriate output means.

【0025】この測定装置では、前記二つの検出器1
5、75を用いたマハツェンダ干渉計とシェアリング干
渉計による同時計測が可能である。干渉縞の本数が少な
い場合は検出器15で位相シフト法により計測する。干
渉縞の本数が多く検出器15の分解能を越えている場合
には、検出器75を用いてシェアリング干渉により解析
する。2つの干渉計を組み合わせることで屈折率差の大
きい被検物を高分解能に計測することができる。
In this measuring device, the two detectors 1
Simultaneous measurement is possible with the Maha-Zehnder interferometer using 5,75 and the sharing interferometer. When the number of interference fringes is small, the detector 15 measures by the phase shift method. When the number of interference fringes is large and exceeds the resolution of the detector 15, the detector 75 is used to analyze by sharing interference. By combining two interferometers, it is possible to measure an object with a large difference in refractive index with high resolution.

【0026】なお、図1に示すビームスプリッタBS
1、図1、図2、図3に示すビームスプリッタBS2
は、それぞれ半透過プリズムで構成されているが、これ
に代えてハーフミラーで構成しても差し支えない。
The beam splitter BS shown in FIG.
Beam splitter BS2 shown in FIG. 1, FIG. 1, FIG. 2 and FIG.
Are each formed of a semi-transmissive prism, but a half mirror may be used instead.

【0027】[0027]

【発明の効果】請求項1記載の発明によれば、同一光源
からの可干渉光を用いて、参照波と被検波とに分割し、
参照波と被検物を透過または反射した被検波とを再び重
畳するシェアリング干渉計による計測と、重畳する前に
被検波を分割する手段を設け、その分割した一方の波面
を横ずらしして重畳し、干渉縞を形成するマハツェンダ
干渉計による計測の2種類の干渉計測を同時に行うこと
を可能にしたため、1つの装置で高分解能かつ高ダイナ
ミックレンジの計測が可能となり、屈折率差が大きい場
合でも屈折率分布の測定が可能となった。また光学素子
数が少ないため光学素子による波面の乱れが小さく精度
の高い計測が可能になる利点もある。
According to the first aspect of the invention, the coherent light from the same light source is used to split the reference wave and the test wave,
Measurement by a sharing interferometer that re-superimposes the reference wave and the test wave transmitted or reflected by the test object, and a means for dividing the test wave before superimposing is provided, and one of the divided wavefronts is laid sideways. When two types of interferometric measurement, that is, a measurement with a Maha-Zehnder interferometer that superimposes and forms interference fringes, can be performed at the same time, high resolution and high dynamic range measurement can be performed with one device, and when the refractive index difference is large However, it became possible to measure the refractive index distribution. Further, since the number of optical elements is small, there is an advantage that the disturbance of the wavefront due to the optical elements is small and highly accurate measurement can be performed.

【0028】請求項2記載の発明によれば、請求項1記
載の発明において、参照波と被検波とに分割するビーム
スプリッタを偏光ビームスプリッタとし、一方の参照波
と被検波を重畳して干渉縞を形成するビームスプリッタ
を偏光ビームスプリッタとしたため、参照波と被検波の
分割比を適正量に調整することができ、非常にコントラ
ストの良い干渉縞を容易に得ることができる。また、光
量のロスが小さく、光利用効率が高くなる利点もある。
According to the invention described in claim 2, in the invention described in claim 1, the beam splitter for dividing the reference wave and the detection wave is a polarization beam splitter, and one reference wave and the detection wave are superposed to cause interference. Since the beam splitter that forms the fringe is a polarization beam splitter, the split ratio between the reference wave and the test wave can be adjusted to an appropriate amount, and an interference fringe with very good contrast can be easily obtained. There is also an advantage that the loss of light amount is small and the light utilization efficiency is high.

【0029】請求項3記載の発明によれば、請求項1記
載の発明において、被検波を回転させながら次々に透過
波面を測定し、CT解析を用いて再構成するようにした
ため、被検物の屈折率分布を容易に測定することができ
る。
According to the invention of claim 3, in the invention of claim 1, the transmitted wave front is measured one after another while rotating the wave to be inspected, and reconstructed using CT analysis. The refractive index distribution of can be easily measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる位相物体の測定装置の実施の形
態を示す光学配置図である。
FIG. 1 is an optical layout diagram showing an embodiment of a phase object measuring apparatus according to the present invention.

【図2】本発明にかかる位相物体の測定装置の別の実施
の形態を示す光学配置図である。
FIG. 2 is an optical layout diagram showing another embodiment of the phase object measuring apparatus according to the present invention.

【図3】本発明にかかる位相物体の測定装置のさらに別
の実施の形態を示す光学配置図である。
FIG. 3 is an optical layout diagram showing still another embodiment of the phase object measuring apparatus according to the present invention.

【図4】本発明に適用可能なCT解析法の例を示すフロ
ーチャートである。
FIG. 4 is a flowchart showing an example of a CT analysis method applicable to the present invention.

【図5】同上CT解析法の概念図である。FIG. 5 is a conceptual diagram of the same CT analysis method as above.

【符号の説明】[Explanation of symbols]

1 光源 a 参照波 b 被検波 A 被検物 BS1 ビームスプリッタ BS2 ビームスプリッタ BS3 ビームスプリッタ PBS1 偏光ビームスプリッタ PBS2 偏光ビームスプリッタ 15 検出器 75 検出器 80 シェアリング発生部 1 light source a reference wave b test wave A test object BS1 beam splitter BS2 beam splitter BS3 beam splitter PBS1 polarization beam splitter PBS2 polarization beam splitter 15 detector 75 detector 80 sharing generator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 同一光源からの可干渉光を用いて、参照
波と被検波とに分割し、参照波と被検物を透過または反
射した被検波とを再び重畳する干渉計と、重畳する前に
被検波を分割する手段を設け、その分割した一方の波面
を横ずらしして重畳し干渉縞を形成する干渉計とを用い
た2種類の干渉計測が可能であることを特徴とする位相
物体の測定装置。
1. A coherent light beam from the same light source is used to divide into a reference wave and a test wave, and the reference wave and the test wave transmitted or reflected by the test object are superimposed again with an interferometer. A phase is characterized in that it is possible to perform two types of interference measurement using a means for dividing the wave to be detected in front, and an interferometer that forms an interference fringe by laterally superposing one of the divided wavefronts. Measuring device for objects.
【請求項2】 参照波と被検物を透過または反射する被
検波とに分割する偏光ビームスプリッタと、被検波を二
分割するビームスプリッタ又はハーフミラーと、一方の
参照波と被検波を重畳して干渉縞を形成する偏光ビーム
スプリッタと、もう一方の被検波を、わずかにずらして
重畳して干渉縞を形成する手段を有することを特徴とす
る請求項1記載の位相物体の測定装置。
2. A polarization beam splitter that splits a reference wave and a test wave that transmits or reflects the test object, a beam splitter or a half mirror that splits the test wave into two, and one of the reference wave and the test wave is superimposed. 2. The phase object measuring apparatus according to claim 1, further comprising a polarization beam splitter for forming interference fringes and means for forming the interference fringes by superimposing the other test wave with a slight shift.
【請求項3】 被検波を回転させながら次々に透過波面
を測定し、CT(コンピュータトモグラフィ)解析を用
いて再構成することを特徴とする請求項1記載の位相物
体の測定装置。
3. The phase object measuring apparatus according to claim 1, wherein transmitted wave fronts are measured one after another while rotating the test wave and reconstructed by using CT (Computer Tomography) analysis.
JP08777196A 1996-04-10 1996-04-10 Phase object measuring device Expired - Fee Related JP3441292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08777196A JP3441292B2 (en) 1996-04-10 1996-04-10 Phase object measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08777196A JP3441292B2 (en) 1996-04-10 1996-04-10 Phase object measuring device

Publications (2)

Publication Number Publication Date
JPH09281003A true JPH09281003A (en) 1997-10-31
JP3441292B2 JP3441292B2 (en) 2003-08-25

Family

ID=13924245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08777196A Expired - Fee Related JP3441292B2 (en) 1996-04-10 1996-04-10 Phase object measuring device

Country Status (1)

Country Link
JP (1) JP3441292B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630336A (en) * 2013-12-02 2014-03-12 南京理工大学 Dynamic interference measuring method based on random fast axis azimuth delay array
JP2018048899A (en) * 2016-09-21 2018-03-29 株式会社日立製作所 Laser measurement device and laser ultrasonic device
JP2021531470A (en) * 2018-07-25 2021-11-18 株式会社ニコン Shearing interferometry measuring device for microscopy
KR20220096035A (en) * 2020-12-30 2022-07-07 한국광기술원 Holographic Microscopy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630336A (en) * 2013-12-02 2014-03-12 南京理工大学 Dynamic interference measuring method based on random fast axis azimuth delay array
JP2018048899A (en) * 2016-09-21 2018-03-29 株式会社日立製作所 Laser measurement device and laser ultrasonic device
JP2021531470A (en) * 2018-07-25 2021-11-18 株式会社ニコン Shearing interferometry measuring device for microscopy
KR20220096035A (en) * 2020-12-30 2022-07-07 한국광기술원 Holographic Microscopy

Also Published As

Publication number Publication date
JP3441292B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
Abdelsalam et al. Single-shot parallel four-step phase shifting using on-axis Fizeau interferometry
US7230717B2 (en) Pixelated phase-mask interferometer
US8873068B2 (en) Low coherence interferometric system for phase stepping shearography combined with 3D profilometry
Millerd et al. Modern approaches in phase measuring metrology
JPH08304229A (en) Method and instrument for measuring refractive index distribution of optical element
US4221486A (en) Interferometric measurement with λ/4 resolution
JPH1144641A (en) Method and apparatus for measuring refractive index distribution
JP2892075B2 (en) Measuring method of refractive index distribution and transmitted wavefront and measuring device used for this method
Millerd et al. Vibration insensitive interferometry
Broistedt et al. Random-phase-shift Fizeau interferometer
Hooshmand-Ziafi et al. Common-path spatial phase-shift speckle shearography using a glass plate
JP3441292B2 (en) Phase object measuring device
Helen et al. Analysis of spectrally resolved white light interferograms: use of a phase shifting technique
JP3423486B2 (en) Method and apparatus for measuring refractive index distribution of optical element
Disawal et al. Simultaneous measurement of thickness and refractive index using phase shifted Coherent Gradient Sensor
JPH1090117A (en) Method and instrument for measuring refractive index distribution
US20230236125A1 (en) Dynamic phase-shift interferometer utilizing a synchronous optical frequency-shift
JP3670821B2 (en) Refractive index distribution measuring device
JP2000065684A (en) Method and apparatus for measurement of distribution of refractive index
JP3957911B2 (en) Shearing interferometer, refractive index profile measuring apparatus equipped with the interferometer, and refractive index profile measuring method
JP3553743B2 (en) Method and apparatus for measuring refractive index distribution
Silva et al. Simple and versatile heterodyne whole-field interferometer for phase optics characterization
Wu et al. Simultaneous three-dimensional deformation measuring based on a simple phase-shift device combination with tri-wavelength and three-CCD camera
JP3496786B2 (en) Method and apparatus for measuring phase object
Pérez et al. Experimental results of an innovative dynamic low-coherent interferometer for characterizing a gravitational wave detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees