CN103630336A - Dynamic interference measuring method based on random fast axis azimuth delay array - Google Patents

Dynamic interference measuring method based on random fast axis azimuth delay array Download PDF

Info

Publication number
CN103630336A
CN103630336A CN201310634494.4A CN201310634494A CN103630336A CN 103630336 A CN103630336 A CN 103630336A CN 201310634494 A CN201310634494 A CN 201310634494A CN 103630336 A CN103630336 A CN 103630336A
Authority
CN
China
Prior art keywords
fast axis
sub
plate
axis azimuth
step
Prior art date
Application number
CN201310634494.4A
Other languages
Chinese (zh)
Other versions
CN103630336B (en
Inventor
陈磊
李金鹏
郑东晖
周舒
宋乐
郑权
Original Assignee
南京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京理工大学 filed Critical 南京理工大学
Priority to CN201310634494.4A priority Critical patent/CN103630336B/en
Publication of CN103630336A publication Critical patent/CN103630336A/en
Application granted granted Critical
Publication of CN103630336B publication Critical patent/CN103630336B/en

Links

Abstract

The invention discloses a dynamic interference measuring method based on a random fast axis azimuth delay array. The method comprises the steps of adopting the delay array as the phase shift device of a dynamic interference system, wherein the delay array comprises four sub wave plates of a lambda/4 plate, a lambda/2 plate, a 3 lambda/4 plate and a lambda plate, and a polarization film of which the polarized direction forms an included angle of 45 degrees together with the horizontal direction is arranged behind the delay array; placing a standard plane mirror in a test arm of a dynamic interferometer, and collecting four linear carrier frequency phase-shift interference images by a CCD (charge coupled device); performing Fourier transformation on each linear carrier frequency phase-shift interference image and calibrating the azimuth of each sub wave plate fast axis; placing a piece to be tested in the test arm of the dynamic interferometer, and adjusting the inclined pitch and the axial defocus of the piece to be tested to obtain a synchronous phase-shift interference image; processing to obtain the phase distribution of the piece to be tested according to the calibrated fast axis azimuth of each sub wave plate and the synchronous phase-shift interference image. The method is fast and simple and is suitable for the dynamic interferometer adopting the light dividing scheme.

Description

基于随机快轴方位角延迟阵列的动态干涉测量方法 Fast axis azimuth based random delay array dynamic interferometric method

技术领域 FIELD

[0001] 本发明属于光干涉计量领域,特别是一种基于随机快轴方位角延迟阵列的动态干涉测量方法。 [0001] The present invention belongs to the field of optical interferometry, particularly fast axis azimuth angle based on a random delay array dynamic interferometric method.

背景技术 Background technique

[0002] 光干涉是检测高精度光学元件和系统最有效的手段之一,随着光电探测技术、精密机械、计算机技术等技术的进步,近代光干涉测量技术已经得到了长足的发展。 [0002] one of the optical interference detection precision optical elements and systems most effective means, as technology advances photodetection technology, precision machinery, computer technology and other modern optical interferometry has been considerable development. 随着移相干涉术的提出,实现了高精度、实时快速、多参数、自动化测试,大大提升了干涉仪的测量精度,促进了现代光学制造水平的提高。 With the proposed phase-shifting interferometry to achieve a high-precision, real fast, multi-parameter, automated testing, greatly enhance the measurement accuracy of the interferometer, promote the improvement of modern optical manufacturing level. 然而,移相干涉对环境特别敏感,环境振动和空气扰动会严重影响测量结果,因此,大多数干涉测试工作都是在实验室光学隔振平台上进行。 However, phase shifting interferometry is particularly sensitive to the environment, environmental vibration and air turbulence will seriously affect the measurement results, therefore, most of the interference test work is carried out on a laboratory optical isolation platform. 然而目前越来越多的场合需要在线检测、校准大中型光学元件或光学系统。 However, there is a growing number of applications requiring the detection line, calibration and medium-sized optical elements or an optical system. 这种情况下,传统移相干涉测量精度将受到环境振动、空气扰动等因素的影响,严重时甚至导致测量失败。 In this case, the conventional phase-shifting interferometry measurement accuracy will be affected by environmental factors vibration, air turbulence, etc., and even lead to serious failure of the measurement.

[0003] 动态干涉系统能够在同一时刻、不同的空间位置获得多幅移相干涉图,能够有效地避免振动、空气扰动等时变误差因素的影响。 [0003] The system can be dynamic interference at the same time, obtain a plurality of different spatial phase-shifting positions interferograms possible to effectively avoid the influence of error factors of vibration, air turbulence and other variations. 目前的动态干涉系统采用的空间移相方案主要有1/4波片与偏振片组组成空间移相器、1/4波片与微偏振阵列组成空间移相器、微延迟阵列与偏振片组成空间移相器。 Space currently used dynamic phase shifting interferometer system program mainly composed of the 1/4 wave plate and a space group polarizing phase shifter, 1/4-wave plate and the polarizer array of micro-space phase shifter and the polarizer array composed of fine delay spatial phase shifter. 现有的方案对偏振片的透光轴以及波片的快轴方位角精度要求较高,因此大多数同步移相干涉系统均需要对这两类偏振元件的光轴方位角进行精确校准。 Existing programs for fast axis azimuth accuracy of the transmission axis of the polarizer and a wave plate higher, so most synchronous phase shifting interferometry systems require accurate calibration of these two types of optical axis azimuth angle of the polarizing element. 现有的偏振元件校准方法都是在测量之前依靠其它的辅助实验条件对光轴方位角进行校准,对单一的偏振片和波片而言比较容易实现。 Conventional calibration method relied on the polarizing element of other auxiliary experimental conditions before measuring the optical axis azimuth is calibrated for a single polarizer and a wave plate is easier to achieve. 动态干涉系统中由于对偏振元件的集成要求较高,同时在一个系统中校准多个偏振兀器件的难度较大,此外,微偏振阵列以及微延迟阵列的制造难度较大,成本很高。 Dynamic interference due to higher integration system requirements for the polarizing element, while the plurality of calibration devices difficult Wu polarization in a system, in addition, difficult to manufacture the micro array, and a micro polarization delay array is large, the cost is high.

发明内容 SUMMARY

[0004] 本发明的目的在于提供一种基于随机快轴方位角延迟阵列的动态干涉测量方法,利用随机快轴方位角延迟阵列作为空间移相器,在动态干涉系统中对偏振元件进行精确校准。 [0004] The object of the present invention is to provide a delay interferometer array of dynamic measurement method based on random fast axis azimuth, using a random delay array fast axis azimuth as a spatial phase shifters, to accurately calibrate the dynamic interference polarizing element system .

[0005] 实现本发明目的的技术解决方案为:一种基于随机快轴方位角延迟阵列的动态干涉测量方法,包括以下步骤: [0005] The purpose of the present invention is a technical solution: fast axis azimuth based random delay array dynamic interferometric method, comprising the steps of:

[0006] 步骤1,采用延迟阵列作为动态干涉系统的移相器件,所述延迟阵列包含4个子波片且各子波片分别为λ/4片、λ/2片、3 λ/4片、λ片,延迟阵列后方设置偏振片,该偏振片的透振方向与水平方向夹角为45° ; [0006] Step 1, using the interferometric system of delay array as a dynamic phase shifting device, the delay-wave plate array comprises 4 sub-sub-wave plate and each respectively λ / 4 plate, λ / 2 plate, 3 λ / 4 plate, λ plate, disposed rearward delay array polarizing plate, the polarizing plate through the vibration direction and the horizontal direction angle of 45 °;

[0007] 步骤2,在动态干涉仪测试臂中放置标准平面镜,调整标准平面镜的倾斜俯仰使干涉图中的条纹数大于20根,通过CCD采集得到4个线性载频移相干涉图; [0007] Step 2, to place standard plane mirror dynamic interferometer testing arms, adjusting the standard inclined plane mirror pitch the number of fringes in the interference pattern is greater than 20, to obtain four linear by the CCD acquired carrier frequency phase-shifting interference pattern;

[0008] 步骤3,对每个线性载频移相干涉图进行傅里叶变换,标定延迟阵列各子波片快轴方位角; [0008] Step 3, the carrier frequency for each linear phase shifter interferogram Fourier transform of each sub-array calibration delay wave plate fast axis azimuth;

[0009] 步骤4,在动态干涉仪的测试臂中放入待测件,调节待测件的倾斜俯仰及轴向离焦,得到同步移相干涉图; [0009] Step 4, placed in a dynamic test interferometer arm in the test specimen, and the axial pitch adjusting the inclination of the test piece defocus, synchronized phase-shifting interference pattern;

[0010] 步骤5,根据步骤3标定的各子波片快轴方位角和步骤4中的同步移相干涉图,处理得到待测件的相位分布。 [0010] Step 5, the calibration according to step 3 of the sub-wave plate fast axis azimuth and the step of phase shifting the interferogram synchronization 4, the process to obtain the phase distribution of the test piece.

[0011] 与现有技术相比,本发明的显著优点为:(1)不需要在测量之前对延迟阵列各子波片的快轴方位角进行手动校准,方法快捷简单;(2)没有任何附加的辅助实验硬件,适用于大多数采用分光方案的动态干涉测量系统;(3)具有精确、可靠的优点。 [0011] Compared with the prior art, a significant advantage of the present invention are: (1) does not require fast axis azimuth of each sub-array the wave retardation plate manual calibration before the measurement, the method is quick and easy; (2) no additional auxiliary laboratory hardware, suitable for most uses dynamic spectral interferometry system program; (3) precise, reliable.

附图说明 BRIEF DESCRIPTION

[0012] 图1是本发明基于随机快轴方位角延迟阵列的动态干涉测量方法的原理图。 [0012] FIG. 1 of the present invention is based on dynamic random delay fast axis azimuth interferometric method is a schematic diagram of an array.

[0013] 图2是本发明通过CXD采集得到的线性载频同步移相干涉图。 [0013] FIG. 2 is obtained by linear CXD acquired carrier frequency synchronization according to the present invention, phase shifting interferometry FIG.

[0014] 图3是图2中线性载频干涉图对应的频谱图,其中分别对应于(a) λ/4波片、(b)λ/2波片、(c) 3 λ/4波片、(d) λ波片。 [0014] FIG. 3 is an interferogram spectrum that corresponds to FIG 2 in a linear carrier, which respectively correspond to (a) λ / 4 wave plate, (b) λ / 2 wave plate, (c) 3 λ / 4 wave plate , (d) λ wave plate.

[0015] 图4是本发明测试所得同步移相干涉图。 [0015] FIG. 4 is a test of the present invention, the resulting interferogram phase shifting synchronized.

[0016] 图5是本发明测量方法得到的相位分布图。 [0016] FIG. 5 is a phase distribution measuring method of the present invention is obtained.

[0017] 图6传统四步移相法得到的相位分布图。 [0017] FIG conventional four-step shift of the phase distribution obtained phase method.

具体实施方式 Detailed ways

[0018] 下面结合附图及具体实施例对本发明作出进一步详细说明。 [0018] DETAILED made to the embodiments of the present invention is described in further detail below in conjunction with the accompanying drawings and.

[0019] 结合图1,本发明基于随机快轴方位角延迟阵列的动态干涉测量系统,采用延迟阵列作为动态干涉系统的移相器件,参考光和测试光分别经过延迟阵列的4个象限,再经过偏振片,产生同步移相干涉图,各子干涉图的移相量依次为π/2、π、3 π/2、2 π。 [0019] in conjunction with FIG. 1, the present invention is based on the fast axis azimuth random delay array dynamic interferometric measuring system, using an array of delay interference system as a dynamic phase shifting device, a test light and the reference light passes through the four quadrants delay array, respectively, and then after the polarizing plate, generates a synchronization phase shift interferograms, each sub phase shift amount interferograms were π / 2, π, 3 π / 2,2 π. 本发明中偏振片透振方向与水平方向夹角校准为45° (现有方法可以校准),延迟阵列中各子波片快轴方位角为Υ2> 3> Y 4,且YI为λ/4子波片的快轴方位角、Y2为λ/2子波片的快轴方位角、Y3为3 λ/4子波片的快轴方位角,Y 4为λ子波片的快轴方位角;各子干涉图表达式可表示为: Through the present invention, the polarizer angle between the vibration direction and the horizontal direction of the alignment of 45 ° (the conventional method can be calibrated), the delay of each sub-array wavelength plate fast axis azimuth of Υ2> 3> Y 4, and YI of λ / 4 fast axis azimuth of the sub-wavelength plate, Y2 is λ / 2 sub fast axis azimuth wave plate, Y3 is a 3 λ / 4 fast axis azimuth sub-wave plate, Y 4 [lambda] is the sub-wave plate fast axis azimuth ; interferograms each sub-expressions can be expressed as:

[0020] [0020]

Figure CN103630336AD00051

[0021] 该系统与其他基于光栅分光方案的动态干涉测量系统相比较,不同之处在于,本发明采用延迟阵列作为移相器件,延迟阵列的特征在于:按顺时针方向,各子波片依次为入/4波片、λ/2波片、3 λ/4波片、λ波片。 [0021] The system and other programs based on the dynamic interference grating spectral measurement system as compared, except that the present invention is employed as the phase shift delay array device, characterized in that the delay array: clockwise, each sub-order waveplate It is the / 4 plate, λ / 2 wave plate, 3 λ / 4 wave plate, λ wave plate.

[0022] 结合图2~4,本发明基于随机快轴方位角延迟阵列的动态干涉测量方法,利用随机快轴方位角延迟阵列作为空间移相器的动态干涉测量系统进行干涉测量的方法,待测件选取球面镜为例,包括以下步骤: [0022] in conjunction with FIGS. 2 to 4, the present invention is based on the fast axis azimuth random delay array dynamic interferometric method, by using a random delay fast axis azimuth phase shifter array as a spatial dynamic interferometric method interferometry system to be select Case spherical mirror sensing element, comprising the steps of:

[0023] 步骤1,采用延迟阵列作为动态干涉系统的移相器件,所述延迟阵列包含4个子波片且各子波片分别为λ/4片、λ/2片、3 λ/4片、λ片,延迟阵列后方设置偏振片,该偏振片的透振方向与水平方向夹角为45° ; [0023] Step 1, using the interferometric system of delay array as a dynamic phase shifting device, the delay-wave plate array comprises 4 sub-sub-wave plate and each respectively λ / 4 plate, λ / 2 plate, 3 λ / 4 plate, λ plate, disposed rearward delay array polarizing plate, the polarizing plate through the vibration direction and the horizontal direction angle of 45 °;

[0024] 步骤2,在动态干涉仪测试臂中放置标准平面镜,调整标准平面镜的倾斜俯仰使干涉图中的条纹数大于20根,通过CCD采集得到如图2所示的4个线性载频移相干涉图; [0024] Step 2, to place standard plane mirror dynamic interferometer testing arms, adjusting the tilt elevation standard plane mirror the number of fringes in the interference pattern is greater than 20, a CCD acquisition obtained as shown in FIG. 4 linear carrier frequency shift FIG interfering;

[0025] 步骤3,对每个线性载频移相干涉图进行傅里叶变换得到如图3所示的频谱,标定延迟阵列各子波片快轴方位角;具体步骤如下: [0025] Step 3, the carrier frequency for each linear phase shifter interferogram Fourier transform spectrum shown in Figure 3, each sub-array calibration delay wave plate fast axis azimuth; the following steps:

[0026] (I)对每个子线性载频移相干涉图进行傅里叶变换得到对应的频谱分布图,提取出各频谱分布图的+1级旁瓣,解算ιπ/2、Ιπ、ι3π/2三个子干涉图相对于Ι2π干涉图的调制度\,即: [0026] (I) for each sub-carrier phase shift linear interferogram Fourier transform spectrum distribution corresponding to the +1 order to extract each of the side lobes of the spectral distribution, the resolver ιπ / 2, Ιπ, ι3π / 2 with respect to the three sub-interferograms Ι2π interferogram modulation \, namely:

[0027] [0027]

Figure CN103630336AD00061

[0028] 式中FT{}表示对干涉图进行傅里叶变换,Fr1H表示傅里叶逆变换运算;Filter+1 {}表示提取出频谱的+1级旁瓣;abs{}表示取绝对值; [0028] where FT {} denotes the Fourier transform of the interferogram, Fr1H represents an inverse Fourier transform operation; Filter + 1 {} represents the extracted +1 order spectrum sidelobes; abs {} denotes an absolute value ;

[0029] 再依据各子波片的快轴方位角与对比度之间的关系,可以得到: [0029] and then based on the relationship between the fast axis azimuth of each sub-wave plate and contrast can be obtained:

Figure CN103630336AD00062

[0031] 其中、为λ/4子波片的快轴方位角、Y2为λ/2子波片的快轴方位角、Y3为3 λ/4子波片的快轴方位角; [0031] wherein, the fast axis azimuth of λ / 4 wave plate sub, Y2 is λ / 2 wave plate sub fast axis azimuth, Y3 is a 3 λ / 4 fast axis azimuth of the sub-wavelength plate;

[0032] (2)为了进一步确定方位角的方向,在标定过程中调整测试光的光强a与参考光的光强b,使得a>b,依次提取O级频谱的幅值Ck,如图3所示,SP [0032] (2) To further determine the direction of the azimuth adjustment of the test light during the calibration and the reference light intensity of a light intensity B, such that a> b, sequentially extracting level Ck O amplitude spectrum, FIG. 3, SP

[0033] Ck = abstFrMFilterjFTt κ }}}} κ = I π/2, I π, Ι3π/2, Ι2π [0033] Ck = abstFrMFilterjFTt κ}}}} κ = I π / 2, I π, Ι3π / 2, Ι2π

[0034] 式中FilterciH表示提取O级频谱,假定波片快轴方位角Yi取值范围为(-π/8,π/8)根据下式判断各子波片快轴方位角的方向: [0034] wherein O designates an extraction stage FilterciH spectrum, assuming Yi wave plate fast axis azimuth in the range (-π / 8, π / 8) direction is determined according to the formula for each sub-wave plate fast axis azimuth of:

[0035] [0035]

Figure CN103630336AD00063

[0036] 经过以上步骤即完成了各子波片快轴方位角的标定。 [0036] After the above steps to complete the calibration of the fast axis azimuth of the sub-wave plate.

[0037] 步骤4,在动态干涉仪的测试臂中放入待测件,即待测球面镜,调节待测件的倾斜俯仰及轴向离焦,得到如图4所示的同步移相干涉图; [0037] Step 4, placed in a dynamic test interferometer arm member under test, i.e. the test spherical mirror, adjusting the inclination and the axial pitch of the test piece defocus obtained synchronous mobile phase interferogram shown in FIG. 4 ;

[0038] 步骤5,根据步骤3标定的各子波片快轴方位角和步骤4中的同步移相干涉图,处理得到待测件的相位分布。 [0038] Step 5, the calibration according to step 3 of the sub-wave plate fast axis azimuth and the step of phase shifting the interferogram synchronization 4, the process to obtain the phase distribution of the test piece. 具体如下:根据步骤3标定的各子波片快轴方位角和步骤4中的同步移相干涉图,求解线性方程组:[0039] B = AX (5) As follows: the calibration according to step 3 of the sub-wave plate fast axis azimuth and step 4 in FIG synchronous phase shifting interferometry, solving linear equations: [0039] B = AX (5)

[0040] 其中 [0040] in which

[0041] B= [I J1/2 II, I3H/2 ΐ2π]Τ [0041] B = [I J1 / 2 II, I3H / 2 ΐ2π] Τ

Figure CN103630336AD00071

[0044] 未知向量X可由下式得到: [0044] unknown vector X obtained by the following formula:

[0045] X = A^1B (6) [0045] X = A ^ 1B (6)

[0046] 假定系数矩阵A的逆矩阵可用下式表示: [0046] The inverse matrix of the coefficient matrix A is assumed to be expressed as:

Figure CN103630336AD00072

[0048] 待测件相位Ψ的分布可由下式解得: [0048] The test specimen distribution phase Ψ solution obtained by the following formula:

[0049] [0049]

Figure CN103630336AD00073

[0050] 通过以上步骤,即可在不需要对波片组快轴方位角进行校准的条件下就可以实现相位的动态测量,测量待测球面镜的相位分布图如图5所示,相比图6采用传统四步移相法得到的相位分布图,直接用传统四步移相算法会在测量结果中引入明显的波纹误差,而采用本发明提出的测量方法,如图5所示可以明显的抑制波纹误差。 [0050] Through the above steps, without the need to slice group of the fast wave axis azimuth can be calibrated to measure the dynamic phase, the measurement phase distribution of measured spherical mirror shown in Figure 5, compared to FIG. 6 using the phase distribution obtained by the traditional four-step phase shift method, the algorithm would directly introduce significant errors in the measurement result corrugations with a conventional four-step shift, measured using the method proposed by the invention, it can be clearly shown in FIG. 5 suppressing ripple error.

Claims (3)

1.一种基于随机快轴方位角延迟阵列的动态干涉测量方法,其特征在于,包括以下步骤: 步骤1,采用延迟阵列作为动态干涉系统的移相器件,所述延迟阵列包含4个子波片且各子波片分别为λ/4片、λ/2片、3 λ/4片、λ片,延迟阵列后方设置偏振片,该偏振片的透振方向与水平方向夹角为45° ; 步骤2,在动态干涉仪测试臂中放置标准平面镜,调整标准平面镜的倾斜俯仰使干涉图中的条纹数大于20根,通过CCD采集得到4个线性载频移相干涉图; 步骤3,对每个线性载频移相干涉图进行傅里叶变换,标定延迟阵列各子波片快轴方位角; 步骤4,在动态干涉仪的测试臂中放入待测件,调节待测件的倾斜俯仰及轴向离焦,得到同步移相干涉图; 步骤5,根据步骤3标定的各子波片快轴方位角和步骤4中的同步移相干涉图,处理得到待测件的相位分布。 1. A dynamic interferometric method based on a random delay array fast axis azimuth, which is characterized in that it comprises the following steps: Step 1, using the delay array system, as a dynamic phase shifting interferometric device, said delay sub-wavelength plate array comprises 4 and each of the sub-wavelength plate are λ / 4 plate, λ / 2 plate, 3 λ / 4 plate, a rear plate [lambda], delay array disposed polarization plate vibration direction and the horizontal direction through an angle of 45 °; step 2, placing the standard plane mirror dynamic interferometer test arm adjust the standard plane mirror inclined tilting the number of fringes in the interference pattern is greater than 20, to obtain four linear by the CCD acquired carrier frequency phase-shifting interference pattern; step 3, for each linear phase shifting the carrier frequency interferogram Fourier transform of each sub-array calibration delay wave plate fast axis azimuth; step 4, the test piece placed in the dynamic test interferometer arms, adjusting the inclination of the test piece and the pitch axial defocusing FIG obtain synchronism shift interference; step 5, the calibration according to step 3 of the sub-wave plate fast axis azimuth and the step of phase shifting the interferogram synchronization 4, the process to obtain the phase distribution of the test piece.
2.根据权利要求1所述的基于随机快轴方位角延迟阵列的动态干涉测量方法,其特征在于,步骤3所述标定延迟阵列各子波片快轴方位角的具体步骤如下: (1)对每个子线性载频移相干涉图进行傅里叶变换得到对应的频谱分布图,提取出各频谱分布图的+1级旁瓣,解算Ιπ2、Ιπ、Ι3π2三个子干涉图相对于Ι2π干涉图的调制度Vi,即: The dynamic interferometric method based on a random delay array fast axis azimuth according to claim 1, wherein each of said sub-step of step 3. DETAILED fast axis azimuth angle of the wave plate array calibration delay as follows: (1) for each sub-carrier phase shift linear interferogram Fourier transform spectrum distribution corresponding to the +1 order to extract each of the side lobes of the spectral distribution, the resolver Ιπ2, Ιπ, Ι3π2 interferograms with respect to the three sub-interference Ι2π modulation index figure Vi, namely:
Figure CN103630336AC00021
式中FT{}表示对干涉图进行傅里叶变换,Fr1H表示傅里叶逆变换运算;Filter+1{}表示提取出频谱的+1级旁瓣;abs{}表示取绝对值; 再依据各子波片的快轴方位角与对比度之间的关系,可以得到: Wherein FT {} denotes the Fourier transform of the interferogram, Fr1H represents an inverse Fourier transform operation; Filter + 1 {} represents the extracted +1 order spectrum sidelobes; abs {} denotes an absolute value; then based on the relationship between the fast axis azimuth of each sub-wave plate and contrast can be obtained:
Figure CN103630336AC00022
其中、为λ/4子波片的快轴方位角、Y2为λ/2子波片的快轴方位角、Y3为3 λ/4子波片的快轴方位角; (2)调整测试光的光强a与参考光的光强b,使得a>b,依次提取O级频谱的幅值Ck,即Ck = abstFr1 (Filter0 {FT{ K }}}} κ = I π/2, I π, Ι3π/2, Ι2π 式中FilterciH表示提取O级频谱,根据下式判断各子波片快轴方位角的方向: Wherein, for the λ / 4 fast axis azimuth sub-wave plate, Y2 is λ / 2 sub fast axis azimuth wave plate, Y3 is a 3 λ / 4 fast axis azimuth of the sub-wavelength plate; (2) adjusting the test light a light intensity and reference light intensity B, such that a> b, sequentially extracting level Ck O amplitude spectrum, i.e., Ck = abstFr1 (Filter0 {FT {K}}}} κ = I π / 2, I π , Ι3π / 2, Ι2π wherein FilterciH represents O scale spectrum extracted, is determined according to the following formula in each sub-wave plate fast axis azimuth orientation:
Figure CN103630336AC00031
3.根据权利要求1所述的基于随机快轴方位角延迟阵列的动态干涉测量方法,其特征在于,步骤5所述处理得到待测件的相位分布,具体如下:根据步骤3标定的各子波片快轴方位角和步骤4中的同步移相干涉图,求解线性方程组: B = AX 其中 The dynamic interferometric method based on a random delay array fast axis azimuth according to claim 1, wherein said processing step 5 to obtain a phase distribution members tested as follows: Each sub-calibration according to step 3 wave plate fast axis azimuth and the step of synchronizing the phase shift interferometric FIG. 4, to solve linear equations: B = AX wherein
Figure CN103630336AC00032
未知向量X可由下式得到: X = A^1B 假定系数矩阵A的逆矩阵可用下式表示: Unknown vector X is obtained by the following equation: X = A ^ 1B assumes that an inverse matrix of the coefficient matrix A can be expressed as:
Figure CN103630336AC00033
待测件相位^的分布可由下式解得: ^ Test specimen distribution phase solution obtained by the following formula:
Figure CN103630336AC00034
CN201310634494.4A 2013-12-02 2013-12-02 Fast axis azimuth based random delay array dynamic interferometric method CN103630336B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310634494.4A CN103630336B (en) 2013-12-02 2013-12-02 Fast axis azimuth based random delay array dynamic interferometric method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310634494.4A CN103630336B (en) 2013-12-02 2013-12-02 Fast axis azimuth based random delay array dynamic interferometric method

Publications (2)

Publication Number Publication Date
CN103630336A true CN103630336A (en) 2014-03-12
CN103630336B CN103630336B (en) 2016-04-20

Family

ID=50211616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310634494.4A CN103630336B (en) 2013-12-02 2013-12-02 Fast axis azimuth based random delay array dynamic interferometric method

Country Status (1)

Country Link
CN (1) CN103630336B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525242A (en) * 2016-12-02 2017-03-22 中国科学院光电技术研究所 Device for real-time measurement of sun polarization stokes vector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281003A (en) * 1996-04-10 1997-10-31 Ricoh Co Ltd Apparatus for measuring phase matter
US5835217A (en) * 1997-02-28 1998-11-10 The Regents Of The University Of California Phase-shifting point diffraction interferometer
CN101776488A (en) * 2010-01-21 2010-07-14 北京工业大学 Method for measuring optical phase by using synchronous phase-shifting interference method and implementing light path
CN201548201U (en) * 2009-11-26 2010-08-11 重庆师范大学 Vibration-resistant dynamic interferometer
CN102175430A (en) * 2011-01-25 2011-09-07 中国科学院上海光学精密机械研究所 Device and method for measuring 1/8 wave plate phase retardation and fast axis azimuth angle
CN102175332A (en) * 2011-01-21 2011-09-07 南京理工大学 Method for recovering phases from interferograms containing phase-shift error
CN102507020A (en) * 2011-11-01 2012-06-20 南京理工大学 Microlens array-based synchronized phase-shifting interference test method and test device
CN102706539A (en) * 2012-06-15 2012-10-03 中国科学院上海光学精密机械研究所 Device and method for measuring phase retardation distribution and fast axis azimuth angle distribution in real time

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281003A (en) * 1996-04-10 1997-10-31 Ricoh Co Ltd Apparatus for measuring phase matter
US5835217A (en) * 1997-02-28 1998-11-10 The Regents Of The University Of California Phase-shifting point diffraction interferometer
CN201548201U (en) * 2009-11-26 2010-08-11 重庆师范大学 Vibration-resistant dynamic interferometer
CN101776488A (en) * 2010-01-21 2010-07-14 北京工业大学 Method for measuring optical phase by using synchronous phase-shifting interference method and implementing light path
CN102175332A (en) * 2011-01-21 2011-09-07 南京理工大学 Method for recovering phases from interferograms containing phase-shift error
CN102175430A (en) * 2011-01-25 2011-09-07 中国科学院上海光学精密机械研究所 Device and method for measuring 1/8 wave plate phase retardation and fast axis azimuth angle
CN102507020A (en) * 2011-11-01 2012-06-20 南京理工大学 Microlens array-based synchronized phase-shifting interference test method and test device
CN102706539A (en) * 2012-06-15 2012-10-03 中国科学院上海光学精密机械研究所 Device and method for measuring phase retardation distribution and fast axis azimuth angle distribution in real time

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
左芬等: "一种同步移相干涉测量系统的误差研究", 《光学技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525242A (en) * 2016-12-02 2017-03-22 中国科学院光电技术研究所 Device for real-time measurement of sun polarization stokes vector
CN106525242B (en) * 2016-12-02 2018-11-30 中国科学院光电技术研究所 An apparatus for polarizing sun Stokes real time measurement

Also Published As

Publication number Publication date
CN103630336B (en) 2016-04-20

Similar Documents

Publication Publication Date Title
Grédiac et al. Full-field measurements and identification in solid mechanics
US7230717B2 (en) Pixelated phase-mask interferometer
US7808648B2 (en) Method and device for optical determination of physical properties of features, not much larger than the optical wavelength used, on a test sample
Brock et al. Dynamic interferometry
US20070211256A1 (en) Linear-carrier phase-mask interferometer
WO2011149000A1 (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
Millerd et al. Modern approaches in phase measuring metrology
JP2011247692A (en) Method and apparatus for measuring distribution of diffraction factor
JP5818218B2 (en) Phase distribution analysis method of fringe image using high-dimensional luminance information, apparatus and program
CN102095504B (en) Ring common-path point diffraction interferometer based on spatial phase modulation
Kihara An arctangent unwrapping technique of photoelasticity using linearly polarized light at three wavelengths
CN102109414B (en) Method and device for calibrating phase modulation of spatial light modulators by utilizing heterodyne interference
CN101033937A (en) Method and device of light splitting, image-forming and synchronous phase-shifting in optical interferometry.
US20140347665A1 (en) Device and method for measuring phase retardation distribution and fast axis azimuth angle distribution in real time
Kiire et al. Phase-shifting interferometer based on changing the direction of linear polarization orthogonally
CN105606217B (en) An image, spectrum, polarization state obtaining apparatus and method for integrated
CN101324421A (en) Synchronous phase-shift fiso interferometer
CN103630086B (en) Phase-shifting interferometry method of simultaneously measuring method is based on dual wavelength monochromatic ccd
CN102425988B (en) Phase extraction method for phase-shifting interferometric fringe
CN101598798B (en) System for rebuilding spectrum of high spectrum intervention data and method thereof
Yoneyama et al. Simultaneous observation of phase-stepped photoelastic fringes using a pixelated microretarder array
CN102589440B (en) Continuous variable-angle digital holographic metrology method
Xu et al. Phase-shift extraction for phase-shifting interferometry by histogram of phase difference
CN1737494A (en) Surface profile analytical method for object needing measure
CN102507020B (en) Microlens array-based synchronized phase-shifting interference test method and test device

Legal Events

Date Code Title Description
C10 Entry into substantive examination
C14 Grant of patent or utility model