JPH09280343A - Fiber-reinforced composite resin gear - Google Patents

Fiber-reinforced composite resin gear

Info

Publication number
JPH09280343A
JPH09280343A JP8086638A JP8663896A JPH09280343A JP H09280343 A JPH09280343 A JP H09280343A JP 8086638 A JP8086638 A JP 8086638A JP 8663896 A JP8663896 A JP 8663896A JP H09280343 A JPH09280343 A JP H09280343A
Authority
JP
Japan
Prior art keywords
fiber
composite resin
gear
fibers
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8086638A
Other languages
Japanese (ja)
Other versions
JP3785214B2 (en
Inventor
Kaneo Hamashima
兼男 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP08663896A priority Critical patent/JP3785214B2/en
Publication of JPH09280343A publication Critical patent/JPH09280343A/en
Application granted granted Critical
Publication of JP3785214B2 publication Critical patent/JP3785214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide heat resistance, a fatigue strength, and wear resistance, being applicable for high load application by a method wherein a modulus of elasticity of a surface part containing a tooth surface is below a specified value and the fatigue strength of the interior continued to the surface part is set to a value exceeding a specified value. SOLUTION: In a fiber-reinforced composite resin gear, reinforcing fibers of a surface part has a modulus of elasticity of 10GPa or less and the reinforced fiber at the interior has strength of 50MPa or more. A gear 1 is formed such that a steel insert 12 is fitted in the core part of a fiber-reinforced composite resin part 11. A premolded product is set in a molding die having an inside size in the same shape as the outer shape of the gear 1, and epoxy resin is injected and cured to form the composite resin part 11 of the gear 1. The composite resin part 11 of the gear 1 is constituted such that, in a surface part 11S, chopped metha aramid fibers are dispersed in a matrix in a single continuous phase consisting of epoxy resin and in an inner part 11C, chopped carbon fibers are dispersed in the matrix. This constitution provides heat resistance, a fatigue strength, and wear resistance, which are applicable for high load application.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂マトリクス中
に強化繊維を分散させた繊維強化複合樹脂歯車に関す
る。
TECHNICAL FIELD The present invention relates to a fiber-reinforced composite resin gear in which reinforcing fibers are dispersed in a resin matrix.

【0002】[0002]

【従来の技術】樹脂歯車は、歯打ち音、噛み合い音等の
騒音を低減するのに効果的なため、これまでオーディオ
製品等の軽負荷の用途で実用化されている。これを、例
えば自動車のカムシャフトタイミングギヤ等の高負荷の
用途に利用できれば、騒音低減に極めて有効であると期
待される。
2. Description of the Related Art Since resin gears are effective in reducing noises such as rattling noise and meshing noise, they have been put to practical use in light load applications such as audio products. If this can be used for high-load applications such as camshaft timing gears of automobiles, it is expected to be extremely effective in reducing noise.

【0003】それには、従来の軽負荷用途に比べて遙か
に高い耐熱性、疲労強度、耐摩耗性が要求される。例え
ば、特開平1−180056号公報に開示されているよ
うな、強化材を含まない樹脂歯車は、専ら従来の軽負荷
用途でのみ使用できるものであり、上記のような高負荷
用途には適用できない。従来、一般に耐熱性および疲労
強度を向上させる目的で、特開昭60−184456号
公報に開示されているように、カーボン繊維やガラス繊
維等の高強度繊維を樹脂マトリクス中に分散させた繊維
強化複合樹脂歯車が提案されている。
It is required to have much higher heat resistance, fatigue strength and wear resistance than those of conventional light load applications. For example, a resin gear containing no reinforcing material as disclosed in Japanese Patent Application Laid-Open No. 1-180056 can be used only for conventional light load applications, and is applicable to the above high load applications. Can not. Conventionally, for the purpose of generally improving heat resistance and fatigue strength, as disclosed in JP-A-60-184456, fiber reinforced by dispersing high strength fibers such as carbon fibers and glass fibers in a resin matrix. Composite resin gears have been proposed.

【0004】しかし、本発明者が詳細に検討した結果、
上記提案の繊維強化複合樹脂歯車は、上記のような高強
度繊維を用いたことにより複合材料としての疲労強度は
向上するものの、現在の実用材料の範囲では高強度繊維
は同時に高弾性率でもあるため、歯車の噛み合い接触面
圧も大きくなり、耐摩耗性の向上に限界があることが分
かった。耐摩耗性を確保するために、逆に歯車全体を低
弾性率の繊維で補強すれば、低弾性率であることにより
接触面圧が低下して耐摩耗性は向上できるものの、現在
の実用材料の範囲では低弾性率の繊維は同時に低強度で
もあるため疲労強度も低下してしまう。
However, as a result of a detailed study by the present inventor,
Although the fiber-reinforced composite resin gear of the above proposal improves the fatigue strength as a composite material by using the high-strength fiber as described above, the high-strength fiber has a high elastic modulus at the same time in the range of the current practical materials. Therefore, it was found that the meshing contact surface pressure of the gears also increased, and there was a limit to the improvement of wear resistance. Conversely, if the entire gear is reinforced with fibers having a low elastic modulus in order to secure abrasion resistance, the contact surface pressure will decrease due to the low elastic modulus, and abrasion resistance can be improved. In the range of 1, the fiber having a low elastic modulus also has a low strength at the same time, so that the fatigue strength also decreases.

【0005】また、特開平1−104467号公報に
は、歯面にポリテトラフロロエチレン系繊維から成る布
帛を密着成形して耐摩耗性および騒音低減とを確保した
歯車が提案されている。この歯車は、歯面の布帛が低弾
性率であるため、接触面圧は比較的低く抑えられるが、
歯車本体と布帛との間に不可避的に接着界面が存在する
ことになり、高負荷の場合や回転変動などの衝撃的な入
力を伝達する場合には、接着界面で表層布帛が剥離し易
く、耐久性が低くなることが避けられない。
Further, Japanese Patent Application Laid-Open No. 1-104467 proposes a gear in which a cloth made of polytetrafluoroethylene fiber is closely molded on the tooth surface to ensure wear resistance and noise reduction. In this gear, the contact surface pressure is kept relatively low because the tooth surface cloth has a low elastic modulus,
An adhesive interface inevitably exists between the gear body and the fabric, and when a shocking input such as a high load or rotation fluctuation is transmitted, the surface fabric easily peels off at the adhesive interface, It is inevitable that the durability will decrease.

【0006】[0006]

【発明が解決しようとする課題】本発明は、自動車のよ
うな高負荷用途に適用できる高い耐熱性、疲労強度、耐
摩耗性を兼備した繊維強化複合樹脂歯車を提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fiber-reinforced composite resin gear having high heat resistance, fatigue strength and wear resistance, which can be applied to high load applications such as automobiles.

【0007】[0007]

【課題を解決するための手段】上記の目的は、本発明に
よれば、連続体としての樹脂マトリクス中に強化繊維を
分散させた繊維強化複合樹脂歯車において、歯面を含む
表層部が弾性率10GPa以下であり、該表層部に連続
した内部が疲労強度50MPa以上であることを特徴と
する繊維強化複合樹脂歯車によって達成される。
According to the present invention, the above object is to provide a fiber-reinforced composite resin gear in which reinforcing fibers are dispersed in a resin matrix as a continuous body, and a surface layer portion including a tooth surface has an elastic modulus. It is achieved by a fiber reinforced composite resin gear having a fatigue strength of 50 MPa or more in the interior continuous with the surface layer portion of 10 GPa or less.

【0008】本発明の繊維強化複合樹脂歯車は、表層部
を低弾性率としたことにより接触面圧が低下し耐摩耗性
が向上すると同時に、内部を高疲労強度としたことによ
り歯車全体として高疲労強度を確保することができ、且
つこれら表層部と内部とが連続体としての樹脂マトリク
スで一体化されていることにより高負荷時あるいは衝撃
負荷時にも表層が剥離することがなく高い耐久性を確保
できる。
The fiber-reinforced composite resin gear of the present invention has a low elastic modulus in the surface layer to lower the contact surface pressure and improve wear resistance. Fatigue strength can be secured, and since the surface layer part and the inside are integrated with a resin matrix as a continuous body, the surface layer does not peel off even under high load or impact load, and high durability is achieved. Can be secured.

【0009】ここで、接触面圧σF は下式で計算され、
弾性率E1,E2 に対してパラメータZM を介して単調に
増加する。したがって、低弾性率の材料を用いることに
より接触面圧を低下させ、耐摩耗性を向上させることが
できる。
Here, the contact surface pressure σ F is calculated by the following equation,
The elastic moduli E 1 and E 2 monotonically increase via the parameter Z M. Therefore, the contact surface pressure can be reduced and the wear resistance can be improved by using a material having a low elastic modulus.

【0010】[0010]

【数1】 [Equation 1]

【0011】[0011]

【発明の実施の形態】本発明の繊維強化複合樹脂歯車に
おいては、典型的には、表層部の強化繊維は弾性率60
GPa以下であり、内部の強化繊維は強度3000MP
a以上である。ただしこれはあくまでも典型的な範囲を
示したものであり、繊維の体積率および配向により複合
材料として前記のように表層部の弾性率と内部の強度を
付与できる繊維であれば用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the fiber-reinforced composite resin gear of the present invention, typically, the reinforcing fibers in the surface layer portion have an elastic modulus of 60.
It is less than GPa and the reinforcing fiber inside has a strength of 3000MP
It is a or more. However, this is just a typical range, and a fiber that can impart the elastic modulus of the surface layer portion and the internal strength as described above as a composite material by the volume ratio and orientation of the fiber can be used.

【0012】現在実用されている繊維のうち、表層部の
強化繊維としては、メタアラミド繊維、ポリフェニレン
サルファイド繊維、ポリオキシメチレン繊維、アクリル
繊維、ポリエチレン繊維等が特に適しており、内部の強
化繊維としては、カーボン繊維、パラアラミド繊維、ガ
ラス繊維等が特に適している。
Among the fibers currently in practical use, meta-aramid fibers, polyphenylene sulfide fibers, polyoxymethylene fibers, acrylic fibers, polyethylene fibers and the like are particularly suitable as the reinforcing fibers in the surface layer portion, and as the internal reinforcing fibers, , Carbon fiber, para-aramid fiber, glass fiber and the like are particularly suitable.

【0013】[0013]

【実施例】【Example】

〔実施例1〕表1に示す諸元を有する繊維強化複合樹脂
歯車を作製した。図1にその概略形状を示す。図1の歯
車1は、同図(a)に示すように繊維強化複合樹脂部1
1の芯部にJIS−S450C製スチールインサート1
2を嵌め込んだ構成であり、複合樹脂部11は、歯面を
含む表層部11Sとそれに直接連続した内部11Cとか
ら成る。
Example 1 A fiber-reinforced composite resin gear having the specifications shown in Table 1 was produced. FIG. 1 shows its schematic shape. The gear 1 shown in FIG. 1 has a fiber-reinforced composite resin portion 1 as shown in FIG.
JIS-S450C steel insert 1 in the core of 1
2, the composite resin portion 11 is composed of a surface layer portion 11S including a tooth surface and an interior 11C directly continuous with the surface layer portion 11S.

【0014】[0014]

【表1】 [Table 1]

【0015】歯車1は下記の手順で作製した。歯車1の
外形と同形状の内側寸法を持つ成形型内に、強化繊維が
3次元的に絡み合った状態で密集成形した予備成形体を
セットし、型を120℃に加熱した後、型内を真空引き
してから、エポキシ樹脂を注入し、硬化させて歯車1の
複合樹脂部11を形成した。
The gear 1 was manufactured by the following procedure. In the mold having the same inner dimensions as the outer shape of the gear 1, set the preformed compact densely molded with the reinforcing fibers three-dimensionally entangled, and heat the mold to 120 ° C. After drawing a vacuum, epoxy resin was injected and cured to form the composite resin portion 11 of the gear 1.

【0016】その際、強化繊維の予備成形体は、内部1
1Cが長さ3mmのチョップトカーボン繊維(東レ「T
300」)から成り、厚さ1mmの表層部11S(歯車
全周)が長さ1mmのチョップトメタアラミド繊維(帝
人(株)「コーネックス」)から成る。予備成形体は、チ
ョップト繊維を浮遊させたスラリー水中から歯車形状の
型内へ吸引して成形した。先ず、最終寸法よりも小さい
型でカーボン繊維を吸引成形し、これを最終寸法型内に
セットし、その外側1mmの空隙にメタアラミド繊維を
吸引成形した。これを乾燥して上記のように歯車の樹脂
成形に用いた。乾燥中にスプリングバックはあるが、繊
維のからまりにより形状は保持されている。
At this time, the preform of the reinforcing fiber is the inner part 1
1C is 3mm long chopped carbon fiber (Toray "T
300 "), and the surface layer portion 11S having a thickness of 1 mm (the entire circumference of the gear) is made of chopped meta-aramid fiber having a length of 1 mm (" Conex ", Teijin Ltd.). The preform was formed by suctioning from a slurry water in which chopped fibers were suspended into a gear-shaped mold. First, carbon fibers were suction-molded with a mold having a size smaller than the final size, the carbon fibers were set in the mold with the final size, and the meta-aramid fiber was suction-molded in the void of 1 mm outside thereof. This was dried and used for resin molding of gears as described above. There is springback during drying, but the shape is retained due to the fiber entanglement.

【0017】これにより得られた歯車1の複合樹脂部1
1は、エポキシ樹脂から成る単一の連続相としてのマト
リクス中に、表層部11Sでは長さ1mmのチョップト
メタアラミド繊維が体積率30 vol%で分散し、内部1
1Cでは長さ3mmのチョップトカーボン繊維が体積率
40 vol%で分散していた。 〔実施例2〕実施例1と同一諸元の繊維強化複合樹脂歯
車を作製した。
The composite resin portion 1 of the gear 1 thus obtained
In No. 1, chopped meta-aramid fibers with a length of 1 mm were dispersed at a volume ratio of 30 vol% in the surface layer portion 11S in a matrix as a single continuous phase made of epoxy resin, and the internal 1
In 1C, chopped carbon fibers having a length of 3 mm were dispersed at a volume ratio of 40 vol%. [Example 2] A fiber-reinforced composite resin gear having the same specifications as in Example 1 was produced.

【0018】ただし、表層部11Sの強化繊維として、
メタアラミド繊維に代えて下記(a)〜(d)のいずれ
か1種のチョップト繊維を用いた。 (a)アクリル繊維 (b)ポリオキシメチレン繊維 (c)ポリフェニレンサルファイド(PPS)繊維 (d)ポリエチレン繊維 内部11Cの強化繊維としては、実施例1と同じチョッ
プトカーボン繊維を用いた。その他の条件および作製手
順も実施例1と同様であった。
However, as the reinforcing fibers of the surface layer portion 11S,
The chopped fiber of any one of the following (a) to (d) was used instead of the meta-aramid fiber. (A) Acrylic fiber (b) Polyoxymethylene fiber (c) Polyphenylene sulfide (PPS) fiber (d) Polyethylene fiber The same chopped carbon fiber as in Example 1 was used as the reinforcing fiber inside 11C. The other conditions and the manufacturing procedure were the same as in Example 1.

【0019】これにより得られた歯車1の複合樹脂部1
1は、エポキシ樹脂から成る単一の連続相としてのマト
リクス中に、表層部11Sでは長さ1mmの(a)〜
(d)のいずれか1種のチョップト繊維が体積率30 v
ol%で分散し、内部11Cでは長さ3mmのチョップト
カーボン繊維が体積率40 vol%で分散していた。 〔実施例3〕実施例1と同一諸元の繊維強化複合樹脂歯
車を作製した。
The composite resin portion 1 of the gear 1 thus obtained
No. 1 has a length of 1 mm (a) in the surface layer portion 11S in a matrix as a single continuous phase made of epoxy resin.
The volume ratio of the chopped fiber of any one of (d) is 30 v
The chopped carbon fibers having a length of 3 mm were dispersed at a volume ratio of 40 vol% in the interior 11C. [Example 3] A fiber-reinforced composite resin gear having the same specifications as in Example 1 was produced.

【0020】ただし、内部11Cの強化繊維として、カ
ーボン繊維に代えて長さ3mmのガラス繊維(日東紡
「Eガラス」)を用いた。表層部11Sの強化繊維とし
ては、実施例1と同じチョップトメタアラミド繊維を用
いた。その他の条件および作製手順も実施例1と同様で
あった。これにより得られた歯車1の複合樹脂部11
は、エポキシ樹脂から成る単一の連続相としてのマトリ
クス中に、表層部11Sでは長さ1mmのチョップトメ
タアラミド繊維が体積率30 vol%で分散し、内部11
Cでは長さ3mmのガラス繊維が体積率40 vol%で分
散していた。 〔比較例1〕実施例1と同一諸元の繊維強化複合樹脂歯
車を作製した。
However, as the reinforcing fiber of the interior 11C, glass fiber having a length of 3 mm (Nitto Boseki "E glass") was used in place of the carbon fiber. The same chopped meta-aramid fiber as in Example 1 was used as the reinforcing fiber of the surface layer portion 11S. The other conditions and the manufacturing procedure were the same as in Example 1. The composite resin portion 11 of the gear 1 thus obtained
In the surface layer portion 11S, chopped meta-aramid fibers having a length of 1 mm are dispersed at a volume ratio of 30 vol% in a matrix as a single continuous phase made of an epoxy resin.
In C, glass fibers having a length of 3 mm were dispersed at a volume ratio of 40 vol%. [Comparative Example 1] A fiber-reinforced composite resin gear having the same specifications as in Example 1 was produced.

【0021】ただし、表層部11Sの強化繊維として、
メタアラミド繊維に代えてパラアラミド繊維(デュポン
「ケブラー」)を用いた。内部11Cの強化繊維として
は、実施例1と同じカーボン繊維を用いた。その他の条
件および作製手順も実施例1と同様であった。これによ
り得られた歯車1の複合樹脂部11は、エポキシ樹脂か
ら成る単一の連続相としてのマトリクス中に、表層部1
1Sでは長さ1mmのチョップトパラアラミド繊維が体
積率30 vol%で分散し、内部11Cでは長さ3mmの
カーボン繊維が体積率40 vol%で分散していた。 〔比較例2〕実施例1と同一諸元の繊維強化複合樹脂歯
車を作製した。
However, as the reinforcing fibers of the surface layer portion 11S,
Para-aramid fibers (Dupont “Kevlar”) were used in place of the meta-aramid fibers. The same carbon fiber as in Example 1 was used as the reinforcing fiber of the interior 11C. The other conditions and the manufacturing procedure were the same as in Example 1. The composite resin portion 11 of the gear 1 thus obtained has the surface layer portion 1 in the matrix made of epoxy resin as a single continuous phase.
In 1S, chopped para-aramid fibers having a length of 1 mm were dispersed at a volume ratio of 30 vol%, and in the interior 11C, carbon fibers having a length of 3 mm were dispersed at a volume ratio of 40 vol%. [Comparative Example 2] A fiber-reinforced composite resin gear having the same specifications as in Example 1 was produced.

【0022】ただし、歯車1の複合樹脂部11の表層部
と内部を区別せず全体の強化繊維として、実施例1の内
部11Cの強化繊維と同じチョップトカーボン繊維を用
いた。その際、予備成形体は、チョップトカーボン繊維
を浮遊させたスラリー水中から歯車形状の最終寸法型内
へ吸引して成形した。
However, the same chopped carbon fiber as the reinforcing fiber inside 11C of Example 1 was used as the entire reinforcing fiber without distinguishing the surface layer portion and the inside of the composite resin portion 11 of the gear 1. At that time, the preform was molded by suctioning from the slurry water in which the chopped carbon fibers were suspended into the gear-shaped final size die.

【0023】これにより得られた歯車1は、複合樹脂部
11全体が、エポキシ樹脂から成る単一の連続相として
のマトリクス中に長さ3mmのチョップトカーボン繊維
が体積率40 vol%で分散していた。 〔比較例3〕実施例1と同一諸元の繊維強化複合樹脂歯
車を作製した。
In the gear 1 thus obtained, the entire composite resin portion 11 is formed by dispersing chopped carbon fibers having a length of 3 mm at a volume ratio of 40 vol% in a matrix of epoxy resin as a single continuous phase. Was there. [Comparative Example 3] A fiber-reinforced composite resin gear having the same specifications as in Example 1 was produced.

【0024】ただし、歯車1の複合樹脂部11の表層部
と内部を区別せず全体の強化繊維として、実施例1の表
層部11Sの強化繊維と同じチョップトメタアラミド繊
維を用いた。その際、予備成形体は、チョップトメタア
ラミド繊維を浮遊させたスラリー水中から歯車形状の最
終寸法型内へ吸引して成形した。
However, the same chopped meta-aramid fiber as the reinforcing fiber of the surface layer portion 11S of Example 1 was used as the entire reinforcing fiber without distinguishing the surface layer portion and the inside of the composite resin portion 11 of the gear 1. At that time, the preform was formed by suctioning from the slurry water in which the chopped meta-aramid fiber was suspended into the final dimension die of the gear shape.

【0025】これにより得られた歯車1は、複合樹脂部
11全体が、エポキシ樹脂から成る単一の連続相として
のマトリクス中に長さ3mmのチョップトメタアラミド
繊維が体積率40 vol%で分散していた。実施例1,
2,3および比較例1,2,3で作製した繊維強化複合
樹脂歯車について、用いた繊維、強度、および弾性率を
表2にまとめて示す。
In the gear 1 thus obtained, the entire composite resin portion 11 is formed by dispersing chopped meta-aramid fibers having a length of 3 mm at a volume ratio of 40 vol% in a matrix of epoxy resin as a single continuous phase. Was there. Example 1,
Table 2 shows the fibers used, the strengths, and the elastic moduli of the fiber-reinforced composite resin gears produced in Nos. 2 and 3 and Comparative Examples 1, 2, and 3.

【0026】[0026]

【表2】 [Table 2]

【0027】表2に示したように、実施例1,2,3の
繊維強化複合樹脂歯車は、複合樹脂部11の内部11C
の強化繊維として強度3000MPa以上の高強度繊維
であるカーボン繊維またはガラス繊維を用い複合材料と
しての曲げ疲労強度を本発明の範囲内の50MPa以上
とし、複合樹脂部11の表層部11Sの強化繊維として
弾性率60GPa以下の低弾性率繊維であるメタアラミ
ド繊維等を用い複合材料としての弾性率を本発明の範囲
内の10GPa以下としたものである。
As shown in Table 2, the fiber-reinforced composite resin gears of Examples 1, 2, and 3 are the same as the inside 11C of the composite resin portion 11.
Carbon fiber or glass fiber, which is a high-strength fiber having a strength of 3000 MPa or more, is used as the reinforcing fiber, and the bending fatigue strength as the composite material is 50 MPa or more within the range of the present invention, and the reinforcing resin of the surface layer portion 11S of the composite resin portion 11 is The elastic modulus of the composite material is set to 10 GPa or less within the range of the present invention by using meta-aramid fiber or the like which is a low elastic modulus fiber having an elastic modulus of 60 GPa or less.

【0028】これに対して、比較例1の繊維強化複合樹
脂歯車は、複合樹脂部11の内部11Cは強度3000
MPa以上の高強度繊維であるカーボン繊維を用いて曲
げ疲労強度を本発明の範囲内の50MPa以上とした
が、複合樹脂部11の表層部11Sは弾性率190GP
aの高弾性率繊維であるパラアラミド繊維を用いて弾性
率を本発明の範囲を超える15GPaとしたものであ
る。
On the other hand, in the fiber-reinforced composite resin gear of Comparative Example 1, the inside 11C of the composite resin portion 11 has a strength of 3000.
Although the bending fatigue strength was set to 50 MPa or more within the range of the present invention by using carbon fiber which is a high strength fiber of MPa or more, the surface layer portion 11S of the composite resin portion 11 has an elastic modulus of 190 GP.
The elastic modulus was set to 15 GPa, which exceeds the range of the present invention, by using the para-aramid fiber having a high elastic modulus of a.

【0029】また、比較例2および3の繊維強化複合樹
脂歯車は、表層部と内部とを区別せずに複合樹脂部11
全体について同一の強化繊維を用いたものであり、比較
例2では高強度繊維であるカーボン繊維、比較例3では
低弾性率繊維であるメタアラミド繊維を用いである。実
施例1,2,3および比較例1,2,3で作製した繊維
強化複合樹脂歯車を、同歯形のスチール歯車(JIS−
S450C)と噛み合わせて、120℃、6000rp
m、トルク20Nmにてモータリング耐久試験を行っ
た。この試験条件は、自動車カムシャフトタイミングギ
ヤとして用いる場合等の高負荷を想定したものである。
従来の繊維強化複合樹脂歯車が用いられていたオーディ
オ製品等の軽負荷用途の場合は、トルクは上記試験で用
いた20Nmに対して1/10〜1/100程度のオー
ダーであり、温度も室温と低く、回転数も上記試験の数
分の1以下程度の低速である。
In the fiber-reinforced composite resin gears of Comparative Examples 2 and 3, the composite resin portion 11 was made without distinguishing between the surface layer portion and the inside.
The same reinforcing fibers were used for the whole, Comparative Example 2 used carbon fibers which were high strength fibers, and Comparative Example 3 used meta-aramid fibers which are low elastic modulus fibers. The fiber-reinforced composite resin gears manufactured in Examples 1, 2, and 3 and Comparative Examples 1, 2, and 3 were replaced with steel gears of the same tooth shape (JIS-
S450C), mesh at 120 ℃, 6000rp
A motoring durability test was conducted at m and torque of 20 Nm. These test conditions assume a high load when used as an automobile camshaft timing gear.
In the case of light load applications such as audio products where conventional fiber reinforced composite resin gears were used, the torque is on the order of 1/10 to 1/100 with respect to 20 Nm used in the above test, and the temperature is room temperature. The rotation speed is low, which is a fraction of the above test or less.

【0030】試験結果を試験時間と歯面摩耗深さとの関
係でまとめて図2に示す。図2から分かるように、本発
明の実施例1,2,3の歯車は、200時間までの試験
時間に対して歯面摩耗深さが0.1mm未満であり、優
れた耐久性を示した。これに対して、比較例1の繊維強
化複合樹脂歯車は、内部11Cは本発明の範囲内の高強
度を有するものの、表層部11Sが本発明の範囲を超え
る高弾性率としたために接触面圧が高くなり、試験時間
の経過に伴って徐々に歯面摩耗が進行し、200時間で
は摩耗深さが0.45mmにまで増加している。
The test results are summarized in FIG. 2 in relation to the test time and the tooth surface wear depth. As can be seen from FIG. 2, the gears of Examples 1, 2, and 3 of the present invention had a tooth surface wear depth of less than 0.1 mm for a test time of up to 200 hours and exhibited excellent durability. . On the other hand, in the fiber-reinforced composite resin gear of Comparative Example 1, the inner surface 11C has high strength within the range of the present invention, but the surface layer portion 11S has a high elastic modulus exceeding the range of the present invention, and therefore the contact surface pressure is high. And the tooth surface wear gradually progressed as the test time passed, and the wear depth increased to 0.45 mm at 200 hours.

【0031】また、比較例2は複合樹脂部11全体を高
強度繊維であるカーボン繊維で強化したため、全体とし
て高強度ではあるが、比較例1よりも更に接触面圧が高
くなり、比較例1よりも急速に摩耗が進行し、75時間
経過した時点で摩耗深さが1mmにまで達している。一
方、比較例3は複合樹脂部11全体を低弾性率繊維であ
るメタアラミド繊維で強化したため、必然的に全体とし
て低疲労強度となり、ほぼ40時間経過した時点で疲労
破壊している。
Further, in Comparative Example 2, since the entire composite resin portion 11 was reinforced with carbon fiber which is a high-strength fiber, although the overall strength is high, the contact surface pressure becomes higher than that of Comparative Example 1, and Comparative Example 1 Wear progresses more rapidly than that, and the wear depth reaches 1 mm after 75 hours. On the other hand, in Comparative Example 3, since the entire composite resin portion 11 was reinforced with the meta-aramid fiber having the low elastic modulus fiber, the fatigue strength was inevitably low as a whole, and the fatigue fracture occurred at the time of about 40 hours.

【0032】このように、本発明に従い表層部11Sを
10GPa以下の低弾性率とし且つ内部11Cを50M
Pa以上の高疲労強度としたときにのみ、歯面摩耗と疲
労破壊とを同時に抑制することができる。次に、本発明
の繊維強化複合樹脂歯車において、歯面摩耗を抑制する
ために望ましい表層部11Sの厚さを検討した。 〔実施例4〕実施例1と同一諸元の繊維強化複合樹脂歯
車を作製した。
As described above, according to the present invention, the surface layer portion 11S has a low elastic modulus of 10 GPa or less and the inner portion 11C has 50 M.
Only when the fatigue strength is higher than Pa, it is possible to simultaneously suppress tooth surface wear and fatigue fracture. Next, in the fiber-reinforced composite resin gear of the present invention, the desired thickness of the surface layer portion 11S in order to suppress tooth surface wear was examined. [Example 4] A fiber-reinforced composite resin gear having the same specifications as in Example 1 was produced.

【0033】ただし、メタアラミド繊維により強化する
表層部11Sの厚さを0.1mm、0.3mm、0.5
mm、1mm、および1.5mmの5水準に変えて作製
した。この繊維強化複合樹脂歯車について上記と同じ条
件で200時間のモータリング耐久試験を行った。得ら
れた結果を表層部厚さと200時間歯面摩耗深さとの関
係で図3にまとめて示す。
However, the thickness of the surface layer portion 11S reinforced by the meta-aramid fiber is 0.1 mm, 0.3 mm, 0.5.
mm, 1 mm, and 1.5 mm were used for the production. This fiber-reinforced composite resin gear was subjected to a motoring durability test for 200 hours under the same conditions as above. The obtained results are shown together in FIG. 3 in relation to the surface layer thickness and the 200-hour tooth surface wear depth.

【0034】図3から分かるように、歯面摩耗を抑制す
る効果は表層部厚さを0.3mm以上としたときに特に
顕著になり、表層部厚さを0.5mm以上とすると更に
その効果が顕著になる。ただし、低弾性率である表層部
が余り厚過ぎると、歯の内部を構成する高強度部分が相
対的に少なくなり、本来の繊維強化の効果が低下するの
で、一つの目安として低弾性率の表層部の厚さは歯元厚
さの1/4程度までとすることが適当であると考えられ
る。
As can be seen from FIG. 3, the effect of suppressing the tooth surface wear becomes particularly remarkable when the surface layer thickness is 0.3 mm or more, and further when the surface layer thickness is 0.5 mm or more. Becomes noticeable. However, if the surface layer having a low elastic modulus is too thick, the high-strength portion that constitutes the inside of the tooth will be relatively small, and the original fiber-reinforced effect will be reduced. It is considered appropriate to set the thickness of the surface layer portion to about 1/4 of the tooth root thickness.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
自動車のような高負荷用途に適用できる高い耐熱性、疲
労強度、耐摩耗性を兼備した繊維強化複合樹脂歯車が得
られる。
As described above, according to the present invention,
A fiber-reinforced composite resin gear having high heat resistance, fatigue strength, and wear resistance that can be applied to high-load applications such as automobiles can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例および比較例において作製した
繊維強化複合樹脂歯車の概略形状を示す(a)斜視図お
よび(b)部分断面図である。
1A is a perspective view and FIG. 1B is a partial sectional view showing a schematic shape of a fiber-reinforced composite resin gear manufactured in Examples and Comparative Examples.

【図2】図2は、実施例および比較例について、モータ
リング耐久試験における試験時間と歯面摩耗深さとの関
係を示すグラフである。
FIG. 2 is a graph showing a relationship between a test time and a tooth surface wear depth in a motoring durability test for Examples and Comparative Examples.

【図3】図3は、本発明の繊維強化複合樹脂歯車におけ
る低弾性率の表層部の厚さと200時間歯面摩耗深さと
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the thickness of the low elastic modulus surface layer portion and the 200-hour tooth surface wear depth in the fiber-reinforced composite resin gear of the present invention.

【符号の説明】[Explanation of symbols]

1…歯車 11…複合樹脂部 11S…表層部 11C…内部 12…スチールインサート 1 ... Gear 11 ... Composite resin part 11S ... Surface layer part 11C ... Inside 12 ... Steel insert

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続体としての樹脂マトリクス中に強化
繊維を分散させた繊維強化複合樹脂歯車において、 歯面を含む表層部が弾性率10GPa以下であり、該表
層部に連続した内部が疲労強度50MPa以上であるこ
とを特徴とする繊維強化複合樹脂歯車。
1. In a fiber-reinforced composite resin gear in which reinforcing fibers are dispersed in a resin matrix as a continuous body, the surface layer portion including the tooth surface has an elastic modulus of 10 GPa or less, and the interior continuous to the surface layer portion has fatigue strength. A fiber-reinforced composite resin gear having a pressure of 50 MPa or more.
【請求項2】 前記表層部の強化繊維が弾性率60GP
a以下であり、前記内部の強化繊維が強度3000MP
a以上であることを特徴とする請求項1記載の繊維強化
複合樹脂歯車。
2. The reinforcing fiber in the surface layer portion has an elastic modulus of 60 GP.
a or less, and the reinforcing fiber inside has a strength of 3000MP
The fiber-reinforced composite resin gear according to claim 1, which is a or more.
【請求項3】 前記表層部の強化繊維は、メタアラミド
繊維、ポリフェニレンサルファイド繊維、ポリオキシメ
チレン繊維、アクリル繊維、およびポリエチレン繊維か
ら成る群から選択され、前記内部の強化繊維は、カーボ
ン繊維、パラアラミド繊維、およびガラス繊維から成る
群から選択される請求項2記載の繊維強化複合樹脂歯
車。
3. The reinforcing fibers in the surface layer are selected from the group consisting of meta-aramid fibers, polyphenylene sulfide fibers, polyoxymethylene fibers, acrylic fibers, and polyethylene fibers, and the internal reinforcing fibers are carbon fibers and para-aramid fibers. And a fiber-reinforced composite resin gear according to claim 2, selected from the group consisting of:
JP08663896A 1996-04-09 1996-04-09 Fiber reinforced composite resin gear Expired - Lifetime JP3785214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08663896A JP3785214B2 (en) 1996-04-09 1996-04-09 Fiber reinforced composite resin gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08663896A JP3785214B2 (en) 1996-04-09 1996-04-09 Fiber reinforced composite resin gear

Publications (2)

Publication Number Publication Date
JPH09280343A true JPH09280343A (en) 1997-10-28
JP3785214B2 JP3785214B2 (en) 2006-06-14

Family

ID=13892572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08663896A Expired - Lifetime JP3785214B2 (en) 1996-04-09 1996-04-09 Fiber reinforced composite resin gear

Country Status (1)

Country Link
JP (1) JP3785214B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260922A (en) * 2007-03-20 2008-10-30 Shin Kobe Electric Mach Co Ltd Reinforcing-fiber base material for use in resin molded body, and fiber-reinforced resin molded body
KR101162324B1 (en) * 2006-10-02 2012-07-04 주식회사 만도 manufacture method and Worm wheel of electrical power steering
CN103035225A (en) * 2011-09-30 2013-04-10 株式会社河合乐器制作所 Bearing element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101162324B1 (en) * 2006-10-02 2012-07-04 주식회사 만도 manufacture method and Worm wheel of electrical power steering
JP2008260922A (en) * 2007-03-20 2008-10-30 Shin Kobe Electric Mach Co Ltd Reinforcing-fiber base material for use in resin molded body, and fiber-reinforced resin molded body
CN103035225A (en) * 2011-09-30 2013-04-10 株式会社河合乐器制作所 Bearing element
JP2013076916A (en) * 2011-09-30 2013-04-25 Kawai Musical Instr Mfg Co Ltd Bearing member

Also Published As

Publication number Publication date
JP3785214B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
US5098346A (en) Sprocket
JP3009311B2 (en) Fiber-reinforced resin coil spring and method of manufacturing the same
US4451528A (en) Composite fiber reinforced member and method
EP1563027B1 (en) Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
CN101200551B (en) Vehicle composite friction material containing potassium titanate whisker and preparation method thereof
Peijs et al. Hybrid composites based on polyethylene and carbon fibres. Part 6: Tensile and fatigue behaviour
US6601334B1 (en) Fishing rod
GB2227178A (en) Golf club shaft
JP3310484B2 (en) Fiber reinforced resin composite
JPH09280343A (en) Fiber-reinforced composite resin gear
JP2007030793A (en) Arm-shaped stress transmitting member
JP2959905B2 (en) Fiber reinforced resin gear
JP2825406B2 (en) Laminated body and method for producing the same
JPH11322960A (en) Friction material
JP2528971B2 (en) Clutch facing and manufacturing method thereof
JP4524481B2 (en) Manufacturing method of fiber reinforced resin composite
JP2946240B2 (en) Method for producing fiber-reinforced polyurethane molded article
JP3911932B2 (en) Resin gear and manufacturing method thereof
JPS6287332A (en) Manufacture of fiber reinforced plastic transmission shaft
JP4302220B2 (en) Tubular body
JPH0642608A (en) Resin gear reinforced with fiber
JP3109657B2 (en) Fishing rod
JPS5859820A (en) Gear
JPS60138215A (en) Cam shaft made of fiber reinforced resin
JPS62215134A (en) Two-layer formed clutch facing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term