JPH09279265A - Equipment for recovering zinc in dust and operation - Google Patents
Equipment for recovering zinc in dust and operationInfo
- Publication number
- JPH09279265A JPH09279265A JP9156896A JP9156896A JPH09279265A JP H09279265 A JPH09279265 A JP H09279265A JP 9156896 A JP9156896 A JP 9156896A JP 9156896 A JP9156896 A JP 9156896A JP H09279265 A JPH09279265 A JP H09279265A
- Authority
- JP
- Japan
- Prior art keywords
- dust
- furnace
- zinc
- main body
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture Of Iron (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、金属精錬炉から排
出される主としてFeO,Fe2 O3 ,ZnOを含有す
るダストから、有用金属である亜鉛を回収する設備及び
操業方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a facility and an operating method for recovering zinc, which is a useful metal, from dust containing mainly FeO, Fe 2 O 3 and ZnO discharged from a metal refining furnace.
【0002】[0002]
【従来の技術】高炉一環製鉄所において、金属精錬炉か
ら排出されるダストは鉄分等の有効成分を回収等の観点
から焼結原料として大半が利用されてきた。一方、高炉
2次灰及び転炉ダスト等の亜鉛を数%含むダストの焼結
原料への使用は、高炉耐火物に悪影響を及ぼすため、焼
結原料としての使用は厳しく制限されているので、工場
によっては、高炉2次灰及び転炉ダスト等の亜鉛を数%
含むダストの多くは埋め立てられている。2. Description of the Related Art Most of the dust discharged from a metal refining furnace has been used as a sintering raw material from the viewpoint of recovering effective components such as iron in a blast furnace part steel mill. On the other hand, the use of dust containing a few percent of zinc, such as blast furnace secondary ash and converter dust, as a sintering raw material has a bad effect on blast furnace refractories, so its use as a sintering raw material is severely restricted. Depending on the factory, zinc in secondary ash of blast furnace and converter dust may be several percent.
Much of the dust, including, is landfilled.
【0003】一方、製鋼用電気炉において、亜鉛メッキ
鋼板のスクラップを含む鋼スクラップを原料にして鋼を
製造するに際し、精錬中に発生するダストの中には、鉄
の他に有用金属が、例えば亜鉛が10〜30%、と多量
に含有されている。このようなダストをそのまま廃棄す
ることは、資源の有効利用上極めて不経済であるのみな
らず、前記有用金属は反面有害物質であることから、こ
れをそのまま廃棄することは公害上重大な問題である。[0003] On the other hand, in the steelmaking electric furnace, when steel is manufactured from steel scrap including scrap of galvanized steel sheet as a raw material, useful metals other than iron are included in dust generated during refining, for example. Zinc is contained in a large amount of 10 to 30%. Discarding such dust as it is is not only extremely uneconomical in terms of effective use of resources, but also because the useful metal is a harmful substance, discarding this as it is is a serious pollution problem. is there.
【0004】図2に亜鉛含有ダストにおける亜鉛含有率
とその利用方法を示す。亜鉛含有率が約15%以上であ
れば亜鉛精錬業者が引き取るが、亜鉛含有率が約15〜
50%の場合、亜鉛1次精錬が必要となり処理コストが
高くつくため、亜鉛含有率に応じた処理費用をつけて亜
鉛含有ダストを引き取ってもらうことになり、電気炉に
おける製鋼コストを押し上げる結果となっている。亜鉛
含有率が約50%以上の場合、亜鉛2次精錬のみで精錬
可能となり処理コストが安くなるため、亜鉛含有量に応
じた価格で亜鉛含有ダストを販売することになる。FIG. 2 shows the zinc content in zinc-containing dust and the method of using it. If the zinc content is about 15% or more, the zinc smelter takes over the zinc content, but the zinc content is about 15 to
In the case of 50%, the primary refining of zinc is required and the processing cost is high. Therefore, the zinc-containing dust is taken at the processing cost according to the zinc content, and the steelmaking cost in the electric furnace is increased. Has become. When the zinc content is about 50% or more, refining can be performed only by zinc secondary refining and the processing cost is reduced. Therefore, zinc-containing dust is sold at a price corresponding to the zinc content.
【0005】一方、亜鉛含有率が約0.5%以下であれ
ば、焼結原料としての使用が可能で、亜鉛含有率が約2
%以下であれば、鉄源としてセメント原料で使用可能で
ある。従って、亜鉛含有率が約2%〜15%の亜鉛含有
ダスト、例えば高炉2次灰及び転炉ダスト等は再利用が
困難である。On the other hand, if the zinc content is about 0.5% or less, it can be used as a sintering raw material, and the zinc content is about 2%.
% Or less, the iron source can be used as a cement raw material. Therefore, it is difficult to reuse zinc-containing dust having a zinc content of about 2% to 15%, for example, blast furnace secondary ash and converter dust.
【0006】これらの課題を解決するために、溶融スラ
グに電気炉ダストペレットをバブリングガスと共に吹き
込み、気化する亜鉛を主体とする金属酸化物を回収し、
亜鉛を主体とする金属酸化物を濃縮する方法が特公昭6
0−28894号、特公昭60−28895号、特公昭
60−28896号、特公昭60−28897号公報等
で提案されている。しかるに、この方法では、なお以下
の課題を抱えている。 溶融スラグの顕熱を利用して亜鉛を還元及び気化する
ために、溶融スラグの量に対して処理する電気炉ダスト
の量に制限があり、大量の電気炉ダストの処理ができな
い。 電気炉ダスト中の鉄分は、溶融スラグの顕熱を利用し
て溶解され、溶融スラグ中に混ざり合うため、電気炉ダ
スト中の鉄分を有効に回収できない。In order to solve these problems, electric furnace dust pellets are blown into the molten slag together with bubbling gas to recover vaporized zinc-based metal oxides.
A method for concentrating metal oxides mainly composed of zinc is disclosed in
No. 0-28894, Japanese Patent Publication No. 60-28895, Japanese Patent Publication No. 60-28896, Japanese Patent Publication No. 60-28897 and the like. However, this method still has the following problems. Since the sensible heat of the molten slag is used to reduce and vaporize zinc, the amount of electric furnace dust to be treated is limited with respect to the amount of molten slag, and a large amount of electric furnace dust cannot be treated. The iron in the electric furnace dust is melted by utilizing the sensible heat of the molten slag and is mixed in the molten slag, so that the iron in the electric furnace dust cannot be effectively recovered.
【0007】これらの課題を解決するために、亜鉛含有
ダストペレットをコークスと石炭と共にロータリーキル
ンに装入し、前記コークスと石炭によって亜鉛分を還元
及び気化し、亜鉛酸化物を濃縮する方法が特公昭61−
54094号、特開昭58−144436号公報等で提
案されている。しかるに、この方法でも、なお以下の課
題を抱えている。即ち、亜鉛含有ダストペレットの鉄分
は、亜鉛等の気化する成分以外の不純物、例えばSiO
2 ,CaO等と共に焼結され、焼結ペレットとして回収
されるため、この鉄分を有効回収するためには、別の溶
融及び還元設備が必要となる。In order to solve these problems, a method of charging zinc-containing dust pellets together with coke and coal into a rotary kiln, reducing and vaporizing the zinc content by the coke and coal, and concentrating zinc oxide is disclosed in Japanese Patent Publication. 61-
No. 54094 and Japanese Patent Application Laid-Open No. 58-144436. However, this method still has the following problems. That is, the iron content of the zinc-containing dust pellet is determined by impurities other than vaporized components such as zinc, for example, SiO 2.
2. Sintered together with CaO, etc., and recovered as sintered pellets, so that separate melting and reduction equipment is required to effectively recover this iron.
【0008】これらの課題を解決するために、特開昭5
4−158320号、特開昭56−81655号公報等
で提案されている技術として、底吹羽口から溶銑に向け
て酸素含有ガスを吹き込み、上部ランスから酸素を上吹
きし、原料、炭材、造滓剤を炉の上方且つ排ガスダクト
の途中から投入する転炉型の溶融還元炉において、前記
亜鉛含有ダストを処理する方法も考えられた。この方法
では、亜鉛含有ダスト中の鉄分はスラグ中で前記炭材に
よって還元され、溶銑として回収することが可能とな
る。In order to solve these problems, Japanese Unexamined Patent Publication No.
No. 4,158,320 and Japanese Patent Laid-Open No. 56-81655 propose a technique in which an oxygen-containing gas is blown from a bottom blowhole toward the hot metal, and oxygen is blown upward from an upper lance. Also, a method of treating the zinc-containing dust in a converter-type smelting reduction furnace in which the slag-forming agent is charged from above the furnace and from the middle of the exhaust gas duct has been considered. In this method, the iron content in the zinc-containing dust is reduced by the carbon material in the slag, and can be recovered as hot metal.
【0009】[0009]
【発明が解決しようとする課題】しかるに、この方法で
も、なお以下の課題を抱えている。 底吹羽口から溶銑に向けて酸素含有ガスを吹き込んで
いるため、溶銑の粒がスラグ中及びスラグ上に吹き上げ
られることで、燃焼性ガスと共に飛散するダスト中の鉄
分が増加する。 被処理ダスト、炭材、造滓剤を炉の上方且つ排ガスダ
クトの途中から投入するため、前記被処理ダスト、炭
材、造滓剤が排ガス流速の早い箇所を通過するため、前
記被処理ダスト、炭材、造滓剤が炉内のスラグに到達す
る前に前記燃焼性ガスと共に飛散する量が増加し、回収
されるダスト中の亜鉛以外の成分(例えば鉄分,SiO
2 ,CaO等)が増加する。However, this method still has the following problems. Since the oxygen-containing gas is blown from the bottom tuyere toward the hot metal, the hot metal particles are blown up into and onto the slag, so that the iron content in the dust scattered along with the combustible gas increases. Since the dust to be treated, the carbonaceous material, and the slag-making agent are introduced into the upper part of the furnace and from the middle of the exhaust gas duct, the dust to be treated, the carbonaceous material, and the slag-making agent pass through a place where the flow rate of the exhaust gas is fast, and thus the dust to be treated The amount of the carbonaceous material and the slag-making agent scattered with the combustible gas before reaching the slag in the furnace increases, and components other than zinc (for example, iron and SiO2) in the collected dust are increased.
2 , CaO).
【0010】上記,により、炉内に投入される被処
理ダスト、炭材、造滓剤の内、燃焼性ガスと共に飛散す
る割合が約10〜15%に達することで、結果として回
収されるダスト中の亜鉛含有率が低下するという課題が
あった。As a result of the above, the ratio of the dust to be treated, the carbonaceous material, and the slag-forming agent that are thrown into the furnace together with the combustible gas reaches about 10 to 15%, and as a result, the dust recovered. There is a problem that the zinc content in the inside is lowered.
【0011】本発明は、以上のような問題点を解決する
ためになされたものであり、その目的とするところは、
亜鉛含有ダスト中の酸化亜鉛を還元、気化し回収するこ
とで、回収されるダスト中の亜鉛含有量を約50%以上
に濃縮し、亜鉛含有量に応じた価格で亜鉛含有ダストを
販売すると共に、亜鉛含有ダスト中の鉄分を溶銑として
回収することが可能になる設備及び操業方法を提供する
ことを目的とするものである。The present invention has been made to solve the above problems, and its purpose is to:
By reducing, vaporizing and recovering zinc oxide in the zinc-containing dust, the zinc content in the recovered dust is concentrated to about 50% or more, and the zinc-containing dust is sold at a price according to the zinc content. It is an object of the present invention to provide an equipment and an operating method that enable the iron content in zinc-containing dust to be recovered as hot metal.
【0012】[0012]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、金属精錬炉から排出される主としてF
eO,Fe2 O3 ,ZnOを含有するダスト、炭材、及
び造滓剤を原料投入口より炉本体内に添加し、前記炉本
体内に酸素及び/又は酸素富化ガスを吹き込んでダスト
中の亜鉛を回収する設備において、前記炉本体の水平断
面が長方形であり、炉体の側面を水平方向に貫通してス
ラグに向けて配設された下部羽口を通じてスラグ中に酸
素及び/又は酸素富化ガスを吹き込む如くなしたことを
特徴とするものであり、および1つの原料投入口を炉本
体上面の長辺方向の一方の端部に配設し、前記炉本体か
ら排出される燃焼性ガスの排出口を炉本体上面の長辺方
向のもう一方の端部に配設したことを特徴とするもの、
もしくは2つの原料投入口を炉本体上面の長辺方向の両
方の端部に配設し、前記炉本体から排出される燃焼性ガ
スの排出口を炉本体上面の長辺方向の中心に配設したこ
とを特徴とするもの、また、ダスト処理炉本体から排出
される燃焼性ガスの排出口の下流側に、1次集塵機及び
2次集塵機を設け、前記燃焼性ガス中の飛散ダストを1
次集塵機及び2次集塵機で2段で捕集する如くなしたこ
とを特徴とするダスト中亜鉛の回収設備である。また、
前記1次集塵機で捕集される粗粒ダストを前記ダスト処
理炉本体の再び投入すると共に、前記2次集塵機で捕集
される細粒ダストを回収することを特徴とするダスト中
亜鉛の回収設備の操業方法である。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a method of producing a fuel mainly from a metal smelting furnace.
Dust containing eO, Fe 2 O 3 , ZnO, carbonaceous material, and slag-forming agent are added into the furnace body through the raw material inlet, and oxygen and / or oxygen-enriched gas is blown into the furnace body to produce dust in the dust. In the facility for recovering zinc, the furnace main body has a rectangular horizontal cross section, and oxygen and / or oxygen is introduced into the slag through a lower tuyere that is horizontally pierced through a side surface of the furnace body and is arranged toward the slag. It is characterized in that an enriched gas is blown in, and one raw material inlet is provided at one end in the long side direction of the upper surface of the furnace main body, and the combustibility discharged from the furnace main body. A gas discharge port is arranged at the other end of the upper surface of the furnace body in the long side direction,
Alternatively, two raw material inlets are provided at both ends of the upper surface of the furnace body in the long side direction, and an outlet for the combustible gas discharged from the furnace body is provided at the center of the upper surface of the furnace body in the long side direction. In addition, a primary dust collector and a secondary dust collector are provided on the downstream side of the discharge port of the combustible gas discharged from the main body of the dust processing furnace, and the scattered dust in the combustible gas is
This is a facility for recovering zinc in dust, characterized in that the secondary dust collector and the secondary dust collector collect in two stages. Also,
A facility for recovering zinc in dust, characterized in that coarse particles of dust collected by the primary dust collector are charged into the main body of the dust processing furnace again and fine particles of dust collected by the secondary dust collector are recovered. Is the operating method.
【0013】[0013]
【発明の実施の形態】本発明の溶融還元炉の炉体構造に
おいては、上記手段により、以下の作用がある。 底吹羽口から溶銑に向けて酸素含有ガスを吹き込むこ
となしに、炉体の側面を水平方向に貫通してスラグに向
けて配設された下部羽口を通じてスラグ中に酸素及び/
又は酸素富化ガスを吹き込んで、スラグのみを攪拌する
ため、溶銑の粒がスラグ中及びスラグ上に吹き上げられ
ることがなくなり、燃焼性ガスと共に飛散するダスト中
の鉄分が減少する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The furnace structure of a smelting reduction furnace according to the present invention has the following effects by the above means. Oxygen and / or oxygen in the slag is passed through the lower tuyere which is horizontally penetrated through the side surface of the furnace body toward the slag without blowing the oxygen-containing gas from the bottom tuyere toward the hot metal.
Alternatively, since oxygen-enriched gas is blown in to stir only the slag, the particles of the hot metal are not blown up into the slag and onto the slag, and the iron content in the dust scattered with the combustible gas is reduced.
【0014】1つの原料投入口を炉本体上面の長辺方
向の一方の端部に配設し、前記炉本体から排出される燃
焼性ガスの排出口を炉本体上面の長辺方向のもう一方の
端部に配設するか、もしくは2つの原料投入口を炉本体
上面の長辺方向の両方の端部に配設し、前記炉本体から
排出される燃焼性ガスの排出口を炉本体上面の長辺方向
の中心に配設するため、被処理ダスト、炭材、造滓剤が
排ガス流速の遅い箇所を通過するため、前記被処理ダス
ト、炭材、造滓剤が炉内のスラグに到達する前に前記燃
焼性ガスと共に飛散する量が減少し、回収されるダスト
中の亜鉛以外の成分(例えば鉄分,SiO2 ,CaO
等)が減少する。上記,により、炉内に投入される
被処理ダストの内、燃焼性ガスと共に飛散する割合が約
2%に低下することで、結果として回収されるダスト中
の亜鉛含有率が上昇する。One raw material inlet is provided at one end of the upper surface of the furnace main body in the long side direction, and the outlet for the combustible gas discharged from the furnace main body is provided at the other end of the upper surface of the furnace main body in the long side direction. Of the combustible gas discharged from the furnace body, and two raw material inlets are arranged at both ends of the upper surface of the furnace body in the long side direction. Since it is arranged at the center of the long side direction, the treated dust, carbonaceous material, and slag-making agent pass through a place where the flow velocity of the exhaust gas is slow. The amount of the gas that scatters with the combustible gas before it reaches the exhaust gas decreases, and the components other than zinc in the recovered dust (for example, iron, SiO 2 , CaO).
Etc.) decreases. Due to the above, the proportion of the dust to be treated, which is thrown into the furnace, scattered with the combustible gas is reduced to about 2%, and as a result, the zinc content in the recovered dust is increased.
【0015】ダスト処理炉本体から排出される燃焼性
ガスの排出口の下流側に、1次集塵機及び2次集塵機を
設け、前記燃焼性ガス中の飛散ダストを1次集塵機及び
2次集塵機で2段で捕集する如くなし、前記1次集塵機
で捕集される粗粒ダストを前記ダスト処理炉本体の再び
投入すると共に、前記2次集塵機で捕集される細粒ダス
トを回収することにより、回収されるダスト中の亜鉛含
有率が更に上昇する。 亜鉛含有ダスト中の鉄分はスラグ中で前記炭材によっ
て還元され、溶銑として回収することが可能となる。A primary dust collector and a secondary dust collector are provided on the downstream side of the discharge port of the combustible gas discharged from the main body of the dust processing furnace, and the scattered dust in the combustible gas is separated into two by the primary dust collector and the secondary dust collector. By collecting coarse particles dust collected by the primary dust collector into the main body of the dust processing furnace again and collecting fine particles dust collected by the secondary dust collector, The zinc content in the recovered dust is further increased. Iron in the zinc-containing dust is reduced by the carbon material in the slag, and can be recovered as hot metal.
【0016】[0016]
【実施例】以下、本発明の一実施例を図1に基づいて説
明する。図1は、本発明に係わる溶融還元設備の実施例
のフロー図である。水平断面が長方形の炉体1は基礎2
に固定され、炉体1の内面は水冷パネル3及び耐火物4
を内張りされており、炉体1上面の長辺方向の一方の端
部には、被処理ダスト、炭材、及び造滓剤を添加する原
料投入口5が、長辺方向のもう一方の端部には、炉体1
から発生する燃焼性ガスを排出するガス排出口6が各々
配設されている。本実施例は、1つの原料投入口5を炉
体1の上面の長辺方向の一方の端部に配設し、ガス排出
口6を炉体1の上面の長辺方向のもう一方の端部に配設
したダスト処理炉について説明しているが、本発明が2
つの原料投入口5を炉体1の上面の長辺方向の両方の端
部に配設し、ガス排出口6を炉体1上面の長辺方向の中
心に配設したダスト処理炉についても適用可能なこと
は、言うまでもない。An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a flow chart of an embodiment of a smelting reduction facility according to the present invention. The furnace body 1 with a rectangular horizontal section is the foundation 2
The inner surface of the furnace body 1 is fixed to the water cooling panel 3 and the refractory 4
Is lined, and a raw material inlet 5 for adding the dust to be treated, the carbonaceous material, and the slag forming agent is provided at one end in the long side direction of the upper surface of the furnace body 1 at the other end in the long side direction. The furnace body 1
Gas exhaust ports 6 for exhausting the combustible gas generated from the respective are provided. In this embodiment, one raw material inlet 5 is arranged at one end of the upper surface of the furnace body 1 in the long side direction, and the gas outlet 6 is arranged at the other end of the upper surface of the furnace body 1 in the long side direction. Although the dust processing furnace arranged in the section is explained,
Also applied to a dust processing furnace in which one raw material inlet 5 is provided at both ends of the upper surface of the furnace body 1 in the long side direction, and the gas outlet 6 is provided at the center of the upper surface of the furnace body 1 in the long side direction. It goes without saying that it is possible.
【0017】炉体1の底部には溶銑7が溜まり、その上
部に溶銑7より比重の軽いスラグ8が溜まっており、溶
銑7は溶銑溜まり9を介して出銑口11から、スラグは
スラグ溜まり10を介して出滓口12からそれぞれ連続
又は断続的に排出される。本実施例は、炉体1の内面が
水冷パネル3及び耐火物4を内張りされているダスト処
理炉について説明しているが、本発明が炉体1の内面が
耐火物4のみでを内張りされているダスト処理炉につい
ても適用可能なことは、言うまでもない。Hot metal 7 is accumulated at the bottom of the furnace body 1, and slag 8 having a specific gravity lower than that of the hot metal 7 is accumulated at the upper portion of the furnace body 1. The hot metal 7 is discharged from the taphole 11 through the hot metal reservoir 9 and the slag is accumulated. It is continuously or intermittently discharged from the outlet port 12 via 10. In the present embodiment, a dust treatment furnace in which the inner surface of the furnace body 1 is lined with a water-cooled panel 3 and a refractory 4 is described. However, in the present invention, the inner surface of the furnace body 1 is lined only with the refractory 4. It is needless to say that the present invention can also be applied to a dust processing furnace.
【0018】原料投入口5から投入された被処理ダスト
中の酸化鉄(FeO及びFe2 O3)及び酸化亜鉛(Z
nO)は、同じく原料投入口5から投入された炭材中炭
素分により、スラグ8中で以下の式(1),(2),
(3)に示す反応により還元される。 FeO + C→ Fe+ CO (吸熱反応) ‥‥(1) Fe2 O3 +3C→2Fe+3CO (吸熱反応) ‥‥(2) ZnO + C→ Zn+ CO (吸熱反応) ‥‥(3)Iron oxide (FeO and Fe 2 O 3 ) and zinc oxide (Z
nO) is also expressed by the following formulas (1), (2), in the slag 8 by the carbon content in the carbonaceous material that is also charged from the raw material charging port 5.
It is reduced by the reaction shown in (3). FeO + C → Fe + CO (endothermic reaction) ‥‥ (1) Fe 2 O 3 + 3C → 2Fe + 3CO (endothermic reaction) ‥‥ (2) ZnO + C → Zn + CO (endothermic reaction) ‥‥ (3)
【0019】式(1),(2)で還元された鉄分は、ス
ラグ中で粒鉄となり、この粒鉄は比重がスラグ8よりも
重いため、スラグ8内を沈降し、溶銑7に至る。一方、
式(3)で還元された金属亜鉛は、その沸点が906℃
とスラグ8の温度:約1,400℃より低いため、亜鉛
蒸気となり炉から排出される燃焼性ガスと共にガス排出
口6より排出される。The iron content reduced by the equations (1) and (2) becomes granular iron in the slag. Since the specific gravity of this granular iron is heavier than that of the slag 8, it settles in the slag 8 and reaches the hot metal 7. on the other hand,
The boiling point of metallic zinc reduced by the formula (3) is 906 ° C.
Since the temperature of the slag 8 is lower than about 1,400 ° C., it becomes zinc vapor and is discharged from the gas discharge port 6 together with the combustible gas discharged from the furnace.
【0020】また、原料投入口5から投入された炭材中
炭素分の一部は、炉体1を貫通してスラグ8に向けて配
置された下部羽口13を通じてスラグ8中に吹き込まれ
る酸素と以下の式(4)に示す反応により酸化される。 C+1/2O2 →CO (発熱反応) ‥‥(4) この溶融還元炉のエネルギー効率即ち炭材原単位は、式
(1)〜(4)の反応に必要な炭素分の合計によって決
定される。Further, part of the carbon content in the carbonaceous material charged from the raw material charging port 5 is blown into the slag 8 through the lower tuyere 13 penetrating the furnace body 1 toward the slag 8. And is oxidized by the reaction shown in the following formula (4). C + 1 / 2O 2 → CO (exothermic reaction) (4) The energy efficiency of this smelting reduction furnace, that is, the carbon material consumption rate, is determined by the total carbon content required for the reactions of formulas (1) to (4). .
【0021】さらに、上記式(1)〜(4)によりスラ
グ8中で発生したCOガス及び炭材中水素分は、炉体1
を貫通して2次燃焼帯16に向けて配設された上部羽口
14を通じて2次燃焼帯15中に吹き込まれる酸素と以
下の式(5),(6)に示す反応により酸化される。 CO+1/2O2 →CO2 (発熱反応) ‥‥(5) H2 +1/2O2 →H2 O (発熱反応) ‥‥(6)Further, the CO gas generated in the slag 8 and the hydrogen content in the carbonaceous material by the above equations (1) to (4) are
And the oxygen blown into the secondary combustion zone 15 through the upper tuyere 14 disposed toward the secondary combustion zone 16, and is oxidized by a reaction represented by the following formulas (5) and (6). CO + 1 / 2O 2 → CO 2 (exothermic reaction) (5) H 2 + 1 / 2O 2 → H 2 O (exothermic reaction) (6)
【0022】この式(5),(6)の反応を炉内2次燃
焼と呼び、この2次燃焼の度合いの大小を以下の式
(7)で定義される炉内2次燃焼率で表すことと、この
2次燃焼率は上部羽口14を通じて2次燃焼帯15中に
吹き込まれる酸素の流量を増加することで増加すること
は広く知られている。 炉内2次燃焼率=(CO2 %+H2 O%)/(CO2 %+CO%+H2 O% +H2 %) ‥‥(7) 但し、(7)式中のCO2 %,CO%,H2 O%,H2
%は、ガス排出口6における燃焼性ガスの各成分の体積
分率を示す。The reactions of the equations (5) and (6) are called secondary combustion in the furnace, and the degree of the secondary combustion is represented by the secondary combustion rate in the furnace defined by the following equation (7). It is well known that this secondary combustion rate increases by increasing the flow rate of oxygen blown into the secondary combustion zone 15 through the upper tuyere 14. Secondary combustion rate in furnace = (CO 2 % + H 2 O%) / (CO 2 % + CO% + H 2 O% + H 2 %) (7) However, CO 2 % and CO% in the equation (7) , H 2 O%, H 2
% Indicates the volume fraction of each component of the combustible gas at the gas outlet 6.
【0023】炉内2次燃焼率を上昇させると、2次燃焼
帯15における式(5),(6)の反応熱の一部がスラ
グ8に伝達し、スラグ中の式(4)の発熱反応に必要な
炭素分を減少せしめることで、炭材原単位が減少する。When the secondary combustion rate in the furnace is increased, a part of the reaction heat of the equations (5) and (6) in the secondary combustion zone 15 is transferred to the slag 8, and the heat of the equation (4) in the slag is generated. By reducing the carbon content required for the reaction, the carbonaceous material unit is reduced.
【0024】一方、炉体1で発生した高温の燃焼性ガス
は、炉体1の上部に配設されたガス排出口5、排ガスダ
クト16を通して、廃熱ボイラー17に導かれ、ガス排
出口5と排ガスダクト16の間の隙間から流入した2次
燃焼用空気中の酸素により完全燃焼し、燃焼性ガスの顕
熱、潜熱を蒸気化して回収された後、サイクロン等の1
次集塵機18、バグフィルター又は電気集塵機等の2次
集塵機19、ブロアー20、煙突23等を通して系外に
排出される。一方、廃熱ボイラー17で燃焼性ガスの顕
熱、潜熱によって高圧蒸気化された蒸気は、蒸気配管2
2を通ってタービン23及び発電器24に導かれ電力に
変換される。On the other hand, the high-temperature combustible gas generated in the furnace body 1 is guided to the waste heat boiler 17 through the gas discharge port 5 and the exhaust gas duct 16 arranged in the upper part of the furnace body 1, and the gas discharge port 5 is discharged. After being completely combusted by oxygen in the secondary combustion air that has flowed in from the gap between the exhaust gas duct 16 and the exhaust gas duct 16, the sensible heat and latent heat of the combustible gas are vaporized and recovered, and then the 1
It is discharged out of the system through a secondary dust collector 18, a secondary dust collector 19 such as a bag filter or an electric dust collector, a blower 20, a chimney 23 and the like. On the other hand, the steam that has been turned into high-pressure steam by the sensible heat and latent heat of the combustible gas in the waste heat boiler 17
2 and is guided to a turbine 23 and a generator 24 to be converted into electric power.
【0025】本実施例は、炉体1で発生した高温の燃焼
性ガスを完全燃焼し、燃焼性ガスの顕熱、潜熱を蒸気化
して回収し、タービン23及び発電器24により電力に
変換するダスト処理炉について説明しているが、本発明
が前記燃焼性ガスを未燃ガスのままで回収するダスト処
理炉についても適用可能なことは、言うまでもない。In this embodiment, the high temperature combustible gas generated in the furnace body 1 is completely combusted, the sensible heat and latent heat of the combustible gas are vaporized and recovered, and converted into electric power by the turbine 23 and the generator 24. Although the dust treatment furnace has been described, it goes without saying that the present invention is also applicable to a dust treatment furnace for recovering the combustible gas in an unburned state.
【0026】一方、前記亜鉛蒸気は、炉体1から排出さ
れる燃焼性ガスと共にガス排出口6より排出された後、
廃熱ボイラー17中で冷却されると共に、前記完全燃焼
の課程で酸化され再び酸化亜鉛の細粒となる。この酸化
亜鉛の細粒は、飛散ダスト中の他の成分(例えば鉄分,
SiO2 ,CaO,炭素分等)と共にサイクロン等の1
次集塵機18、バグフィルター又は電気集塵機等の2次
集塵機19によって捕集されるわけであるが、酸化亜鉛
は、前述のように一旦蒸気化しているため他のダスト成
分より粒度が小さく、サイクロン等の1次集塵機18を
通過して、バグフィルター又は電気集塵機等の2次集塵
機18によって捕集される割合が他のダスト成分より高
い。以下の表1に、発明者らが実炉試験等で求めた各ダ
スト成分の1次集塵機18及び2次集塵機19での捕集
割合を示す。On the other hand, after the zinc vapor is discharged from the gas discharge port 6 together with the combustible gas discharged from the furnace body 1,
While being cooled in the waste heat boiler 17, it is oxidized in the course of the complete combustion and becomes fine particles of zinc oxide again. The fine particles of zinc oxide are used for other components (for example, iron,
Cyclone etc. together with SiO 2 , CaO, carbon etc. 1
Although it is collected by the secondary dust collector 18, a secondary dust collector 19 such as a bag filter or an electric dust collector, since zinc oxide is once vaporized as described above, it has a smaller particle size than other dust components, and a cyclone or the like. After passing through the primary dust collector 18 of No. 1, the ratio of being collected by the secondary dust collector 18 such as a bag filter or an electric dust collector is higher than other dust components. Table 1 below shows the collection ratio of each dust component in the primary dust collector 18 and the secondary dust collector 19 obtained by the inventors in an actual furnace test or the like.
【0027】[0027]
【表1】 [Table 1]
【0028】従って、1次集塵機18で捕集される粗粒
ダストを炉体1に再び投入すると共に、2次集塵機19
で捕集される細粒ダストを回収することにより、回収さ
れるダスト中の亜鉛含有率がさらに上昇する。また、炉
体1から排出される燃焼性ガスと共にガス排出口から排
出される飛散ダスト中の炭素分は、下流側に前記完全燃
焼型の廃熱ボイラー17を配した場合には、その約90
%が完全燃焼の過程で酸化され、CO2 ガスとなること
も発明者らの実炉試験等で求められている。Therefore, the coarse dust collected by the primary dust collector 18 is charged into the furnace body 1 again, and the secondary dust collector 19 is introduced.
By recovering the fine-grained dust collected in, the zinc content in the recovered dust is further increased. The carbon content in the scattered dust discharged from the gas discharge port together with the combustible gas discharged from the furnace body 1 is about 90% when the complete combustion type waste heat boiler 17 is arranged on the downstream side.
It is also required by the inventors' actual furnace test that the carbon dioxide is oxidized to CO 2 gas in the process of complete combustion.
【0029】以下の表2に、高炉2次灰の成分の1例を
示す。また、それを従来技術(特開昭56−81655
公報等で提案されている転炉型の溶融還元炉)及び本発
明に係わるダスト中亜鉛の回収設備で処理した場合の、
1次集塵機18で捕集される粗粒ダスト(炉体1に再び
投入)及び2次集塵機19で捕集される細粒ダスト(回
収ダスト)の成分の1例を表3に示す。回収される細粒
ダストの亜鉛含有率が従来技術では約43%であったの
が、本発明に係わるダスト中亜鉛の回収設備では約70
%にまで濃縮することができた。Table 2 below shows an example of the components of the secondary ash of the blast furnace. In addition, the conventional technique (Japanese Patent Laid-Open No. 56-81655)
(Converter type smelting reduction furnace proposed in the gazette and the like) and when treated with a facility for recovering zinc in dust according to the present invention,
Table 3 shows an example of the components of the coarse particle dust (recharged to the furnace body 1) collected by the primary dust collector 18 and the fine particle dust (recovered dust) collected by the secondary dust collector 19. The zinc content of the fine dust collected was about 43% in the prior art, but about 70% in the zinc dust recovery equipment according to the present invention.
Could be concentrated to%.
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【表3】 [Table 3]
【0032】[0032]
【発明の効果】本発明の溶融還元炉の炉体構造において
は、上記手段により、以下の効果が期待できる。 底吹羽口から溶銑に向けて酸素含有ガスを吹き込むこ
となしに、炉体の側面を水平方向に貫通してスラグに向
けて配設された下部羽口を通じてスラグ中に酸素及び/
又は酸素富化ガスを吹き込んで、スラグのみを攪拌する
ため、溶銑の粒がスラグ中及びスラグ上に吹き上げられ
ることがなくなり、燃焼性ガスと共に飛散するダスト中
の鉄分が減少する。In the furnace body structure of the smelting reduction furnace of the present invention, the following effects can be expected by the above means. Oxygen and / or oxygen in the slag is passed through the lower tuyere which is horizontally penetrated through the side surface of the furnace body toward the slag without blowing the oxygen-containing gas from the bottom tuyere toward the hot metal.
Alternatively, since oxygen-enriched gas is blown in to stir only the slag, the particles of the hot metal are not blown up into the slag and onto the slag, and the iron content in the dust scattered with the combustible gas is reduced.
【0033】1つの原料投入口を炉本体上面の長辺方
向の一方の端部に配設し、前記炉本体から排出される燃
焼性ガスの排出口を炉本体上面の長辺方向のもう一方の
端部に配設するか、もしくは、2つの原料投入口を炉本
体上面の長辺方向の両方の端部に配設し、前記炉本体か
ら排出される燃焼性ガスの排出口を炉本体上面の長辺方
向の中心に配設するため、被処理ダスト、炭材、造滓剤
が排ガス流速の遅い箇所を通過し、そのため、前記被処
理ダスト、炭材、造滓剤が炉内のスラグに到達する前に
前記燃焼性ガスと共に飛散する量が減少し、回収される
ダスト中の亜鉛以外の成分(例えば鉄分,SiO2 ,C
aO等)が減少する。上記,により、炉内に投入さ
れる被処理ダストの内、排ガスと共に飛散する割合が約
2%に低下することで、結果として回収されるダスト中
の亜鉛含有率が上昇する。One raw material inlet is arranged at one end of the upper surface of the furnace main body in the long side direction, and the outlet for the combustible gas discharged from the furnace main body is provided at the other end of the upper surface of the furnace main body in the long side direction. Or two raw material inlets at both ends of the upper surface of the furnace body in the long side direction, and the outlets for the combustible gas discharged from the furnace body are Since it is arranged in the center of the long side of the upper surface, the treated dust, carbonaceous material, and slag-forming agent pass through a location where the flow velocity of the exhaust gas is slow. The amount that scatters with the combustible gas before reaching the slag is reduced, and the components other than zinc in the recovered dust (for example, iron, SiO 2 , C
aO) decreases. Due to the above, the proportion of the dust to be treated that is thrown into the furnace and scattered with the exhaust gas is reduced to about 2%, and as a result, the zinc content in the recovered dust is increased.
【0034】ダスト処理炉本体から排出される燃焼性
ガスの排出口の下流側に、1次集塵機及び2次集塵機を
設け、前記燃焼性ガス中の飛散ダストを1次集塵機及び
2次集塵機で2段で捕集する如くなし、前記1次集塵機
で捕集される粗粒ダストを前記ダスト処理炉本体に再び
投入すると共に、前記2次集塵機で捕集される細粒ダス
トを回収することにより、回収されるダスト中の亜鉛含
有率がさらに上昇する。 亜鉛含有ダスト中の鉄分はスラグ中で前記炭材によっ
て還元され、溶銑として回収することが可能となる。A primary dust collector and a secondary dust collector are provided on the downstream side of the outlet of the combustible gas discharged from the main body of the dust processing furnace, and the scattered dust in the combustible gas is separated into two by the primary dust collector and the secondary dust collector. By collecting coarse particles dust collected by the primary dust collector into the main body of the dust treatment furnace again and collecting fine particles dust collected by the secondary dust collector, The zinc content in the recovered dust is further increased. Iron in the zinc-containing dust is reduced by the carbon material in the slag, and can be recovered as hot metal.
【図1】本発明の一実施例のフロー図。FIG. 1 is a flowchart of one embodiment of the present invention.
1…炉体 2…基礎 3…水冷パネル 4…耐火物 5…原料投入口 6…ガス排出口 7…溶銑 8…スラグ 9…溶銑溜まり 10…スラグ溜まり 11…出銑口 12…出滓口 13…下部羽口 14…上部羽口 15…2次燃焼帯 16…排ガスダクト 17…廃熱ボイラー 18…1次集塵機 19…2次集塵機 20…ブロアー 21…煙突 22…蒸気配管 23…タービン 24…発電器 DESCRIPTION OF SYMBOLS 1 ... Furnace body 2 ... Foundation 3 ... Water-cooled panel 4 ... Refractory 5 ... Raw material inlet 6 ... Gas outlet 7 ... Hot metal 8 ... Slag 9 ... Hot metal pool 10 ... Slag pool 11 ... Hot metal outlet 12 ... Dust outlet 13 ... Lower tuyere 14 ... Upper tuyere 15 ... Secondary combustion zone 16 ... Exhaust gas duct 17 ... Waste heat boiler 18 ... Primary dust collector 19 ... Secondary dust collector 20 ... Blower 21 ... Chimney 22 ... Steam piping 23 ... Turbine 24 ... Power generation vessel
【手続補正書】[Procedure amendment]
【提出日】平成8年10月30日[Submission date] October 30, 1996
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0026[Correction target item name] 0026
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0026】一方、前記亜鉛蒸気は、炉体1から排出さ
れる燃焼性ガスと共にガス排出口6より排出された後、
廃熱ボイラー17中で冷却されると共に、前記完全燃焼
の課程で酸化され再び酸化亜鉛の細粒となる。この酸化
亜鉛の細粒は、飛散ダスト中の他の成分(例えば鉄分,
SiO2 ,CaO,炭素分等)と共にサイクロン等の1
次集塵機18、バグフィルター又は電気集塵機等の2次
集塵機19によって捕集されるわけであるが、酸化亜鉛
は、前述のように一旦蒸気化しているため他のダスト成
分より粒度が小さく、サイクロン等の1次集塵機18を
通過して、バグフィルター又は電気集塵機等の2次集塵
機19によって捕集される割合が他のダスト成分より高
い。以下の表1に、発明者らが実炉試験等で求めた各ダ
スト成分の1次集塵機18及び2次集塵機19での捕集
割合を示す。On the other hand, after the zinc vapor is discharged from the gas discharge port 6 together with the combustible gas discharged from the furnace body 1,
While being cooled in the waste heat boiler 17, it is oxidized in the course of the complete combustion and becomes fine particles of zinc oxide again. The fine particles of zinc oxide are used for other components (for example, iron,
Cyclone etc. together with SiO 2 , CaO, carbon etc. 1
Although it is collected by the secondary dust collector 18, a secondary dust collector 19 such as a bag filter or an electric dust collector, since zinc oxide is once vaporized as described above, it has a smaller particle size than other dust components, and a cyclone or the like. After passing through the primary dust collector 18 of No. 1, the ratio of being collected by the secondary dust collector 19 such as a bag filter or an electric dust collector is higher than other dust components. Table 1 below shows the collection ratio of each dust component in the primary dust collector 18 and the secondary dust collector 19 obtained by the inventors in an actual furnace test or the like.
【手続補正2】[Procedure amendment 2]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図1[Correction target item name] Fig. 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図1】 FIG.
Claims (4)
O,Fe2 O3 ,ZnOを含有するダスト、炭材、及び
造滓剤を原料投入口より炉本体内に添加し、前記炉本体
内に酸素及び/又は酸素富化ガスを吹き込んでダスト中
の亜鉛を回収する設備において、前記炉本体の水平断面
が長方形であり、スラグ中に酸素及び/又は酸素富化ガ
スを吹き込むための下部羽口を炉体の側面を水平方向に
貫通してスラグに向けて設置し、1つの原料投入口を炉
本体上面の長辺方向の一方の端部に配設し、前記炉本体
から排出される燃焼性ガスの排出口を炉本体上面の長辺
方向のもう一方の端部に配設したことを特徴とするダス
ト中亜鉛の回収設備。1. Mainly Fe discharged from a metal refining furnace
A dust containing O, Fe 2 O 3 , ZnO, a carbonaceous material, and a slag-forming agent are added into the furnace main body through a raw material inlet, and oxygen and / or an oxygen-rich gas is blown into the furnace main body to remove dust in the dust. In the facility for recovering zinc, the furnace main body has a rectangular horizontal cross section, and the lower tuyere for blowing oxygen and / or oxygen-enriched gas into the slag horizontally penetrates the side surface of the furnace body to slag. , One raw material inlet is provided at one end of the upper surface of the furnace main body in the long side direction, and a discharge port for the combustible gas discharged from the furnace main body is arranged in the long side direction of the upper surface of the furnace main body. A facility for recovering zinc in dust, which is disposed at the other end of the.
O,Fe2 O3 ,ZnOを含有するダスト、炭材、及び
造滓剤を原料投入口より炉本体内に添加し、前記炉本体
内に酸素及び/又は酸素富化ガスを吹き込んでダスト中
の亜鉛を回収する設備において、前記炉本体の水平断面
が長方形であり、スラグ中に酸素及び/又は酸素富化ガ
スを吹き込むための下部羽口を炉体の側面を水平方向に
貫通してスラグに向けて設置し、2つの原料投入口を炉
本体上面の長辺方向の両方の端部に配設し、前記炉本体
から排出される燃焼性ガスの排出口を炉本体上面の長辺
方向の中心に配設したことを特徴とするダスト中亜鉛の
回収設備。2. Mainly Fe discharged from the metal refining furnace
A dust containing O, Fe 2 O 3 , ZnO, a carbonaceous material, and a slag-forming agent are added into the furnace main body through a raw material inlet, and oxygen and / or an oxygen-rich gas is blown into the furnace main body to remove dust in the dust. In the facility for recovering zinc, the furnace main body has a rectangular horizontal cross section, and the lower tuyere for blowing oxygen and / or oxygen-enriched gas into the slag horizontally penetrates the side surface of the furnace body to slag. , The two raw material inlets are arranged at both ends of the upper surface of the furnace main body in the long side direction, and the outlet for the combustible gas discharged from the furnace main body is arranged in the long side direction of the upper surface of the furnace main body. A facility for recovering zinc in dust, which is arranged in the center of the.
備において、炉本体から排出される燃焼性ガスの排出口
の下流側に、1次集塵機及び2次集塵機を設け、前記燃
焼性ガス中の飛散ダストを1次集塵機と2次集塵機で2
段で捕集する如くなしたことを特徴とするダスト中亜鉛
の回収設備。3. The facility for recovering zinc in dust according to claim 1 or 2, wherein a primary dust collector and a secondary dust collector are provided on the downstream side of the outlet of the combustible gas discharged from the furnace body. 2 in the primary dust collector and the secondary dust collector
A facility for recovering zinc in dust, which is characterized by being collected in stages.
いて、前記1次集塵機で捕集される粗粒ダストを前記ダ
スト処理炉本体に再び投入すると共に、前記2次集塵機
で捕集される細粒ダストを回収することを特徴とするダ
スト中亜鉛の回収設備の操業方法。4. The facility for recovering zinc in dust according to claim 3, wherein the coarse-grained dust collected by the primary dust collector is charged again into the main body of the dust processing furnace and is also collected by the secondary dust collector. A method for operating a facility for recovering zinc in dust, characterized by recovering fine-grained dust.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9156896A JPH09279265A (en) | 1996-04-12 | 1996-04-12 | Equipment for recovering zinc in dust and operation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9156896A JPH09279265A (en) | 1996-04-12 | 1996-04-12 | Equipment for recovering zinc in dust and operation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09279265A true JPH09279265A (en) | 1997-10-28 |
Family
ID=14030136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9156896A Withdrawn JPH09279265A (en) | 1996-04-12 | 1996-04-12 | Equipment for recovering zinc in dust and operation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09279265A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113278796A (en) * | 2021-04-22 | 2021-08-20 | 昆明理工大学 | Method for leaching zinc oxide smoke dust by ozone enhanced oxidation |
-
1996
- 1996-04-12 JP JP9156896A patent/JPH09279265A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113278796A (en) * | 2021-04-22 | 2021-08-20 | 昆明理工大学 | Method for leaching zinc oxide smoke dust by ozone enhanced oxidation |
CN113278796B (en) * | 2021-04-22 | 2022-12-23 | 昆明理工大学 | Method for leaching zinc oxide smoke dust by ozone enhanced oxidation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1863943A2 (en) | Operation of iron oxide recovery furnace for energy savings, volatile metal removal and slag control | |
CA2636155C (en) | Use of an induction furnace for the production of iron from ore | |
US5431710A (en) | Method for continuously producing iron, steel or semi-steel and energy | |
US6241797B1 (en) | Process for reducing oxidic slags | |
US5728193A (en) | Process for recovering metals from iron oxide bearing masses | |
WO2008014538A1 (en) | Lead slag reduction | |
US5542963A (en) | Direct iron and steelmaking | |
US3734717A (en) | Production of phosphorus and steel from iron-containing phosphate rock | |
JP3817969B2 (en) | Method for producing reduced metal | |
JPH11152511A (en) | Treatment of steelmaking furnace dust and dust pellet | |
CN214327826U (en) | Treatment and utilization device for recovering zinc oxide by smelting reduction of suspended metallurgical zinc-containing ash | |
JPH101707A (en) | Equipment for recovering zinc in dust | |
JPH09279265A (en) | Equipment for recovering zinc in dust and operation | |
US6364929B1 (en) | Method for reprocessing steel slags and ferriferous materials | |
GB2234528A (en) | Zinc recovery process | |
JPH0332612B2 (en) | ||
EP0216618A2 (en) | Recovery of volatile metal values from metallurgical slags | |
JP3336131B2 (en) | Method for recovering zinc from zinc-containing dust | |
JPH1017916A (en) | Recovering equipment of zinc in dust | |
KR101319027B1 (en) | Manufacturing method of pig iron by using copper slag | |
EP0840807B1 (en) | Direct iron and steelmaking | |
Hegewaldt | Recycling of zinc coated steel sheets | |
WO2022069972A1 (en) | Process and system for melting agglomerates | |
Daiga et al. | Production of crude zinc oxide from steel mill waste oxides using a rotary hearth furnace | |
JPH08209211A (en) | Method for melting scrap by vertical furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030701 |