JPH09279250A - Production of electric resistance welded tube having high toughness and high strength in welded part - Google Patents

Production of electric resistance welded tube having high toughness and high strength in welded part

Info

Publication number
JPH09279250A
JPH09279250A JP8119597A JP11959796A JPH09279250A JP H09279250 A JPH09279250 A JP H09279250A JP 8119597 A JP8119597 A JP 8119597A JP 11959796 A JP11959796 A JP 11959796A JP H09279250 A JPH09279250 A JP H09279250A
Authority
JP
Japan
Prior art keywords
electric resistance
induction heater
less
transformation
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8119597A
Other languages
Japanese (ja)
Inventor
Toshiya Nojiri
俊哉 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8119597A priority Critical patent/JPH09279250A/en
Publication of JPH09279250A publication Critical patent/JPH09279250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electric resistance welded tube having high toughness and high strength in a welded part by restraining rising of local hardening on an A1 transformation line after heating and water-cooling the welded part. SOLUTION: The electric resistance welded part after welding is widely heated to A3 transformation pt. or higher with latter part induction heaters 3a, 3b making eccentricity by 10-15mm from the tube axial direction center of front part induction heaters after heating the A3 transformation pt. or higher with the front part induction heaters 1a, 1b arranged just above the welded line W. Further, this welded part is heated to A1 transformation pt. or lower with induction heaters 4a, 4b making eccentricity by ±15mm from the A1 transformation line AL after water-cooling and again water-cooling, and a fixed shape working having <=0.5% reduction ratio of area is applied to obtain the enlargement of high toughness zone and the stability of hardness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、石油、天然ガス
輸送用のラインパイプあるいは採掘用の油井管および高
強度の構造用鋼管としての使用に適した溶接部靭性に優
れた高強度電縫鋼管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength electric resistance welded steel pipe having excellent weld toughness suitable for use as a line pipe for transporting oil and natural gas, an oil well pipe for mining, and a high-strength structural steel pipe. Manufacturing method.

【0002】[0002]

【従来の技術】電縫鋼管は、素材の帯鋼を一群の成形ロ
ールによって円筒状に連続成形してオープンパイプとな
し、溶接すべき両エッジ部をコンタクトチップまたは誘
導コイルによって溶接温度まで加熱したのち、スクイズ
ロールによりその両端を加圧接合して製造される。電縫
鋼管は、続いて電縫管内外面の溶接ビードを切削したの
ち、ポストアニーラと称されている後熱処理装置によっ
て溶接部を局部的にオーステナイト化温度まで加熱し、
焼ならしまたは焼なまし処理する。引続き電縫鋼管は、
空冷ゾーンにおいて溶接部が400〜500℃以下にな
るまで空冷され、その後水冷されて直ちにサイザーと称
する定形機によって所定の外径、真円度に成形されて製
品となる。
2. Description of the Related Art An electric resistance welded steel pipe is an open pipe formed by continuously forming a raw strip steel into a cylindrical shape by a group of forming rolls, and heating both edge portions to be welded to a welding temperature by a contact tip or an induction coil. After that, both ends are pressure-bonded by a squeeze roll to manufacture. ERW steel pipe, after cutting the weld beads on the inner and outer surfaces of ERW pipe, heat the welded portion locally to the austenitizing temperature by a post heat treatment device called a post-annealer,
Normalize or anneal. ERW steel pipe continues
In the air-cooling zone, the welded part is air-cooled to 400 to 500 ° C. or less, then water-cooled and immediately molded into a product with a predetermined outer diameter and circularity by a standard machine called a sizer.

【0003】一方、最近の電縫鋼管ラインパイプによる
石油、天然ガス輸送においては、管内圧力上昇によるラ
インパイプ輸送能率の向上が要求されており、ますます
高靭性、高強度かつ溶接性に優れた鋼管が要望されるよ
うになっている。このため、電縫鋼管の素材としては、
低C化、高Mn化のみならず、Nb、V、Ti等の添加
によって細粒化、析出強化を図った素材の適用が不可避
となってきている。すなわち、電縫鋼管規格としての米
国石油協会(API)によって定められたAPIX7
0、X80クラスに相当する強度以上のもの、具体的に
は引張強さ590N/mm2以上、降伏強さ360N/
mm2程度以上の高強度電縫鋼管が要求されることが多
くなり、前記Nb、V、Ti等を添加してそれら合金元
素による結晶粒微細化、およびそれらの合金元素の炭窒
化物の析出による強化を図ることが必要である。
On the other hand, in the recent transportation of oil and natural gas by electric resistance welded steel pipe line pipes, it is required to improve the efficiency of line pipe transportation by increasing the internal pressure of the pipes, and it is more and more excellent in toughness, high strength and weldability. Steel pipes have been demanded. Therefore, as a material of ERW steel pipe,
In addition to lowering C and increasing Mn, it has become unavoidable to apply materials in which fine graining and precipitation strengthening are achieved by adding Nb, V, Ti and the like. That is, APIX7 defined by the American Petroleum Institute (API) as the standard for ERW pipes.
0 or more, strength equivalent to X80 class, specifically, tensile strength of 590 N / mm 2 or more, yield strength of 360 N /
Since high-strength electric resistance welded steel pipes having a size of about mm 2 or more are often required, Nb, V, Ti, etc. are added to refine the crystal grains by the alloying elements and the precipitation of carbonitrides of those alloying elements. It is necessary to strengthen by

【0004】しかし、上記のような素材を用いた電縫鋼
管においては、ポストアニール処理およびこれに引続く
空冷工程によって、電縫溶接部の周辺のポストアニール
熱影響部の軟化が生じ、その結果母材部と比べて溶接部
付近の引張強さの低下を招き易いという問題があり、溶
接線が引張試験破断位置となる場合が観察されている。
However, in the electric resistance welded steel pipe using the above materials, the post-annealing treatment and the subsequent air-cooling process soften the post-annealing heat-affected zone around the electric resistance welded portion. There is a problem that the tensile strength in the vicinity of the welded portion is more likely to be reduced than in the base metal portion, and it has been observed that the weld line is at the tensile test fracture position.

【0005】その対策としては、C:0.10%以下、
Mn:0.8〜2.0%、Al:0.01〜0.10%
を含有し、かつNb:0.01〜0.10%、V:0.
01〜0.15%、Ti:0.01〜0.10%のうち
少なくとも1種以上を含有し、残部Feおよび不可避的
不純物からなる鋼を素材として電縫鋼管を製造するに当
たり、溶接後の電縫溶接部をオーステナイト化温度まで
加熱処理した後、ただちに溶接部周辺を30℃/sec
以上の冷却速度で200℃以下の温度まで強制冷却する
方法(特公昭61−3372号公報)、あるいは図9
(a)(b)に示すとおり、溶接後の電縫溶接部を溶接
線Wの直上に直列に配置したインダクションヒータ21
によってオーステナイト化温度まで加熱処理した後、た
だちに溶接部周辺を15℃/sec以上の冷却速度で冷
却し、図9(c)に示すとおり、溶接線Wの直上に直列
に配置したインダクションヒータ22によって再度Ac
1点以上に加熱して高強度高靭性の電縫鋼管を製造する
方法等が提案されている。
As a countermeasure, C: 0.10% or less,
Mn: 0.8-2.0%, Al: 0.01-0.10%
And Nb: 0.01 to 0.10%, V: 0.
01-0.15%, Ti: 0.01-0.10%, at least one or more of them are contained, and when the electric resistance welded steel pipe is manufactured using steel composed of the balance Fe and unavoidable impurities as a raw material, after welding, Immediately after heat treatment of the electric resistance welded portion to the austenitizing temperature, the temperature around the welded portion is 30 ° C / sec.
A method for forcibly cooling to a temperature of 200 ° C. or lower at the above cooling rate (Japanese Patent Publication No. 61-3372), or FIG.
As shown in (a) and (b), an induction heater 21 in which the electric resistance welded portion after welding is arranged in series immediately above the welding line W.
After the heat treatment to the austenitizing temperature by, the periphery of the welded portion is immediately cooled at a cooling rate of 15 ° C./sec or more, and as shown in FIG. 9C, the induction heater 22 arranged in series immediately above the welding line W. Ac again
A method of manufacturing a high strength and high toughness electric resistance welded steel pipe by heating it to one or more points has been proposed.

【0006】[0006]

【発明が解決しようとする課題】上記特公昭61−33
72号公報に代表される溶接部分の熱処理方法では、高
強度材は成形電縫溶接後の残留応力が大きく、局部的に
加熱された後管体形状が栗型状となり、後工程のサイザ
ーでの絞り加工硬化によって靭性が悪化するばかりでな
く、炭窒化物の固溶析出強化を目的とするTi、Nb、
V、Mo等の強化元素の添加により溶接部の加熱、水冷
後のA1変態ライン上に局部的な硬化の上昇が発生し、
インダクションヒータによる再加熱によっても、従来方
法によると溶接部より20〜30mm離れた位置におい
ては、十分に再加熱されないため、溶接部分の局部高硬
度残存による硬度外れ等の問題が発生する。
SUMMARY OF THE INVENTION The above Japanese Patent Publication No. 61-33
In the heat treatment method for the welded portion typified by Japanese Patent Publication No. 72, the high-strength material has a large residual stress after forming electric resistance welding, and the shape of the locally heated rear tubular body becomes a chestnut-shaped shape, which is used in the sizer of the subsequent process. Ti, Nb, which not only deteriorates the toughness by drawing work hardening of Ti, but also aims to strengthen the solid solution precipitation of carbonitrides,
Addition of strengthening elements such as V and Mo causes a local increase in hardening on the A 1 transformation line after heating and water cooling of the weld,
Even by reheating with an induction heater, according to the conventional method, at a position 20 to 30 mm away from the welded portion, it is not sufficiently reheated, so that problems such as hardness deviation due to local high hardness remaining in the welded portion occur.

【0007】この発明の目的は、上記従来技術の欠点を
解消し、溶接部の加熱、水冷後のA1変態ライン上の局
部的硬化上昇を抑制できると共に、例えA1変態ライン
上に局部的硬化上昇が発生しても、再加熱において十分
に再加熱して溶接部分の局部高硬度残存を防止できる溶
接部高靭性高強度電縫鋼管の製造方法を提供することに
ある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art, to suppress the local hardening increase on the A 1 transformation line after heating and water cooling of the welded portion, and at the same time, to localize on the A 1 transformation line. It is an object of the present invention to provide a method for producing a welded portion high toughness and high strength electric resistance welded steel pipe capable of preventing local high hardness remaining in the welded portion by sufficiently reheating in the reheating even if an increase in hardening occurs.

【0008】[0008]

【課題を解決するための手段】この発明の請求項1の電
縫鋼管の製造方法は、溶接後の電縫溶接部を溶接線直上
に配置した前段インダクションヒータによってAc3
態点以上に加熱したのち、前段インダクションヒータの
管軸方向中心から10〜15mm偏心させた後段インダ
クションヒータによってAc3変態点以上に幅広加熱
し、水冷後再度水冷後のA1変態ライン上から±5mm
偏心させたインダクションヒータでAc1変態点以下に
加熱し、絞り量0.5%以下の定形加工を施すこととし
ている。このように、電縫溶接部をAc3変態点以上に
加熱したのち、偏心させた後段インダクションヒータに
よってAc3変態点以上に幅広加熱し、15℃/sec
以上の冷却速度で水冷後、水冷後のA1変態ライン上か
ら±5mm偏心させたインダクションヒータで再度Ac
1変態点以下に加熱することによって、溶接部の加熱、
水冷後のA1変態ライン上の局部的硬化上昇を抑制でき
ると共に、例えA1変態ライン上に局部的硬化上昇が発
生しても、再加熱において十分に再加熱して溶接部分の
局部高硬度残存を防止できる。また、サイザーにより絞
り量0.5%以下の定形加工を施すことによって、電縫
溶接部分の加工硬化による靭性の悪化を防止することが
できる。
In the method for manufacturing an electric resistance welded steel pipe according to claim 1 of the present invention, the electric resistance welded portion after welding is heated to the Ac 3 transformation point or more by a pre-stage induction heater arranged immediately above the welding line. After that, the eccentricity is 10 to 15 mm from the center of the front-stage induction heater in the axial direction, and the second-stage induction heater is widely heated above the Ac 3 transformation point, and then water-cooled again ± 5 mm from the A 1 transformation line after water-cooling.
The eccentric induction heater is used to heat to below the Ac 1 transformation point and to perform standard processing with a reduction amount of 0.5% or less. Thus, after heating the electric resistance welding portion than Ac 3 transformation point, and the wide heating above Ac 3 transformation point by subsequent induction heater is decentered, 15 ° C. / sec
After cooling with water at the above cooling rate, Ac was again used with an induction heater decentered by ± 5 mm from the A 1 transformation line after cooling with water.
By heating below 1 transformation point, heating of the weld,
It is possible to suppress the local hardening increase on the A 1 transformation line after water cooling, and even if the local hardening increase occurs on the A 1 transformation line, it is sufficiently reheated in the reheating to locally harden the welded portion. It can prevent the remaining. Further, by performing a fixed shape processing with a sizer of 0.5% or less, deterioration of toughness due to work hardening of the electric resistance welded portion can be prevented.

【0009】また、この発明の請求項2の電縫鋼管の製
造方法は、C:0.04〜0.09%、Si:0.30
%以下、Mn:1.20〜1.50%以上、P:0.0
30%以下、S:0.020%以下を含み、かつ、C
u:0.5%以下、Ni:0.5%以下、Ti:0.0
20〜0.060%、Mo:0.5%以下、Nb:0.
020〜0.080%、V:0.005〜0.020%
のうちの1種または2種以上を含有し、残部がFeおよ
び不可避的不純物からなる鋼を素材として電縫溶接し、
溶接後の電縫溶接部を溶接線直上に配置した前段インダ
クションヒータによってAc3変態点以上に加熱したの
ち、前段インダクションヒータの管軸方向中心から10
〜15mm偏心させた後段インダクションヒータによっ
てAc3変態点以上に幅広加熱し、水冷後再度水冷後の
1変態ライン上から±5mm偏心させたインダクショ
ンヒータでAc1変態点以下に加熱し、絞り量0.5%
以下の定形加工を施すこととしている。このような素材
を用い、電縫溶接部をAc3変態点以上に加熱したの
ち、偏心させた後段インダクションヒータによってAc
3変態点以上に幅広加熱し、15℃/sec以上の冷却
速度で水冷後、水冷後のA1変態ライン上から±5mm
偏心させたインダクションヒータで再度Ac1変態点以
下に加熱することによって、溶接部の加熱、水冷後のA
1変態ライン上の局部的硬化上昇を抑制できると共に、
例えA1変態ライン上に局部的な硬化上昇が発生して
も、再加熱において十分に再加熱して溶接部分の局部的
な高硬度残存を防止できる。また、サイザーにより絞り
量0.5%以下の定形加工を施すことによって、電縫溶
接部分の加工硬化による靭性の悪化を防止することがで
き、高強度高靭性の電縫鋼管を製造することができる。
The method for manufacturing an electric resistance welded steel pipe according to a second aspect of the present invention is C: 0.04 to 0.09%, Si: 0.30.
% Or less, Mn: 1.20 to 1.50% or more, P: 0.0
30% or less, including S: 0.020% or less, and C
u: 0.5% or less, Ni: 0.5% or less, Ti: 0.0
20 to 0.060%, Mo: 0.5% or less, Nb: 0.
020-0.080%, V: 0.005-0.020%
Of the steel containing at least one of the above, with the balance being Fe and unavoidable impurities, and being electric resistance welded,
After the electric resistance welded portion after welding is heated to the Ac 3 transformation point or higher by the pre-stage induction heater arranged immediately above the welding line, the pre-stage induction heater is heated from the axial center of the pre-stage induction heater to 10
And wide heating above Ac 3 transformation point by subsequent induction heater is ~15mm eccentric, heated to below Ac 1 transformation point at induction heater is ± 5 mm offset from the A 1 transformation line after the water cooling again cooled, throttle amount 0.5%
The following standard processing is applied. Using such a material, the electric resistance welded portion is heated to the Ac 3 transformation point or higher, and then the eccentric rear induction heater is used for Ac
Wide heating at 3 transformation points or more, water cooling at a cooling rate of 15 ° C / sec or more, and ± 5 mm from the A 1 transformation line after water cooling
By heating again below the Ac 1 transformation point with an eccentric induction heater, heating of the welded portion and A after water cooling are performed.
1 While suppressing local hardening increase on the transformation line,
Even if a local increase in hardening occurs on the A 1 transformation line, it can be sufficiently reheated during reheating to prevent local high hardness from remaining in the welded portion. Further, by performing a standardized process with a sizer of 0.5% or less, it is possible to prevent deterioration of toughness due to work hardening of the electric resistance welded portion, and it is possible to manufacture a high strength and high toughness electric resistance welded steel pipe. it can.

【0010】[0010]

【発明の実施の形態】先ず、この発明の電縫鋼管の熱処
理条件の限定理由について説明する。この発明において
は、電縫溶接後の加熱用インダクションヒータ位置を、
図1(a)(b)に示すとおり、前段インダクションヒ
ータ1a、1bの中心を電縫鋼管2の電縫溶接線W上、
後段インダクションヒータ3a、3bの中心を電縫溶接
線Wから10〜15mm偏心させたことによって、図5
(a)に示すとおり、前段インダクションヒータ1a、
1bによって電縫溶接線Wを中心に電縫溶接部内面がA
3変態点以上に加熱され、さらに、図5(b)に示す
とおり、後段インダクションヒータ3a、3bによって
電縫溶接線Wから10〜15mm偏心した位置を中心に
Ac3変態点以上の加熱幅が拡大されて温度バラツキが
抑制され、水冷による強靭化域が拡大される。また、加
熱用インダクションヒータによる加熱は、管内面におい
てAc3変態点以上、管外面において1020℃未満に
加熱することによって、図2に示すとおり、管外面にお
いて水冷後ベイナイトが発生せず、かつγ相(オーステ
ナイト組織)への変態を完了させる必要温度から、Ac
3変態点以上、好ましくは、Ac3変態点以上1020℃
未満である。
BEST MODE FOR CARRYING OUT THE INVENTION First, the reasons for limiting the heat treatment conditions for the electric resistance welded steel pipe of the present invention will be described. In the present invention, the induction heater position for heating after electric resistance welding is
As shown in FIGS. 1 (a) and 1 (b), the centers of the former-stage induction heaters 1a and 1b are arranged on the electric resistance welding line W of the electric resistance welding steel pipe 2,
By eccentricizing the centers of the latter-stage induction heaters 3a and 3b from the electric resistance welding line W by 10 to 15 mm,
As shown in (a), the front induction heater 1a,
By 1b, the inner surface of the electric resistance welded portion is A with the electric resistance welded line W as the center.
The heating width is not less than the c 3 transformation point, and as shown in FIG. 5 (b), the heating width is not less than the Ac 3 transformation point around the position eccentric from the electric resistance welding line W by 10 to 15 mm by the latter-stage induction heaters 3a and 3b. Is expanded, temperature variations are suppressed, and the toughened area by water cooling is expanded. Further, the heating by the induction heater for heating is performed by heating at the Ac3 transformation point or more on the inner surface of the pipe and at less than 1020 ° C. on the outer surface of the pipe, as shown in FIG. From the temperature required to complete the transformation to (austenite structure), Ac
3 transformation points or higher, preferably Ac 3 transformation point or higher 1020 ° C
Is less than.

【0011】加熱後の冷却速度を水冷としたのは、図3
に示すとおり、溶接部靭性向上につながる微細なアシキ
ュラーフェライトを得るためには、15℃/sec以上
の冷却速度が必要であり、この冷却速度は水冷にほかな
らないからである。
The cooling rate after heating is water cooling as shown in FIG.
As shown in, the cooling rate of 15 ° C./sec or more is necessary to obtain fine acicular ferrite that improves the toughness of the weld zone, and this cooling rate is nothing but water cooling.

【0012】図1(c)に示すとおり、強制冷却後の再
加熱用インダクションヒータ4a、4bの位置は、図6
に示すとおり、硬化のおこる冷却後のA1変態ラインA
L上から所定距離L、例えば±5mm偏心させた位置と
し、再加熱温度は、図4に示すとおり、Ac1変態点以
上となると、軟化により硬度が急激に低下して強度確保
が困難となるので、Ac1変態点以下とした。
As shown in FIG. 1C, the positions of the reheating induction heaters 4a and 4b after the forced cooling are as shown in FIG.
As shown in Fig. 1 , A 1 transformation line A after cooling that causes hardening
When the reheating temperature is at a position eccentric by a predetermined distance L, for example, ± 5 mm from above L, and the reheating temperature is at or above the Ac 1 transformation point, the hardness suddenly decreases due to softening, and it becomes difficult to secure strength. Therefore, the Ac 1 transformation point is set below.

【0013】この発明において定形加工における絞り量
を0.5%以下としたのは、図7、図8に示すとおり、
通常定形加工における絞り量は、周長の0.6〜1%程
度であるが、鋼管栗型状形状の改善によって真円度が向
上し、かつ、電縫溶接部分の加工硬化による靭性の悪化
防止の観点から0.5%以下とした。
In the present invention, the reason why the drawing amount in the regular processing is 0.5% or less is that, as shown in FIG. 7 and FIG.
Normally, the amount of reduction in regular processing is about 0.6 to 1% of the peripheral length, but the roundness is improved by the improvement of the steel pipe chestnut-shaped shape, and the toughness is deteriorated due to work hardening of the electric resistance welded portion. From the viewpoint of prevention, it was set to 0.5% or less.

【0014】次にこの発明において電縫鋼管の化学成分
の限定理由について説明する。Cは鋼の強度を向上させ
る元素であるが、0.04%未満ではその効果が十分で
なく、また、C量の増大は一般に靭性の低下を招来し易
く、特に強制冷却する場合には、0.09%を超えると
電縫溶接部が硬化し、かえって靭性の低下を招く恐れが
あるので、0.04〜0.09%とした。
Next, the reasons for limiting the chemical composition of the electric resistance welded steel pipe in the present invention will be explained. C is an element that improves the strength of steel, but if it is less than 0.04%, its effect is not sufficient, and an increase in the amount of C generally tends to cause a decrease in toughness, especially when forced cooling is performed. If it exceeds 0.09%, the electric resistance welded portion may be hardened, which may rather lower the toughness, so the content was made 0.04 to 0.09%.

【0015】Siは鋼中の脱酸のために有効な元素であ
るが、0.30%を超えると電縫溶接時にSiO2成分
によるペネトレータ欠陥が発生し易いため、0.30%
以下とした。
Si is an effective element for deoxidizing the steel, but if it exceeds 0.30%, a penetrator defect due to the SiO2 component is likely to occur during electric resistance welding, so 0.30%.
It was as follows.

【0016】MnはCと同様に鋼の強度を向上させる元
素であって、靭性改善にも有効であるが、1.20%未
満ではAPIX70、X80相当の強度が得られず、ま
た、1.50 %を超えると、MnO成分を主体とした
ペネトレータ欠陥が発生し易くなると共に、強制冷却に
よる焼入れ効果によって靭性劣化を招き易くなるため、
1.20〜1.50%とした。
Like C, Mn is an element that improves the strength of steel and is also effective in improving toughness, but if it is less than 1.20%, strength equivalent to APIX70 and X80 cannot be obtained, and 1. If it exceeds 50%, a penetrator defect mainly composed of MnO component is likely to occur, and toughness is likely to be deteriorated due to the quenching effect by forced cooling.
It was set to 1.20 to 1.50%.

【0017】Pは鋼材の靭性を低下させる元素であり、
かつ、溶接欠陥発生防止の観点からも極力少ない方がよ
いので、0.030%以下とした。
P is an element that reduces the toughness of the steel material,
Also, from the viewpoint of preventing the occurrence of welding defects, it is preferable that the amount is as small as possible, so the content was made 0.030% or less.

【0018】SはPと同様鋼材の靭性を低下させる元素
であり、かつ、溶接欠陥発生防止の観点からも極力少な
い方がよいので、0.020%以下とした。
Since S is an element that lowers the toughness of the steel material like P, and it is better to be as small as possible from the viewpoint of preventing the occurrence of welding defects, S was made 0.020% or less.

【0019】この発明においては、API X70、X
80相当の強度程度以上の強度を有するものとするた
め、前記各成分のほか、Cu、Ni、Ti、Mo、N
b、Vのうちの1種または2種以上を含有させて、これ
らの元素による結晶粒微細化効果と析出効果によって素
材強度の向上を図る。これらの元素の成分限定理由は次
のとおりである。
In the present invention, the API X70, X
In addition to the above-mentioned components, Cu, Ni, Ti, Mo, N in order to have a strength of about 80 or more.
One or more of b and V are contained to improve the material strength by the crystal grain refining effect and precipitation effect of these elements. The reasons for limiting the components of these elements are as follows.

【0020】Cuは鋼の強度確保(特に降伏強さ)に必
要な元素であるが、0.5%を超えると溶接部の靭性が
低下するので、0.5%以下とした。
Cu is an element necessary for securing the strength of steel (in particular, yield strength), but if it exceeds 0.5%, the toughness of the welded portion deteriorates, so it was made 0.5% or less.

【0021】NiはCuと同様鋼の強度確保(特に降伏
強さ)に必要な元素であるが、0.5%を超えると溶接
部の靭性が低下するので、0.5%以下とした。
Ni, like Cu, is an element necessary for securing the strength of steel (especially yield strength). However, if it exceeds 0.5%, the toughness of the welded portion deteriorates, so it was made 0.5% or less.

【0022】Tiは鋼中で微細な炭窒化物を生成し、析
出硬化により強度を向上させると共に、結晶粒を微細化
して母材および溶接部分の靭性を向上させるが、0.0
20%未満ではその効果が十分でなく、また、0.06
0%を超えると過度の析出硬化によってかえって靭性を
劣化させるので、0.020〜0.060%とした。
Ti forms fine carbonitrides in steel and improves the strength by precipitation hardening, and at the same time refines the crystal grains to improve the toughness of the base material and the welded portion.
If it is less than 20%, the effect is not sufficient, and 0.06
If it exceeds 0%, the toughness is rather deteriorated by excessive precipitation hardening, so the content was made 0.020 to 0.060%.

【0023】Moは鋼の強度を高める元素であるが、
0.5%を超えると溶接部の靭性が低下するので、0.
5%以下とした。
Mo is an element that enhances the strength of steel,
If it exceeds 0.5%, the toughness of the welded portion will decrease, so it is not preferable.
It was set to 5% or less.

【0024】NbはTiと同様に鋼中で微細な炭窒化物
を形成し、析出硬化により強度を向上させると共に、結
晶粒を微細化して母材および溶接部分の靭性を向上させ
るが、0.020%未満ではその効果が十分でなく、ま
た、0.080%を超えると過度の析出硬化によってか
えって靭性を劣化させるので、0.020〜0.080
%とした。
Like Ti, Nb forms fine carbonitrides in steel and improves the strength by precipitation hardening, and at the same time refines the crystal grains to improve the toughness of the base metal and welded parts. If it is less than 020%, its effect is not sufficient, and if it exceeds 0.080%, the toughness is rather deteriorated by excessive precipitation hardening, so 0.020 to 0.080.
%.

【0025】Vは鋼中で炭化物を形成して析出硬化によ
り強度を向上させるが、0.005%未満ではその効果
が十分でなく、また、0.020%を超えると過度の析
出硬化によってかえって靭性を劣化させるので、0.0
05〜0.020%とした。
V forms carbides in steel to improve the strength by precipitation hardening, but if it is less than 0.005%, its effect is not sufficient, and if it exceeds 0.020%, it is rather caused by excessive precipitation hardening. 0.0 because it deteriorates toughness.
It was set to 05 to 0.020%.

【0026】[0026]

【実施例】【Example】

実施例1 表1に示す化学成分を有する鋼種A〜Eを溶製し、通常
の熱間圧延して板厚12.0mmの熱延鋼板となし、各
熱延鋼板を素材として外径508.0mm、肉厚12.
0mmの電縫鋼管を製管速度15m/minで製造し
た。得られた各電縫鋼管を表2に示す熱処理ならびに冷
却条件で熱処理したのち、サイザーを用いて表2に示す
絞り量で定形加工した。得られた各電縫鋼管の電縫溶接
部の周方向引張強さとシャルピー衝撃試験における−5
℃における吸収エネルギーE(J)を測定した。また、
電縫溶接部のビッカース硬度を測定した。その結果を表
3に示す。なお、引張強さは、JIS Z2241に規
定の金属材料引張試験方法に準じて、シャルピー衝撃試
験における−5℃における吸収エネルギーは、JISZ
2242に規定の金属材料衝撃試験方法に準じて、電縫
溶接部のビッカース硬度は、JIS Z2244に規定
のビッカース硬さ試験方法に準じて測定した。
Example 1 Steel types A to E having the chemical components shown in Table 1 were melted and subjected to normal hot rolling to form a hot-rolled steel sheet having a plate thickness of 12.0 mm. 0 mm, wall thickness 12.
A 0 mm electric resistance welded steel pipe was produced at a pipe producing speed of 15 m / min. Each of the obtained electric resistance welded steel pipes was heat-treated under the heat treatment and cooling conditions shown in Table 2, and then shaped into a regular shape using a sizer with the drawing amount shown in Table 2. In the circumferential tensile strength and Charpy impact test of the ERW welded portion of each of the obtained ERW steel pipes, -5
The absorbed energy E (J) at ° C was measured. Also,
The Vickers hardness of the electric resistance welded portion was measured. Table 3 shows the results. The tensile strength is based on the metallic material tensile test method specified in JIS Z2241, and the absorbed energy at -5 ° C in the Charpy impact test is JISZ.
According to the metal material impact test method specified in 2242, the Vickers hardness of the electric resistance welded portion was measured according to the Vickers hardness test method specified in JIS Z2244.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】表3に示すとおり、本発明例は、従来例
1、従来例2および比較例に比べ、強度が均一化し、靭
性の向上がみられるが、これは加熱用インダクションヒ
ータおよび再加熱用インダクションヒータを千鳥状に配
置し、かつ、サイザーでの絞り量を低減したことによっ
て高靭性域が拡大され、硬度が安定化したものと考えら
れる。
As shown in Table 3, the examples of the present invention show uniform strength and improved toughness as compared with the conventional example 1, the conventional example 2 and the comparative example, which are for the induction heater for heating and for reheating. It is considered that the high toughness region was expanded and the hardness was stabilized by arranging the induction heaters in a staggered manner and reducing the drawing amount with the sizer.

【0031】[0031]

【発明の効果】この発明の溶接部高靭性高強度電縫鋼管
の製造方法は、電縫溶接部を溶接線直上に配置した前段
インダクションヒータによってAc3変態点以上に加熱
したのち、前段インダクションヒータの管軸方向中心か
ら10〜15mm偏心させた後段インダクションヒータ
によって幅広加熱し、水冷後再度水冷後のA1変態ライ
ン上から±5mm偏心させたインダクションヒータでA
1変態点以下に加熱し、絞り量0.5%以下の定形加
工を施すことによって、電縫溶接部周辺の引張強さの低
下を防止し、靭性域の拡大によって硬度が安定化し、高
靭性高強度の電縫鋼管を得ることができる。
EFFECT OF THE INVENTION In the method for manufacturing a welded portion with high toughness and high strength ERW steel pipe of the present invention, the ERW welded portion is heated to the Ac 3 transformation point or higher by a pre-induction heater arranged immediately above the welding line, and then the pre-induction heater. a from the tube axis direction center and wider heated by subsequent induction heater is 10~15mm eccentric, with induction heaters is ± 5 mm offset from the a 1 transformation line after cooled with water again cooled
By heating below the c 1 transformation point and subjecting it to standard processing with a drawing amount of 0.5% or less, it is possible to prevent the tensile strength from decreasing around the electric resistance welded part and to stabilize the hardness by expanding the toughness range. It is possible to obtain an electric resistance welded steel pipe having high toughness.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のインダクションヒータ配置の説明図
で、(a)図は加熱用インダクションヒータの配置を示
す平面図、(b)図は加熱用後段インダクションヒータ
の偏心配置の説明図、(c)図は再加熱用インダクショ
ンヒータの配置を示す平面図である。
1A and 1B are explanatory views of the arrangement of an induction heater according to the present invention, FIG. 1A is a plan view showing the arrangement of a heating induction heater, FIG. 1B is an explanatory view of an eccentric arrangement of a heating rear induction heater, and FIG. ) The drawing is a plan view showing the arrangement of the reheating induction heater.

【図2】外表面加熱温度と表面ベイナイト深さとの関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the outer surface heating temperature and the surface bainite depth.

【図3】加熱後の冷却速度とフェライト粒度との関係を
示すグラフである。
FIG. 3 is a graph showing the relationship between the cooling rate after heating and the ferrite grain size.

【図4】再加熱温度とビッカース硬度(Hv)との関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between reheating temperature and Vickers hardness (Hv).

【図5】加熱用後段インダクションヒータの適正偏心量
の説明図で、(a)図は加熱用前段インダクションヒー
タの位置と加熱温度との説明図、(b)図は加熱用後段
インダクションヒータの偏心位置と加熱温度との説明図
である。
5A and 5B are explanatory views of the proper eccentricity amount of the heating rear induction heater, in which FIG. 5A is an explanatory view of the position and heating temperature of the heating front induction heater, and FIG. 5B is an eccentricity of the heating rear induction heater. It is explanatory drawing of a position and heating temperature.

【図6】再加熱用インダクションヒータ偏心量Lとピー
クビッカース硬度(Hv)との関係を示すグラフであ
る。
FIG. 6 is a graph showing the relationship between the reheating induction heater eccentricity L and the peak Vickers hardness (Hv).

【図7】サイザー絞り量とピークビッカース硬度(H
v)との関係を示すグラフである。
FIG. 7: Sizer aperture amount and peak Vickers hardness (H
It is a graph which shows the relationship with v).

【図8】サイザー絞り量と−5℃における吸収エネルギ
ーとの関係を示すグラフである。
FIG. 8 is a graph showing a relationship between a sizer aperture amount and absorbed energy at −5 ° C.

【図9】従来のインダクションヒータ配置の説明図で、
(a)図は加熱用インダクションヒータの配置を示す平
面図、(b)図はインダクションヒータで加熱後のAc
3ラインの説明図、(c)図は再加熱用インダクション
ヒータの配置を示す平面図である。
FIG. 9 is an explanatory view of a conventional induction heater arrangement,
(A) is a plan view showing the arrangement of the induction heater for heating, and (b) is an Ac after heating with the induction heater.
FIG. 3 (c) is a plan view showing the arrangement of reheating induction heaters.

【符号の説明】[Explanation of symbols]

1a、1b、3a、3b、4a、4b、21、22 イ
ンダクションヒータ 2 電縫鋼管 W 溶接線 AL A1変態ライン
1a, 1b, 3a, 3b, 4a, 4b, 21, 22 Induction heater 2 ERW steel pipe W Welding line AL A 1 Transformation line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電縫鋼管の製造方法において、溶接後の
電縫溶接部を溶接線直上に配置した前段インダクション
ヒータによってAc3変態点以上に加熱したのち、前段
インダクションヒータの管軸方向中心から10〜15m
m偏心させた後段インダクションヒータによってAc3
変態点以上に幅広加熱し、水冷後再度水冷後のA1変態
ライン上から±5mm偏心させたインダクションヒータ
でAc1変態点以下に加熱し、絞り量0.5%以下の定
形加工を施すことを特徴とする溶接部高靭性高強度電縫
鋼管の製造方法。
1. In a method for producing an electric resistance welded steel pipe, after the electric resistance welded portion after welding is heated to an Ac 3 transformation point or higher by a pre-stage induction heater arranged directly above the welding line, the pre-stage induction heater is heated from the axial center of the pipe. 10-15m
Ac 3 by an eccentric rear induction heater
Widely heating above the transformation point, water-cooling and water-cooling again, and heating to below the Ac 1 transformation point with an induction heater decentered by ± 5 mm from the A 1 transformation line, and perform standard processing with a drawing amount of 0.5% or less. A method for producing a high-strength ERW steel pipe with high toughness in a welded portion.
【請求項2】 電縫鋼管の製造方法において、C:0.
04〜0.09%、Si:0.30%以下、Mn:1.
20〜1.50%以上、P:0.030%以下、S:
0.020%以下を含み、かつCu:0.5%以下、N
i:0.5%以下、Ti:0.020〜0.060%、
Mo:0.5%以下、Nb:0.020〜0.080
%、V:0.005〜0.020%のうちの1種または
2種以上を含有し、残部がFeおよび不可避的不純物か
らなる鋼を素材として電縫溶接し、溶接後の電縫溶接部
を溶接線直上に配置した前段インダクションヒータによ
ってAc3変態点以上に加熱したのち、前段インダクシ
ョンヒータの管軸方向中心から10〜15mm偏心させ
た後段インダクションヒータによってAc3変態点以上
に幅広加熱し、水冷後再度水冷後のA1変態ライン上か
ら±5mm偏心させたインダクションヒータでAc1
態点以下に加熱し、絞り量0.5%以下の定形加工を施
すことを特徴とする溶接部高靭性高強度電縫鋼管。
2. A method for manufacturing an electric resistance welded steel pipe, wherein C: 0.
04-0.09%, Si: 0.30% or less, Mn: 1.
20 to 1.50% or more, P: 0.030% or less, S:
Contains 0.020% or less and Cu: 0.5% or less, N
i: 0.5% or less, Ti: 0.020 to 0.060%,
Mo: 0.5% or less, Nb: 0.020 to 0.080
%, V: 0.005 to 0.020% of one or more, and the balance is Fe and unavoidable impurities. The steel is electro-welded and the electro-welded welded part after welding. Is heated to the Ac 3 transformation point or higher by the pre-stage induction heater arranged immediately above the welding line, and then is broadly heated to the Ac 3 transformation point or higher by the post-stage induction heater eccentric from the axial center of the pre-stage induction heater by 10 to 15 mm, High toughness of welded part characterized by heating to below the Ac 1 transformation point with an induction heater decentered by ± 5 mm from the A 1 transformation line after water cooling and water cooling again, and subjecting to standard processing with a reduction of 0.5% or less High strength electric resistance welded steel pipe.
JP8119597A 1996-04-16 1996-04-16 Production of electric resistance welded tube having high toughness and high strength in welded part Pending JPH09279250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8119597A JPH09279250A (en) 1996-04-16 1996-04-16 Production of electric resistance welded tube having high toughness and high strength in welded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8119597A JPH09279250A (en) 1996-04-16 1996-04-16 Production of electric resistance welded tube having high toughness and high strength in welded part

Publications (1)

Publication Number Publication Date
JPH09279250A true JPH09279250A (en) 1997-10-28

Family

ID=14765335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8119597A Pending JPH09279250A (en) 1996-04-16 1996-04-16 Production of electric resistance welded tube having high toughness and high strength in welded part

Country Status (1)

Country Link
JP (1) JPH09279250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045373A1 (en) * 2013-09-25 2015-04-02 Jfeスチール株式会社 Process for manufacturing high-carbon electric resistance welded steel pipe, and automobile part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045373A1 (en) * 2013-09-25 2015-04-02 Jfeスチール株式会社 Process for manufacturing high-carbon electric resistance welded steel pipe, and automobile part
JP2015062920A (en) * 2013-09-25 2015-04-09 Jfeスチール株式会社 Method for manufacturing high carbon electro-resistance-welded steel pipe excellent in reliability of electro-resistance-welded zone

Similar Documents

Publication Publication Date Title
EP2045348B1 (en) Bend pipe and process for producing the same
WO2001096624A1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
CN113302315B (en) Hot-rolled steel sheet, welded joint, and method for producing same
JP2001020039A (en) High strength hot rolled steel sheet excellent in stretch flanging property and fatigue characteristic and its production
JPH08325641A (en) Production of high strength and high toughness steel tube excellent in workability
WO2015045373A1 (en) Process for manufacturing high-carbon electric resistance welded steel pipe, and automobile part
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP4193308B2 (en) Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking
JP3118623B2 (en) Method for producing non-heat treated electric resistance welded oil well pipe having tensile strength of 800 MPa or more
JP4055920B2 (en) Manufacturing method of high strength steel pipe for hollow stabilizer with excellent fatigue durability
JP4043004B2 (en) Manufacturing method of hollow forgings with high strength and toughness with excellent stress corrosion cracking resistance and hollow forgings
JP2000096142A (en) Method for reducing steel tube
JPH09279250A (en) Production of electric resistance welded tube having high toughness and high strength in welded part
JP5979373B2 (en) Manufacturing method of ERW steel pipe with excellent low temperature toughness
JPH11302785A (en) Steel for seamless steel pipe
JP3473589B2 (en) ERW steel pipe and manufacturing method thereof
JP2827839B2 (en) Method of manufacturing high strength, thick wall, high toughness bend steel pipe
JPS6149365B2 (en)
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
JPH06172855A (en) Production of seamless steel tube with low yield ratio and high toughness
JPH0319286B2 (en)
JP3232040B2 (en) Method of manufacturing high carbon steel ERW steel pipe for high workability machine structure
JPH11323442A (en) Heat treating method for electric resistance weld zone increasing workability of electric resistance weld zone
JPS6257687B2 (en)
JPH1157819A (en) Manufacture of steel tubes of high-intensity and high-toughness

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010105