JPH09278906A - Friction material - Google Patents

Friction material

Info

Publication number
JPH09278906A
JPH09278906A JP8682096A JP8682096A JPH09278906A JP H09278906 A JPH09278906 A JP H09278906A JP 8682096 A JP8682096 A JP 8682096A JP 8682096 A JP8682096 A JP 8682096A JP H09278906 A JPH09278906 A JP H09278906A
Authority
JP
Japan
Prior art keywords
fiber
potassium
friction
friction material
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8682096A
Other languages
Japanese (ja)
Inventor
Masafumi Yasuda
雅文 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP8682096A priority Critical patent/JPH09278906A/en
Publication of JPH09278906A publication Critical patent/JPH09278906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve frictional abrasion characteristics of a friction material to be used in a damping device in an automobile brake, etc. SOLUTION: This friction material is obtained by bonding and molding a mixture composed of a resin and a base material. In the friction material, highly dense composite polycrystal fibers composed of potassium hexatitanate crystal and titania crystal are compounded as the base material. A phase mixing ratio (mole ratio) of titania crystal/potassium hexatitanate crystal in the composite polycrystal fibers is preferably 1/20 to 20/1. The fibers preferably have the following sizes: fiber diameter is 20-50μm; fiber length is 100-400μm. The compounding ratio of the fibers in the resin is e.g. 3-50wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車,鉄道車
両,航空機,産業機械類等の制動装置におけるブレーキ
ライニング,ディスクパッド,クラッチフェーシング等
の摺動面を構成する摩擦材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a friction material constituting a sliding surface such as a brake lining, a disc pad, a clutch facing, etc. in a braking device for automobiles, railway vehicles, aircrafts, industrial machines and the like.

【0002】[0002]

【従来の技術】制動装置の摩擦材は、樹脂(フェノール
樹脂,エポキシ樹脂等)を結合剤としてこれに基材を分
散し、必要に応じて摩擦・摩耗調整剤(硫酸バリウム
等)を添加した混合物を加熱・加圧下に結着成形するこ
とにより製造される。その基材として従来よりアスベス
ト繊維が使用されてきたが、近時アスベスト繊維は発が
ん性の問題が指摘されている。また、アスベスト繊維を
基材とする摩擦材は、比較的低温域において安定な摩擦
係数を示すものの、摩擦面の高温化に伴い摩耗損傷が著
しく増大すると共に、摩擦係数の急激な低下・フェード
現象を生じ易い。自動車用ブレーキ装置の小型化、軽量
化等の要請に対処するには、高い摩擦係数をもち、広い
温度域で高摩擦係数を安定に維持し得る摩擦材が要求さ
れる。その摩擦材として、アスベツト繊維に代え、チタ
ン酸カリウム繊維を基材とする摩擦材が提案されてい
る。チタン酸カリウム繊維は、一般式: K2 Tin 2n
+1〔式中,n=2〜8〕で示される合成無機化合物繊維
であり、なかでもトンネル型結晶構造を有する六チタン
酸カリウム繊維〔K2 Ti6 13〕は、基材として必要
な耐摩耗性,耐熱性,補強性等に優れている。チタン酸
カリウム繊維の工業的製造法には、焼成法,フラックス
法,溶融法等が知られているが、溶融法により製造され
る多結晶形態を有する六チタン酸カリウム繊維は、ウィ
スカ等の極微細単結晶繊維に比し、摩擦材の摩擦摩耗特
性の改善効果に優れている。
2. Description of the Related Art As a friction material for a braking device, a resin (phenol resin, epoxy resin, etc.) is used as a binder, a base material is dispersed therein, and a friction / wear modifier (barium sulfate, etc.) is added as necessary. It is produced by binding and molding the mixture under heat and pressure. Asbestos fibers have been conventionally used as the base material, but asbestos fibers have recently been pointed out to have a carcinogenic problem. Further, although the friction material based on asbestos fiber shows a stable friction coefficient in a relatively low temperature range, wear damage remarkably increases as the friction surface becomes hot, and the friction coefficient sharply decreases and fades. Is likely to occur. To meet the demands for downsizing and weight reduction of automobile brake devices, a friction material having a high coefficient of friction and capable of stably maintaining a high coefficient of friction in a wide temperature range is required. As the friction material, a friction material having potassium titanate fiber as a base material instead of asbestos fiber has been proposed. Potassium titanate fibers have the general formula: K 2 Ti n O 2n
+1 [in the formula, n = 2 to 8] is a synthetic inorganic compound fiber, and above all, potassium hexatitanate fiber [K 2 Ti 6 O 13 ] having a tunnel type crystal structure is required as a base material. It has excellent wear resistance, heat resistance, and reinforcement. Known methods for industrial production of potassium titanate fiber include firing method, flux method, and melting method. However, potassium hexatitanate fiber having a polymorphic form produced by the melting method is used for producing whisker. Compared with fine single crystal fibers, it has an excellent effect of improving the friction and wear characteristics of friction materials.

【0003】[0003]

【発明が解決しようとする課題】六チタン酸カリウム多
結晶繊維を基材繊維とすることにより、広い温度域に亘
つて、アスベスト繊維では得られない改良された摩擦摩
耗特性を得ることが可能となる。本発明者は、その基材
繊維について、溶融法による従来の六チタン酸カリウム
多結晶繊維は結晶粒界に多数の亀裂を包含するものであ
り、これに代え粒界亀裂の少ない高緻密質の多結晶繊維
を使用することにより、基材としての補強作用を強化す
ることができ、更に六チタン酸カリウム単相の多結晶構
造に代え、六チタン酸カリウム結晶とチタニア結晶との
混相多結晶構造とすることにより、摩擦材の耐フェード
特性、摩擦係数等を一層向上させ得ることを見出した。
本発明はこの知見に基づいてなされたものである。
By using potassium hexatitanate polycrystal fiber as the base fiber, it is possible to obtain improved friction and wear characteristics which cannot be obtained with asbestos fiber over a wide temperature range. Become. The present inventors have found that, regarding the base fiber, the conventional potassium hexatitanate polycrystalline fiber produced by the melting method includes a large number of cracks in the crystal grain boundaries, and instead of this, it has a high density of few grain boundary cracks. By using a polycrystalline fiber, it is possible to strengthen the reinforcing action as a base material, and further, instead of the polycrystal structure of potassium hexatitanate single phase, a mixed phase polycrystal structure of potassium hexatitanate crystal and titania crystal It has been found that, by setting the above, it is possible to further improve the fade resistance property, the friction coefficient and the like of the friction material.
The present invention has been made based on this finding.

【0004】[0004]

【課題を解決するための手段】本発明の摩擦材は、樹脂
に基材を配合した混合物を結着成形してなる摩擦材にお
いて、基材として、六チタン酸カリウム結晶とチタニア
結晶とからなる高緻密質複合多結晶繊維が配合されてい
ることを特徴としている。
The friction material of the present invention is a friction material obtained by binding and molding a mixture of a resin and a base material. The base material is composed of potassium hexatitanate crystals and titania crystals. It is characterized in that it is blended with highly dense composite polycrystalline fibers.

【0005】[0005]

【発明の実施の形態】基材繊維である上記高緻密質複合
多結晶繊維は、後記の改良された溶融法により製造され
る。このものは、従来の溶融法による多結晶繊維と異な
って粒界の亀裂の発生が抑制防止された高緻密質の繊維
形態を有し、剪断強度が高く補強性にすぐれている。ま
た、六チタン酸カリウム結晶(モース硬度: 約5.5 )
に、チタニア結晶(モース硬度: ルチル相約 7〜7.5,ア
ナターゼ相約 5.5〜6 )が混在した複合多結晶構造であ
ることにより、六チタン酸カリウム単相多結晶繊維に比
し硬質である。この高緻密質および混相結晶構造の効果
として、低速度域から高速度域に亘つて摩擦材の高摩擦
係数および耐摩耗性を安定に維持することができ、また
その対面損傷性も良好である。
BEST MODE FOR CARRYING OUT THE INVENTION The highly dense composite polycrystalline fiber which is the base fiber is produced by the improved melting method described below. This has a highly dense fiber morphology in which the generation of cracks at grain boundaries is suppressed and prevented, unlike the polycrystalline fibers produced by the conventional melting method, and has high shear strength and excellent reinforcing properties. Also, potassium hexatitanate crystal (Mohs hardness: about 5.5)
In addition, since it has a composite polycrystalline structure in which titania crystals (Mohs hardness: rutile phase about 7 to 7.5, anatase phase about 5.5 to 6) are mixed, it is harder than potassium hexatitanate single phase polycrystalline fiber. As an effect of this high-density and mixed-phase crystal structure, the high friction coefficient and wear resistance of the friction material can be stably maintained from the low speed region to the high speed region, and its face-to-face damage property is also good. .

【0006】上記複合多結晶繊維の基材としての特性
は、その構成相である六チタン酸カリウム結晶とチタニ
ア結晶の量比により任意に調節することができるが、チ
タニア結晶の混在比率が少ないと、混相効果としての摩
擦摩耗特性の改善効果が不足し、他方その量比が大きく
なると、摺動面の相手攻撃性が顕著となる。これらの点
から、チタニア結晶/六チタン酸カリウム結晶の比率
は、1/10〜20/1(モル比)の範囲が適当であ
る。また、複合多結晶繊維の繊維サイズは、樹脂中への
均一分散性、補強性、基材繊維としての安定性等の点か
ら、繊維径は約20〜50μm,繊維長は約100〜4
00μmの範囲のものが好適である。複合多結晶繊維の
樹脂中の配合割合は任意であるが、通常約3〜50重量
%の範囲とするのが適当である。約3重量%に満たない
と、その配合効果が少なく、他方50重量%を超える
と、摩擦摩耗特性の改善効果はほぼ飽和し、それ以上に
増量する利益はない。
The characteristics of the above-mentioned composite polycrystalline fiber as a base material can be arbitrarily adjusted by the amount ratio of potassium hexatitanate crystals and titania crystals, which are its constituent phases, but when the mixing ratio of titania crystals is small. However, when the effect of improving the friction and wear characteristics as a multi-phase effect is insufficient, and when the amount ratio is large, the opponent attack of the sliding surface becomes remarkable. From these points, the ratio of titania crystals / potassium hexatitanate crystals is appropriately in the range of 1/10 to 20/1 (molar ratio). The fiber size of the composite polycrystalline fiber is about 20 to 50 μm and the fiber length is about 100 to 4 from the viewpoints of uniform dispersibility in resin, reinforcing property, stability as a base fiber, and the like.
The range of 00 μm is preferable. The compounding ratio of the composite polycrystalline fiber in the resin is arbitrary, but it is usually suitable to set it in the range of about 3 to 50% by weight. If it is less than about 3% by weight, its compounding effect is small. On the other hand, if it exceeds 50% by weight, the effect of improving the friction and wear characteristics is almost saturated, and there is no benefit of further increasing the content.

【0007】本発明の摩擦材は、基材として上記複合多
結晶繊維と共に、公知の他材種のものを混合使用するこ
ともできる。例えばポリアミド(ナイロン)繊維,アラ
ミド繊維,スチール繊維,ステンレス繊維,銅繊維,黄
銅繊維,炭素繊維,ガラス繊維,アルミナ・シリカ繊
維,ロックウール,木質パルプ等が挙げられる。これら
はその1種ないし2種以上が任意に選択される。配合量
は特に限定されないが、複合多結晶繊維との合計量で約
10〜65重量%となる範囲で配合してよい。基材成分
は、必要に応じ、分散性、結合剤樹脂との結着性の向上
等を目的として、シラン系カップリング剤(アミノシラ
ン,ビニルシラン,エポキシシラン,メタアクリロキシ
ラン,メルカプトキシラン等)、またはチタネート系カ
ップリング剤(イソプロピルトリイソステアロイルチタ
ネート,ジ(ジオクチルパイロホスフェート)エチレン
チタネート等)による表面処理(カップリング処理)が
常法に従って施されて使用される。
In the friction material of the present invention, a known other material may be mixed and used as the base material together with the above-mentioned composite polycrystalline fiber. Examples thereof include polyamide (nylon) fiber, aramid fiber, steel fiber, stainless fiber, copper fiber, brass fiber, carbon fiber, glass fiber, alumina / silica fiber, rock wool and wood pulp. One or two or more of these are arbitrarily selected. The blending amount is not particularly limited, but may be blended in a range of about 10 to 65% by weight in total with the composite polycrystalline fiber. The base component is a silane coupling agent (aminosilane, vinylsilane, epoxysilane, methacryloxylan, mercaptoxylan, etc.) for the purpose of improving dispersibility, binding property with the binder resin, etc., if necessary. Alternatively, a surface treatment (coupling treatment) with a titanate-based coupling agent (isopropyl triisostearoyl titanate, di (dioctyl pyrophosphate) ethylene titanate, etc.) is performed according to a conventional method, and then used.

【0008】本発明の摩擦材は、所望により、公知の摩
擦摩耗調整剤、例えば、加硫もしくは未加硫の天然・合
成ゴム粉末,カシュー樹脂粉粒体,レジンダスト,ゴム
ダスト等の有機物粉末、天然・人造黒鉛,二硫化モリブ
デン,三硫化アンチモン,硫酸バリウム,炭酸カルシウ
ム等の無機質粉末、銅,アルミニウム,亜鉛,鉄等の金
属粉末、アルミナ,シリカ,酸化クロム,酸化銅,三酸
化アンチモン,酸化チタン,酸化鉄等の酸化物粉末等か
ら選ばれる1種ないし2種以上の成分が、摩擦摩耗特性
(摩擦係数,摩耗抵抗性,振動特性,ナキ等)の改善を
目的として適量(例えば20〜70重量%)配合され
る。また、各種添加剤、例えば防錆剤、潤滑剤、研削剤
等が、その用途・使用態様等に応じて適量配合(例えば
50重量%以下)されることも通常の摩擦材と異ならな
い。
If desired, the friction material of the present invention is a known friction and wear modifier, for example, vulcanized or unvulcanized natural / synthetic rubber powder, cashew resin powder, organic powder such as resin dust and rubber dust, Natural / artificial graphite, molybdenum disulfide, antimony trisulfide, inorganic powder such as barium sulfate, calcium carbonate, metal powder such as copper, aluminum, zinc, iron, alumina, silica, chromium oxide, copper oxide, antimony trioxide, oxidation One or more components selected from oxide powders such as titanium and iron oxide are used in an appropriate amount (for example, 20 to 20) for the purpose of improving friction and wear characteristics (friction coefficient, wear resistance, vibration characteristics, pear, etc.). 70% by weight). Also, it is not different from ordinary friction materials in that various additives, for example, rust preventives, lubricants, abrasives, and the like are blended in an appropriate amount (for example, 50% by weight or less) in accordance with the use and usage mode.

【0009】結合剤である樹脂成分は、通常使用される
材種、例えばフェノール樹脂,ホルムアルデヒド樹脂,
エポキシ樹脂,シリコーン樹脂等の熱硬化性樹脂、また
はこれらの変性(カシュー油変性,乾性変性等)熱硬化
性樹脂、天然ゴム、スチレンブタジエンゴム,ニトリル
ゴム等のゴム系樹脂等が挙げられる。
The resin component which is a binder is a commonly used material such as phenol resin, formaldehyde resin,
Examples thereof include thermosetting resins such as epoxy resins and silicone resins, and thermosetting resins thereof (modified with cashew oil and dryness), and rubber resins such as natural rubber, styrene butadiene rubber, and nitrile rubber.

【0010】本発明の摩擦材の原料混合物の調製は、基
材として上記複合多結晶繊維が使用される点を除いて、
従来一般の摩擦材と異ならず、またその製造工程にも特
別の条件ないし制限は課せられない。すなわち、基材を
結合剤樹脂中に分散し、必要に応じて配合される摩擦摩
耗調整剤、および防錆剤,潤滑剤,研削剤等を添加し、
均一に混合して原料組成物を調製し、予備成形についで
金型成形等により、加熱・加圧下(加圧力約10〜40
MPa,温度約150〜200℃)に結着成形を行い、
型から取り出した後、所望により加熱炉内で熱処理(温
度約150〜200℃,保持時間約1〜12Hr)を施
し、しかる後その成形体に機械加工、研磨加工を加えて
所定の形状を有する摩擦材に仕上げる。
The preparation of the raw material mixture of the friction material of the present invention was carried out except that the above-mentioned composite polycrystalline fiber was used as the base material.
It is no different from conventional friction materials, and no special conditions or restrictions are imposed on the manufacturing process thereof. That is, a base material is dispersed in a binder resin, and a friction wear modifier, which is blended as necessary, and a rust preventive agent, a lubricant, an abrasive, etc. are added,
A raw material composition is prepared by uniformly mixing, and pre-molding is then performed by heating or pressurizing (pressurizing pressure of about 10-40
Binder forming at MPa, temperature about 150-200 ° C)
After taking out from the mold, if necessary, heat treatment (temperature about 150 to 200 ° C., holding time about 1 to 12 Hr) is performed, and then the molded body is subjected to machining and polishing to have a predetermined shape. Finish into friction material.

【0011】なお、基材である上記複合多結晶繊維は、
改良された溶融法、すなわち、TiO2 (または加熱に
よりTiO2 を生成するチタン化合物))とK2 O(ま
たは加熱によりM2 Oを生成するカリウム化合物)を、
TiO2 /K2 O(モル比)が、1.5〜2.5となる
割合に配合した粉末混合物を加熱溶融し、ついでその溶
融物を冷却して二チタン酸カリウム繊維(初生相繊維)
からなる繊維塊を得る工程、その繊維塊を液中に浸漬し
て繊維のカリウムを溶出すると共に解繊し、カリウム含
有量15〜20重量%の水和チタン酸カリウム繊維を得
る一次脱カリウム処理工程、得られた水和チタン酸カリ
ウム繊維を、100〜400℃で加熱乾燥する予備乾燥
処理工程、予備乾燥した水和チタン酸カリウム繊維を液
中に浸漬してカリウムを溶出し、カリウム含有量13.
6重量%未満である水和チタン酸カリウム繊維を得る二
次脱カリウム処理工程、およびその水和チタン酸カリウ
ム繊維を、900〜1300℃に加熱して結晶構造を変
換する焼成処理工程、を経ることにより製造される。
The above-mentioned composite polycrystalline fiber as the base material is
An improved melting process, namely TiO 2 (or a titanium compound that produces TiO 2 upon heating) and K 2 O (or a potassium compound that produces M 2 O upon heating),
TiO 2 / K 2 O (molar ratio) was heated and melted in a powder mixture mixed in a ratio of 1.5 to 2.5, and then the melt was cooled to form potassium dititanate fiber (primary phase fiber).
A step of obtaining a fiber mass consisting of, primary dipotassium treatment to obtain a hydrated potassium titanate fiber having a potassium content of 15 to 20% by weight, by immersing the fiber mass in a liquid to elute potassium in the fiber and defibrating the same. Step, pre-drying treatment step of heating and drying the obtained hydrated potassium titanate fiber at 100 to 400 ° C., preliminarily dried hydrated potassium titanate fiber is immersed in a liquid to elute potassium, and potassium content 13.
A secondary potassium removal treatment step of obtaining a hydrated potassium titanate fiber of less than 6% by weight and a calcination step of heating the hydrated potassium titanate fiber to 900 to 1300 ° C. to convert the crystal structure. It is manufactured by

【0012】上記製造工程における特徴的な処理工程
は、初生相繊維塊の脱カリウム処理を、一次処理と二次
処理の2段階処理として行うと共に、その中間に予備乾
燥処理を実施している点にある。この処理工程を経由す
ることにより、粒界亀裂が少なく高緻密質を備えた複合
多結晶繊維を収得することができる。また、二次脱カリ
ウム処理後の水和チタン酸カリウム繊維のカリウム含有
量を13.6重量%に調節した場合における最終製品繊
維は六チタン酸カリウム単相結晶繊維であるが、それよ
り少ないカリウム含有量(13.6%未満)に調整され
ていることにより、チタニア結晶との混相多結晶繊維が
得られる。その複合多結晶繊維のチタニア結晶/六チタ
ン酸カリウム結晶の量比は、二次脱カリウム処理におけ
る脱カリウム量により高低任意に制御することができ
る。また、チタニア結晶は、二次脱カリウム処理後の熱
処理を比較的高温域(約970℃以上)で行う場合はル
チル相として析出し、それより低温度域ではアナターゼ
相として析出し、その中間温度域では両者の混相として
析出させることができる。
The characteristic treatment step in the above-mentioned manufacturing step is that the potassium removal treatment of the primary phase fiber mass is carried out as a two-step treatment of a primary treatment and a secondary treatment, and a preliminary drying treatment is carried out in between. It is in. By passing through this treatment step, it is possible to obtain a composite polycrystalline fiber with few grain boundary cracks and high density. Further, when the potassium content of the hydrated potassium titanate fiber after the secondary potassium removal treatment is adjusted to 13.6% by weight, the final product fiber is potassium hexatitanate single phase crystal fiber, but less potassium By adjusting the content (less than 13.6%), a mixed phase polycrystalline fiber with titania crystals can be obtained. The amount ratio of titania crystals / potassium hexatitanate crystals of the composite polycrystalline fiber can be arbitrarily controlled to be high or low depending on the amount of potassium removed in the secondary potassium removal treatment. Further, the titania crystal precipitates as a rutile phase when the heat treatment after the secondary potassium removal treatment is performed in a relatively high temperature range (about 970 ° C. or higher), and as an anatase phase in a lower temperature range, and the intermediate temperature thereof. In the region, it can be precipitated as a mixed phase of both.

【0013】[0013]

【実施例】【Example】

(1)原料組成物の調製 表1参照。使用した基材A1 〜A3 、B,およびCは表
2に示すとおりである(各基材の製造は後記参考例1〜
参考例3による)。繊維サイズはいずれも、繊維径(平
均)30μm,繊維長(平均)150 μmである。表2中、
「粒界亀裂」欄の「○」は、亀裂の発生が少なく、
「×」は亀裂発生が多いことを示している。図1は、基
材A1 (参考例1による複合多結晶繊維)の繊維形態を
示し、図2は基材B(後記参考例2による複合多結晶繊
維)の繊維形態を示している(いずれも、倍率×200
0)。基材B(図2)は、結晶粒界に粗大な亀裂dが多
数発生している。基材C(後記参考例3による六チタン
酸カリウム単相多結晶繊維)もこれと同様の微細な亀裂
が結晶粒界に多数存在する繊維形態を有する。これに対
し、基材A1 (図1)は、結晶粒界の亀裂dが少なく、
かつ極微細である。基材A2 およびA3 (基材A1 と同
じ参考例1による複合多結晶繊維)も、基材A1 と同じ
く粒界亀裂の少ない高緻密質の繊維形態を備えている。
(1) Preparation of raw material composition See Table 1. The base materials A 1 to A 3 , B, and C used are as shown in Table 2 (manufacturing of each base material is described in Reference Example 1 to be described later).
According to Reference Example 3). The fiber size is 30 μm in fiber diameter (average) and 150 μm in fiber length (average). In Table 2,
"○" in the "Grain boundary crack" column indicates that there are few cracks,
“X” indicates that many cracks were generated. FIG. 1 shows the fiber morphology of a base material A 1 (composite polycrystalline fiber according to Reference Example 1), and FIG. 2 shows the fiber morphology of a base material B (composite polycrystalline fiber according to Reference Example 2 below). Also, magnification × 200
0). In the base material B (FIG. 2), a large number of coarse cracks d are generated at the crystal grain boundaries. Substrate C (potassium hexatitanate single-phase polycrystalline fiber according to Reference Example 3 described later) also has a fiber morphology in which a large number of similar fine cracks are present at crystal grain boundaries. On the other hand, the base material A 1 (FIG. 1) has few cracks d at the grain boundaries,
And it is extremely fine. Substrate A 2 and A 3 (composite polycrystalline fibers according to the same Reference Example 1 and the substrate A 1) is also provided with a fiber type substrates A 1 Like little intergranular cracking high dense.

【0014】(2)摩擦材の製作 原料組成物を予備成形(加圧力:14.7MPa=150kg/cm
2,温度:常温,時間:1 分間)の後、金型による結着
成形(加圧力:14.7MPa=150kg/cm 2,温度:170
℃, 加圧保持時間:5 分間)を行い、成形後、離型して
乾燥炉で熱処理(180 ℃に3 時間保持) を施す。その
後、所定寸法に切断し、研磨加工を加えて供試摩擦材(
ディスクパッド) を得る。
(2) Fabrication of friction material Preform the raw material composition (pressing force: 14.7 MPa = 150 kg / cm)
2 、 Temperature: normal temperature, time: 1 minute), and then binding molding with a mold (pressing force: 14.7 MPa = 150 kg / cm 2 , temperature: 170)
℃, pressurizing and holding time: 5 minutes), after molding, mold release and heat treatment in a drying furnace (hold at 180 ℃ for 3 hours). After that, cut it to a specified size, add polishing process, and test friction material (
Get the disk pad).

【0015】(3)摩擦試験 各供試摩擦材について、JASO C 406 乗用車ブレーキ装
置ダイナモメータ試験方法」に準拠した第2効力試験を
行うと共に、摩擦試験の後の相手材表面の摩耗損傷状況
(表面粗さ測定)により対面損傷性を評価する。 (試験条件) 制動初速度: 50km / h ,100km / h。 減速度 : 0.1G,0.3G,0.6G 相手材材種:FC 250鋳鉄材 試験結果を表3に示す。表中、「対面損傷欄」の記号は
次のとおりである。 ◎…損傷皆無 ○…損傷殆ど無し ×…損傷発生。
(3) Friction test For each friction material to be tested, a second efficacy test in accordance with "JASO C 406 Passenger car brake device dynamometer test method" was performed, and the abrasion damage condition of the mating material surface after the friction test ( The surface damage is evaluated by the surface roughness measurement). (Test conditions) Initial braking speed: 50 km / h, 100 km / h. Deceleration: 0.1G, 0.3G, 0.6G Counterpart material type: FC 250 cast iron material Table 3 shows the test results. In the table, the symbols of "face-to-face damage column" are as follows. ⊙: No damage ○: Almost no damage ×… Damage occurred.

【0016】比較例 No.11(基材繊維B使用)は、高い
摩擦係数を有しているが、対面損傷性に劣り、比較例 N
o.12(基材繊維C使用)は、対面損傷性は良好であるも
のの、摩擦係数が低い。これに対し、発明例(No.1〜3
)の摩擦材は、高い摩擦係数と良好な対面損傷性とを
併せ有している。
Comparative example No. 11 (using base fiber B) has a high friction coefficient, but is inferior in face-to-face damage property.
o.12 (using the base fiber C) has a good face-to-face damage property, but has a low friction coefficient. On the other hand, invention examples (No. 1 to 3
The friction material (1) has both a high friction coefficient and good face-to-face damage.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【参考例】[Reference example]

〔参考例1〕 −高緻密質複合多結晶繊維(基材A1,2,3 )の製造
── (a)出発原料の調製 精製アナターゼ粉末(純度99.8%)と、炭酸カリウム粉
末(99.5%)とを、TiO2 / K2 O(モル比)が1.
8となる割合に配合し、均一に混合。 (b)加熱溶融および冷却凝固 出発原料を白金るつぼに入れ、加熱炉内で1050℃に
40分間加熱保持。溶融物を銅皿に流し込み、冷却凝固さ
せて、二チタン酸カリウム結晶繊維からなる繊維塊を得
る。
Reference Example 1 - the high dense composite polycrystalline fibers (base material A 1, A 2, A 3) manufacturing ── (a) Preparation of the starting material purification anatase powder (purity 99.8%), potassium carbonate powder ( 99.5%) and TiO 2 / K 2 O (molar ratio) is 1.
Mix in a ratio of 8 and mix evenly. (B) Heating melting and cooling solidification The starting material was put into a platinum crucible and heated to 1050 ° C in a heating furnace.
Hold for 40 minutes. The melt is poured into a copper dish and cooled and solidified to obtain a fiber mass composed of potassium dititanate crystal fibers.

【0021】(c)一次脱カリウム処理 繊維塊を、水(繊維塊重量の50倍量)に浸漬し、プロ
ペラ攪拌下にカリウムを溶出すると共に解繊し、カリウ
ム含有量17.5重量%の水和チタン酸カリウムを得
る。 (d)予備乾燥処理 上記水和チタン酸カリウム繊維を、脱水して加熱炉内に
装入し、250℃で14Hrを要して乾燥。
(C) Primary potassium removal treatment The fiber mass was immersed in water (50 times the weight of the fiber mass), the potassium was eluted with stirring with a propeller and disentangled to obtain a potassium content of 17.5% by weight. Obtain hydrated potassium titanate. (D) Preliminary Drying Treatment The above hydrated potassium titanate fiber was dehydrated, charged into a heating furnace, and dried at 250 ° C. for 14 hours.

【0022】(d)二次脱カリウム処理 予備乾燥した水和チタン酸カリウム繊維を、水(繊維重
量の100倍量)に投入し、硫酸を添加したうえ、プロ
ペラ攪拌下に所定のカリウム含量となるまでカリウムを
溶出。この二次脱カリウム処理により、水和チタン酸カ
リウム繊維A1(カリウム含量 7.0重量%)、A2 (同
9.0重量%)、及びA3 (同 11.0 重量%)を得た。
(D) Secondary potassium removal treatment Preliminarily dried hydrated potassium titanate fibers were added to water (100 times the fiber weight), sulfuric acid was added, and a predetermined potassium content was obtained under stirring with a propeller. Elute potassium until By this secondary potassium removal treatment, hydrated potassium titanate fibers A 1 (potassium content 7.0% by weight), A 2 (same as
9.0% by weight) and A 3 (11.0% by weight).

【0023】(e)焼成処理 上記水和チタン酸カリウム繊維A1,2,3 のそれぞれ
を脱水後、加熱炉内で、結晶構造変換のための熱処理
(1150℃×2Hr)に付して、高緻密質複合多結晶
繊維A1 , A2 , 及びA3 を得た(各繊維の組成・結晶
構成等は表2参照)。繊維サイズは、いずれも、繊維径
(平均)30μm,繊維長(平均)150 mである。
(E) Baking treatment Each of the hydrated potassium titanate fibers A 1, A 2 and A 3 was dehydrated and then subjected to a heat treatment (1150 ° C. × 2 Hr) for crystal structure conversion in a heating furnace. As a result, highly dense composite polycrystalline fibers A 1 , A 2 , and A 3 were obtained (see Table 2 for the composition and crystal constitution of each fiber). The fiber size is 30 μm in fiber diameter (average) and 150 m in fiber length (average).

【0024】〔参考例2〕 −複合多結晶繊維(基材B)の製造− (a)出発原料の調製 参考例1と同じ。 (b)加熱溶融および冷却凝固 参考例1と同じ。 (c)脱カリウム処理 初生相繊維塊を、水(繊維重量の100倍量)に投入
し、硫酸を添加後、プロペラ攪拌下にカリウムを溶出す
ると共に解繊し、水和チタン酸カリウム(カリウム含有
量 7.0重量%)を得た。 (d)焼成処理 上記水和チタン酸カリウム繊維を参考例1の焼成処理と
同じ条件の処理に付して、複合多結晶繊維Bを得た(繊
維の組成・結晶構成等は表2参照)。繊維サイズは、繊
維径(平均)30μm,繊維長(平均)200 μmである。
Reference Example 2 Production of Composite Polycrystalline Fiber (Base Material B) (a) Preparation of Starting Material Same as Reference Example 1. (B) Heat melting and cooling solidification Same as Reference Example 1. (C) Depotassium treatment The primary phase fiber mass is put into water (100 times the fiber weight), sulfuric acid is added, and then potassium is eluted with stirring with a propeller and defibrated to obtain hydrated potassium titanate (potassium). The content was 7.0% by weight). (D) Baking treatment The hydrated potassium titanate fiber was subjected to a treatment under the same conditions as the firing treatment of Reference Example 1 to obtain a composite polycrystalline fiber B (see Table 2 for fiber composition, crystal structure, etc.). . The fiber size is 30 μm in fiber diameter (average) and 200 μm in fiber length (average).

【0025】〔参考例3〕 −六チタン酸カリウム単相多結晶繊維(基材C)の製造
− (a)出発原料の調製 参考例1と同じ。 (b)加熱溶融および冷却凝固 参考例1と同じ。 (c)脱カリウム処理 初生相繊維塊を、水(繊維重量の100倍量)に投入
し、硫酸を添加後、プロペラ攪拌下にカリウムを溶出す
ると共に解繊し、水和チタン酸カリウム(カリウム含有
量 13.6 重量%)を得る。 (d)焼成処理 上記水和チタン酸カリウム繊維を参考例1の焼成処理と
同じ条件の処理に付して、複合多結晶繊維Cを得た(各
繊維の結晶構成等は表2参照)。繊維サイズは、繊維径
(平均)30μm,繊維長(平均)200 μmである。
[Reference Example 3] -Production of potassium hexatitanate single-phase polycrystalline fiber (base material C)-(a) Preparation of starting material Same as Reference Example 1. (B) Heat melting and cooling solidification Same as Reference Example 1. (C) Depotassium treatment The primary phase fiber mass is put into water (100 times the fiber weight), sulfuric acid is added, and then potassium is eluted with stirring with a propeller and defibrated to obtain hydrated potassium titanate (potassium). Content 13.6% by weight). (D) Firing treatment The hydrated potassium titanate fiber was subjected to the treatment under the same conditions as the firing treatment of Reference Example 1 to obtain a composite polycrystalline fiber C (see Table 2 for the crystal constitution of each fiber). The fiber size is 30 μm in fiber diameter (average) and 200 μm in fiber length (average).

【0026】[0026]

【発明の効果】本発明の摩擦材は、高緻密質の六チタン
酸カリウム−チタニア複合多結晶繊維の配合効果とし
て、改良された摩擦特性を有し、低速度域から高速度域
に亘つて高摩擦係数を安定に維持することができ、自動
車,車両,航空機,各種産業機械類の制動装置を構成す
るブレーキライニング,ディスクパッド,クラッチフェ
ーシング等として有用であり、制動装置の小型化・軽量
化等への対応を可能とし、制動機能の向上・安定化、耐
久性の改善等の効果が得られる。
The friction material of the present invention has improved friction characteristics as a compounding effect of the highly dense potassium hexatitanate-titania composite polycrystalline fiber, and has a wide range from low speed to high speed. It can maintain a high coefficient of friction in a stable manner and is useful as a brake lining, a disc pad, a clutch facing, etc. that constitutes a braking device for automobiles, vehicles, aircraft, and various industrial machines. It is possible to deal with such problems, and it is possible to obtain the effects of improving and stabilizing the braking function and improving durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の摩擦材の基材として使用される高緻密
質の六チタン酸カリウム−チタニア複合多結晶繊維を示
す図面代用顕微鏡写真(×2000)である。
FIG. 1 is a drawing-substitute micrograph (× 2000) showing a highly dense potassium hexatitanate-titania composite polycrystalline fiber used as a base material of a friction material of the present invention.

【図2】従来の摩擦材の基材として使用されている六チ
タン酸カリウム−チタニア複合多結晶繊維を示す図面代
用顕微鏡写真(×2000)である。
FIG. 2 is a drawing-substitute micrograph (× 2000) showing a potassium hexatitanate-titania composite polycrystalline fiber used as a base material of a conventional friction material.

【符号の説明】[Explanation of symbols]

d: 粒界亀裂 d: Grain boundary crack

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F16D 69/02 F16D 69/02 K // C30B 29/32 C30B 29/32 B D01F 9/08 D01F 9/08 Z Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display area F16D 69/02 F16D 69/02 K // C30B 29/32 C30B 29/32 B D01F 9/08 D01F 9/08 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】樹脂に基材が配合された混合物を結着成形
してなる摩擦材において、基材として、六チタン酸カリ
ウム結晶とチタニア結晶とからなる高緻密質複合多結晶
繊維が配合されていることを特徴とする摩擦材。
1. A friction material obtained by binding and molding a mixture of a resin and a base material, wherein a highly dense composite polycrystalline fiber composed of potassium hexatitanate crystals and titania crystals is added as the base material. A friction material characterized by being.
【請求項2】複合多結晶繊維のチタニア結晶/六チタン
酸カリウム結晶の混相比率(モル比)が、1/10〜2
0/1であることを特徴とする請求項1に記載の摩擦
材。
2. The mixed phase ratio (molar ratio) of titania crystals / potassium hexatitanate crystals of the composite polycrystalline fiber is 1/10 to 2
It is 0/1, The friction material of Claim 1 characterized by the above-mentioned.
JP8682096A 1996-04-09 1996-04-09 Friction material Pending JPH09278906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8682096A JPH09278906A (en) 1996-04-09 1996-04-09 Friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8682096A JPH09278906A (en) 1996-04-09 1996-04-09 Friction material

Publications (1)

Publication Number Publication Date
JPH09278906A true JPH09278906A (en) 1997-10-28

Family

ID=13897451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8682096A Pending JPH09278906A (en) 1996-04-09 1996-04-09 Friction material

Country Status (1)

Country Link
JP (1) JPH09278906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114284A1 (en) * 2006-03-31 2007-10-11 Ishihara Sangyo Kaisha, Ltd. Friction material and process for producing the same
CN106917836A (en) * 2017-02-28 2017-07-04 佛山佳牧乐科技有限公司 Friction material, brake block and brake piece preparation method for brake block

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114284A1 (en) * 2006-03-31 2007-10-11 Ishihara Sangyo Kaisha, Ltd. Friction material and process for producing the same
CN106917836A (en) * 2017-02-28 2017-07-04 佛山佳牧乐科技有限公司 Friction material, brake block and brake piece preparation method for brake block
CN106917836B (en) * 2017-02-28 2018-11-16 佛山佳牧乐科技有限公司 For the friction material of brake block, brake block and brake piece preparation method

Similar Documents

Publication Publication Date Title
JP3998879B2 (en) Friction material
EP0684215B1 (en) Composite fibers of potassium hexatitanate and titanium dioxide
JP5535509B2 (en) Friction material
US5962551A (en) Powder of titanium compounds
JP3229777B2 (en) Friction material
JPH069948A (en) Friction material
JPH01294553A (en) Friction material
JPH09278906A (en) Friction material
JPH10195420A (en) Friction material
JP2000178536A (en) Friction material
JPH07196817A (en) Friction material
JP2990565B2 (en) Friction material
JPS61191599A (en) Friction material
JP2816906B2 (en) Friction material
JP3292973B2 (en) Friction material
JP2767504B2 (en) Friction material
JP2939604B2 (en) Friction material
JP3838529B2 (en) Non-asbestos friction material
JPH1046137A (en) Friction material
JP3603978B2 (en) Non-asbestos friction material
JPH0853553A (en) Friction material
JPH09278905A (en) Friction material
KR0142839B1 (en) Composite fivers of potassium hexatitanate and titanium dioxide
JP2000290636A (en) Friction material
JPH0931214A (en) Frictional material