JPH09273906A - Damage and breakage position detector - Google Patents

Damage and breakage position detector

Info

Publication number
JPH09273906A
JPH09273906A JP8347496A JP8347496A JPH09273906A JP H09273906 A JPH09273906 A JP H09273906A JP 8347496 A JP8347496 A JP 8347496A JP 8347496 A JP8347496 A JP 8347496A JP H09273906 A JPH09273906 A JP H09273906A
Authority
JP
Japan
Prior art keywords
damage
optical fiber
light
stress
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8347496A
Other languages
Japanese (ja)
Other versions
JP2889952B2 (en
Inventor
Takeo Senuma
丈夫 瀬沼
Eiji Shimizu
英二 清水
邦彦 ▲真▼野
Kunihiko Mano
Fumio Nakamura
文夫 中村
Tetsuo Kuno
哲郎 久野
Hisako Yasui
久子 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Mitsubishi Heavy Industries Ltd
Oki Electric Industry Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Mitsubishi Heavy Industries Ltd
Oki Electric Industry Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Mitsubishi Heavy Industries Ltd, Oki Electric Industry Co Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP8347496A priority Critical patent/JP2889952B2/en
Publication of JPH09273906A publication Critical patent/JPH09273906A/en
Application granted granted Critical
Publication of JP2889952B2 publication Critical patent/JP2889952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To immediately detect the damage position of an airframe during ground maintenannce and flying by providing an optical fiber cqble along the surface layer surface of the airframe or in the layer, disposing it in a matrix state, radially reducing the thickness of a core, and forming a stress sensitive unit to raise the sensitivity of a strain. SOLUTION: An optical fiber cable constitutes the element of a damage or breakage position detector 2. A stress sensitive unit for constituting a sensor partly applies lengthwise tension and heat to the cable to form a concave curved surface-like reduceddiameter part, and provided at a certain interval along the lengthwise direction of the cable. When a radial external force is applied to the unit, a stress is generated and the transmittin amount of the light which transmits the core is changed according to the bending angle. The unit detects the change of the transmitting light amount with high sensitivity. Such a cable is embedded, for example, on the surface layer surface or in the surface layer of a horizontal stabilizer 13, and formed in a matrix to cover substantially the entire surface of the stabilizer 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は損傷・破損位置検
出装置に係り、さらに詳しくは航空機の機体の歪や亀裂
或いは欠落等の損傷の位置や損傷状態などを検出する損
傷・破損位置検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damage / damage position detecting device, and more particularly to a damage / damage position detecting device for detecting a damage position such as strain, crack or loss of an aircraft body and a damage state. It is a thing.

【0002】[0002]

【従来の技術】大気中を高速度で飛行する航空機は、常
時機体に強い風圧を受けて航行している。したがって、
特に側方に張り出した主翼や尾翼の表面に、飛行時間に
比例して歪や亀裂等が生じる確率が高い。従来、このよ
うな航空機の機体の変形や亀裂等による損傷状態の把握
には、主として整備員の目視検査により人為的に行われ
ていた。また、超音波探傷装置や磁粉探傷装置などによ
る機械的な検査方法により行われることもある。
2. Description of the Related Art Aircraft that fly at high speed in the atmosphere are constantly navigating with strong wind pressure applied to their bodies. Therefore,
In particular, there is a high probability that distortion, cracks, etc. will occur in proportion to the flight time on the surfaces of the wing and tail that overhang sideways. Conventionally, the grasping of the damage state due to the deformation and cracks of the body of the aircraft has been carried out mainly by visual inspection by maintenance personnel. Further, it may be performed by a mechanical inspection method using an ultrasonic flaw detector or a magnetic particle flaw detector.

【0003】[0003]

【発明が解決しようとする課題】上述のように従来のこ
の種の航空機に発生する機体の故障状況の発見には、主
に視覚により人為的に行われていた。したがって、整備
員の熟練度が要求された。この外、上記のような機械的
な検査方法もあるが、いずれの場合も飛行場や整備格納
庫などの地上において実施されていた。このため、従来
の損傷・破損位置検出方式では航空機の飛行を長時間休
止させなければならない等の問題点があった。
SUMMARY OF THE INVENTION As described above, the finding of the failure state of the airframe that occurs in the conventional aircraft of this type has been mainly done by sight. Therefore, the skill level of the maintenance staff was required. In addition to the above, there is a mechanical inspection method as described above, but in any case, it was carried out on the ground such as an airfield or a maintenance hangar. Therefore, the conventional damage / damage position detection method has a problem that the flight of the aircraft must be stopped for a long time.

【0004】この発明はこのような従来の損傷・破損検
出方式の欠点を解消するためになされたもので、地上に
おける整備中は勿論のこと、飛行中においても機体の損
傷箇所を即時に検出できる航空機における損傷・破損位
置検出装置を実現することを目的にしたものである。
The present invention has been made in order to solve the drawbacks of the conventional damage / damage detection system, and can immediately detect the damaged portion of the aircraft not only during maintenance on the ground but also during flight. It is intended to realize a damage / damage position detection device in an aircraft.

【0005】[0005]

【課題を解決するための手段】この発明は、機体の表層
面または表層中に光ファイバケーブルを設けた損傷・破
損位置検出装置を構成したものである。また、光ファイ
バケーブルをマトリックス状に配置した損傷・破損位置
検出装置を構成したものである。さらに、光ファイバケ
ーブルのコアの肉厚を細径にし歪に対する感度を上げる
ため応力感応部を形成した損傷・破損位置検出装置を構
成したものである。
SUMMARY OF THE INVENTION The present invention comprises a damaged / damaged position detecting device in which an optical fiber cable is provided on the surface layer or in the surface layer of a machine body. Further, the optical fiber cable is arranged in a matrix to constitute a damaged / damaged position detecting device. Further, a damage / breakage position detecting device is configured in which a stress sensitive portion is formed in order to increase the sensitivity to strain by reducing the wall thickness of the core of the optical fiber cable.

【0006】外力により航空機の機体の一部に凹みの損
傷を受けると、検出装置のマトリックスの領域内に配置
されたX成分とY成分の光ファイバケーブルに曲げ応力
が生じる。このため、マトリックスを形成するX,Y両
成分の応力感応部を透過する測定用の光の透過光量が曲
り角度に応じて減衰して、この減衰量が受光器で検出さ
れる。したがって、減衰したXとYの複数成分に対応す
る領域が、凹み損傷を受けたものと判定される。このと
きの、XとYの複数成分の減衰量の多寡により、損傷域
内の損傷状態も推定される。
When a part of the fuselage of an aircraft is damaged by an external force due to an external force, bending stress is generated in the X-component and Y-component optical fiber cables arranged in the area of the matrix of the detection device. Therefore, the transmitted light amount of the measurement light transmitted through the stress sensitive portions of both X and Y components forming the matrix is attenuated according to the bending angle, and this attenuation amount is detected by the light receiver. Therefore, it is determined that the region corresponding to the attenuated plural components of X and Y has been damaged by the depression. At this time, the damage state in the damage area is also estimated based on the amount of attenuation of a plurality of X and Y components.

【0007】また、機体の一部が剥離または欠落で破損
すると、破損箇所に通じるX,Y成分の応力感応部の透
過光が散乱したり反射する。散乱光や反射光を受光した
X,Y成分に囲まれた部分が、破壊して脱落したものと
判断されるようになっている。
Further, when a part of the machine body is damaged due to peeling or missing, the transmitted light of the stress sensitive parts of the X and Y components leading to the damaged part is scattered or reflected. The part surrounded by the X and Y components that received the scattered light and the reflected light is judged to have been destroyed and dropped.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態1 図1は、この発明の実施形態1を適用した航空機の構成
説明図、図2は図1の一部の拡大説明図である。図1と
図2において、1は航空機である。10は航空機1の胴
体、11は主翼、12はエンジン、13と14は水平尾
翼と垂直尾翼である。図では航空機1として、左右にエ
ンジン12を設けた双発機が例示されている。15は補
助翼、16はフラップ、17はスポイラ、18は水平尾
翼に設けられた昇降舵、19は方向舵である。
Embodiment 1 FIG. 1 is a configuration explanatory view of an aircraft to which Embodiment 1 of the present invention is applied, and FIG. 2 is an enlarged explanatory view of a part of FIG. 1 and 2, reference numeral 1 is an aircraft. Reference numeral 10 is a fuselage of the aircraft 1, 11 is a main wing, 12 is an engine, and 13 and 14 are horizontal and vertical tails. In the figure, a twin-engine aircraft having left and right engines 12 is illustrated as the aircraft 1. Reference numeral 15 is an auxiliary wing, 16 is a flap, 17 is a spoiler, 18 is an elevator provided on a horizontal stabilizer, and 19 is a rudder.

【0009】図1において2は本発明に係る損傷・破損
位置検出装置(以下、検出装置)、図2において3はこ
の検出装置2の要素を構成する光ファイバからなる光フ
ァイバケーブルである。光ファイバケーブル3の具体的
な構造とセンサ部を拡大して示した斜視図が、図3と図
4に示されている。図3と図4において、3aは被覆、
31は光ファイバケーブル3のコア、32はクラッド、
33は境界層である。クラッド32は、中心のコア31
の周囲を包囲している。
In FIG. 1, reference numeral 2 is a damaged / damaged position detecting device (hereinafter referred to as a detecting device) according to the present invention, and 3 in FIG. 3 and 4 are perspective views showing the specific structure of the optical fiber cable 3 and the sensor portion in an enlarged manner. 3 and 4, 3a is a coating,
31 is a core of the optical fiber cable 3, 32 is a clad,
33 is a boundary layer. The clad 32 is the central core 31
Surrounds the.

【0010】図3および図4において、34はセンサを
構成する応力感応部(応力センサ)である。応力感応部
34は光ファイバケーブル3に部分的に長手方向の張力
と熱を加えて凹曲面状の細径部で構成され、図示のよう
に光ファイバケーブル3の長さ方向に沿ってある間隔を
隔てて設けられている。そして、光ファイバケーブル3
の応力感応部34に半径方向の外力が加わると、この外
力に対応する応力σが発生してコア31内を矢印方向に
透過する光Lの透過光量が曲げ角度に応じて変化する。
このときの光Lの透過光量vと応力σの関係が図5に示
されている。図5に示すように透過光量vは、応力σの
増加にほぼ比例して減少するような特性を有する。
In FIGS. 3 and 4, reference numeral 34 is a stress sensitive portion (stress sensor) which constitutes a sensor. The stress-sensitive portion 34 is formed by a concave portion having a small diameter by partially applying longitudinal tension and heat to the optical fiber cable 3, and as shown in the drawing, has a gap along the length direction of the optical fiber cable 3. Are separated from each other. And the optical fiber cable 3
When an external force in the radial direction is applied to the stress sensitive portion 34, a stress σ corresponding to this external force is generated, and the amount of light L transmitted through the core 31 in the arrow direction changes according to the bending angle.
The relationship between the transmitted light amount v of the light L and the stress σ at this time is shown in FIG. As shown in FIG. 5, the transmitted light amount v has a characteristic that it decreases almost in proportion to the increase of the stress σ.

【0011】一般に、この種の光ファイバに外力が加わ
ると、光ファイバの内部に応力が生じて“モード変換”
現象が発生する。“モード変換”現象が発生すると、境
界層の全反射角が変化する。この結果、光ファイバの内
部を透過する光が境界層で乱反射したり外周のクラッド
を透過して外部に散逸し、放射損失と呼ばれる光エネル
ギの損失を生じる。また、光ファイバの軸方向から圧力
が与えられた場合には、軸心に数μm程度の曲りができ
て境界層に凹凸が生じる。そして、同様な“モード変
換”現象に基いて透過光量が変化し、“マイクロベンデ
ング損失”と呼ばれる光損失が発生する。
Generally, when an external force is applied to this type of optical fiber, stress is generated inside the optical fiber to cause "mode conversion".
The phenomenon occurs. When the "mode conversion" phenomenon occurs, the total reflection angle of the boundary layer changes. As a result, the light transmitted through the inside of the optical fiber is diffusely reflected by the boundary layer or transmitted through the outer cladding and is dissipated to the outside, resulting in a loss of light energy called radiation loss. Further, when pressure is applied from the axial direction of the optical fiber, the axial center is bent by about several μm, and the boundary layer becomes uneven. Then, the amount of transmitted light changes based on the similar "mode conversion" phenomenon, and optical loss called "micro-bending loss" occurs.

【0012】光ファイバケーブル3に設けられた細径の
応力感応部34は、上記のような光エネルギの損失に伴
う透過光量vの変化を高感度に検出する。一方、光Lを
コア31内に透過させている光ファイバケーブル3が途
中で切断されると(図6のp点参照)、進行中の光Lが
切断面で散乱や反射される。この結果、切断面の散乱光
と反射光が光ファイバケーブル3の内部を逆方向の進行
して、入射側に戻されることになる。
The small-diameter stress sensitive portion 34 provided in the optical fiber cable 3 detects with high sensitivity the change in the transmitted light amount v due to the loss of light energy as described above. On the other hand, when the optical fiber cable 3 that transmits the light L into the core 31 is cut in the middle (see point p in FIG. 6), the light L in progress is scattered or reflected by the cut surface. As a result, the scattered light and the reflected light on the cut surface travel in the optical fiber cable 3 in the opposite directions and are returned to the incident side.

【0013】このような光ファイバケーブル3は例え
ば、図2に示すように複合材等で作られた水平尾翼13
の表層面または表層中に埋め込まれている。図示された
水平方向の光ファイバケーブル3はX成分、垂直方向は
Y成分である。両成分はX方向とY方向に行と列に交差
させて、マトリックスMを形成して水平尾翼13等のほ
ぼ全面を覆うようになっている。図2の30はY成分の
光ファイバ束で、Y成分の入出力用の光ファイバケーブ
ル3が纏められている。
Such an optical fiber cable 3 is, for example, as shown in FIG. 2, a horizontal stabilizer 13 made of a composite material or the like.
Embedded in or on the surface layer of. The illustrated horizontal optical fiber cable 3 has an X component and a vertical direction has a Y component. Both components intersect in rows and columns in the X direction and the Y direction to form a matrix M so as to cover almost the entire surface of the horizontal stabilizer 13. Reference numeral 30 in FIG. 2 denotes a Y component optical fiber bundle, and the Y component input / output optical fiber cables 3 are put together.

【0014】X成分とY成分からなる光ファイバケーブ
ル3を配置した本発明の実施形態1の検出装置の構成を
示すブロック図を、図6と図7に示す。図6において、
X1 ,X2 …Xm は上記マトリックスMを形成するため
のX成分の光ファイバケーブル3で、Y1 ,Y2 …Yn
はY成分(ただし、m,n は正の整数)、Cは両成分X1
,X2 …Xm とY1 ,Y2 …Yn の交点[xm ,yn
]である(以下、図8も参照)。そして、前記のX,
Y両成分内の多数の応力感応部34がそれぞれ各交点C
[xm ,yn ]の付近に配置されて、各交点C[xm,
yn ]付近の透過光量vの変化を検出するようになって
いる。
6 and 7 are block diagrams showing the configuration of the detection apparatus according to the first embodiment of the present invention in which the optical fiber cable 3 composed of the X component and the Y component is arranged. In FIG.
X1, X2 ... Xm are optical fiber cables 3 of X component for forming the matrix M, and Y1, Y2 ... Yn.
Is the Y component (however, m and n are positive integers), C is both components X1
, X2 ... Xm and intersections of Y1, Y2 ... Yn [xm, yn
] (Hereinafter, also refer to FIG. 8). And the above X,
A large number of stress sensitive parts 34 in both Y components are respectively formed at respective intersections C.
It is arranged in the vicinity of [xm, yn] and each intersection C [xm,
yn], the change of the transmitted light amount v is detected.

【0015】また、図6および図7において、4はX成
分用の制御処理器、5はY成分の制御処理器、6は統合
処理器、7はフライトコントローラ等である。41はX
成分側の光源、42は光アンプ、43は分岐器である。
44は光カプラ、45は受光器、46はホト・ダイオー
ド等の受光素子である。光カプラ44と受光器45およ
び受光素子46は、いずれもマトリックスMを構成する
X成分側の光ファイバケーブル3の本数に対応してm個
で構成されている。制御処理器4の内部には、X成分側
の電気信号と光信号を相互的に変換する変換器等が設け
られている。
6 and 7, 4 is a control processor for the X component, 5 is a control processor for the Y component, 6 is an integrated processor, and 7 is a flight controller. 41 is X
The component side light source, 42 is an optical amplifier, and 43 is a branching device.
44 is an optical coupler, 45 is a light receiver, and 46 is a light receiving element such as a photo diode. Each of the optical coupler 44, the light receiver 45, and the light receiving element 46 is composed of m pieces corresponding to the number of the X component side optical fiber cables 3 forming the matrix M. Inside the control processor 4, a converter and the like for mutually converting an electric signal and an optical signal on the X component side are provided.

【0016】図7にY成分側のブロック図を示す。Y成
分側はX成分側と類似した構成になっているので、光源
51等に対応する符号を付して詳しい説明は省略する。
ただし、光ファイバケーブル3のY成分はn本で、マト
リックスMの図の縦軸を構成する。そして、制御処理器
5の出力端子は制御処理器4の出力端と共に、図6の統
合処理器6を介してフライトコントローラ等7に接続さ
れる。S1 は凹凸等の変形検出部、S2 は機体の剥離や
欠落等の破損検出部である。
FIG. 7 shows a block diagram of the Y component side. Since the Y component side has a similar structure to the X component side, the reference numerals corresponding to the light sources 51 and the like are given and detailed description thereof is omitted.
However, the Y component of the optical fiber cable 3 is n and constitutes the vertical axis of the diagram of the matrix M. The output terminal of the control processor 5 is connected to the output terminal of the control processor 4 and the flight controller etc. 7 via the integrated processor 6 of FIG. S1 is a deformation detecting unit such as unevenness, and S2 is a damage detecting unit such as peeling or missing of the machine body.

【0017】上述のような構成の本発明の動作を、図
6,図7を併用して次に説明する。X成分側の制御処理
器4の指令に基づいてレーザダイオードのような光源4
1から出た測定用の光Lは、光アンプ42で増幅されて
分岐器43でm個に分岐される。m個に分割された光L
は偏波無依存型の光カプラ44を通過してから、それぞ
れマトリックスM内のX成分X1 ,X2 …Xm の各光フ
ァイバケーブル3の内部に投射される。同様にして、Y
成分側の制御処理器5により光源51から出射された測
定光Lも、光アンプ52と分岐器53で増幅後n個に分
岐されて光カプラ54から各成分Y1 ,Y2 …Yn の内
部を透過する。
The operation of the present invention having the above configuration will be described below with reference to FIGS. A light source 4 such as a laser diode based on a command from the control processor 4 on the X component side.
The measuring light L emitted from the optical fiber 1 is amplified by the optical amplifier 42 and is branched into m pieces by the branching device 43. Light L divided into m
After passing through the polarization-independent optical coupler 44, the light is projected inside the optical fiber cables 3 of the X components X1, X2 ... Xm in the matrix M, respectively. Similarly, Y
The measurement light L emitted from the light source 51 by the control processor 5 on the component side is also amplified by the optical amplifier 52 and the branching device 53 and then branched into n pieces to be transmitted from the optical coupler 54 through the insides of the respective components Y1, Y2 ... Yn. To do.

【0018】ここで、図8の(a) に示すようなマトリッ
クスMの一部において、外力が加わり点線に囲まれた領
域aに凹みの損傷を受けた場合を説明する。外力により
点線に囲まれた領域aに凹みの損傷を受けると、領域内
に配置されたX成分とY成分の光ファイバケーブル3に
曲げ応力σが生じる。このため、前述のように両成分X
2 ,X3 ,X4 とY3 ,Y4 ,Y5 の光ファイバケーブ
ル3の応力感応部34を透過する測定光Lの透過光量v
は、曲り角度に応じて減衰することになる。
Here, a case will be described in which, in a part of the matrix M as shown in FIG. 8A, an external force is applied and the region a surrounded by the dotted line is damaged by the depression. When an area a surrounded by a dotted line is damaged by an external force due to an external force, bending stress σ is generated in the optical fiber cables 3 of the X component and the Y component arranged in the area. Therefore, as described above, both components X
2, X3, X4 and Y3, Y4, Y5 transmitted light amount v of the measurement light L transmitted through the stress sensitive portion 34 of the optical fiber cable 3
Will be attenuated according to the bending angle.

【0019】X成分側ではX1 とX5 は共に正常で、X
2 とX3 およびX4 がそれぞれ減衰する。また、Y成分
では、Y1 とY2 とY6 およびY7 が正常で、Y3 とY
4 およびY5 が減衰する。そして、減衰したX2 〜4 と
Y3 〜5 の透過光量vが、変形検出部S1 の対応する各
受光素子46と56で受光される。したがって、X2〜4
とY3 〜5 に囲まれた領域aを含む感応したマトリッ
クス内が、凹み損傷を受けたものと判定される。この場
合、領域aの中心部の凹みが最深のような場合は、成分
X3 とY4 の減衰量が最大になる。そして、成分X3 と
Y4 に接続された受光素子46と56の他の4個の受光
素子46と56との相対的な受光量の大小から、領域a
内における損傷の程度と損傷状況も推定される。
On the X component side, both X1 and X5 are normal and X
2 and X3 and X4 are attenuated respectively. In the Y component, Y1, Y2, Y6 and Y7 are normal, and Y3 and Y
4 and Y5 decay. Then, the attenuated transmitted light amounts v of X2 to 4 and Y3 to 5 are received by the corresponding light receiving elements 46 and 56 of the deformation detecting section S1. Therefore, X2-4
It is judged that the inside of the sensitive matrix including the area a surrounded by Y3 and Y3-5 has been damaged by the depression. In this case, when the depression at the center of the region a is deepest, the attenuation amounts of the components X3 and Y4 are maximum. Then, from the magnitude of the relative amount of light received by the other four light-receiving elements 46 and 56 of the light-receiving elements 46 and 56 connected to the components X3 and Y4, the area a
The degree of damage and the condition of damage in the area are also estimated.

【0020】次に図8(b) において、実線の閉曲線内
(領域b)が剥離または欠落で破損すると、X1 ,X6
では正常に光Lが応力感応部34を透過し、成分X2 ,
X3 ,X4 ,X5 では破損した光ファイバーケーブル3
の切断面で散乱や反射する。切断面の散乱光や反射光は
光カプラ44のハーフミラー等を通して逆方向に進行し
て、破損検出部S2 の4個の受光器45で受光される。
同じように、成分Y3 〜6 に対応する同数の受光器55
に散乱光と反射光が入射される。したがって、成分X2
〜5 とY3 〜6 に囲まれた領域bが破壊して脱落したも
のと判断される。
Next, in FIG. 8 (b), if the inside of the solid closed curve (region b) is damaged by peeling or missing, X1, X6
Then, the light L normally passes through the stress sensitive portion 34, and the component X2,
Broken fiber optic cable 3 for X3, X4, X5
Scatter and reflect on the cut surface of. The scattered light and the reflected light on the cut surface travel in the opposite direction through the half mirror of the optical coupler 44 and are received by the four light receivers 45 of the breakage detecting section S2.
Similarly, the same number of optical receivers 55 corresponding to the components Y3 to 6 are provided.
Scattered light and reflected light are incident on. Therefore, the component X2
It is judged that the region b surrounded by .about.5 and Y3.about.6 was destroyed and dropped.

【0021】このように異状状態の透過光量vを検出し
た各受光器45,55と受光素子46,56は、それぞ
れの検出信号を制御処理器4と5に出力する。制御処理
器4と5で処理したX軸とY軸のデータは、更に統合処
理器6を経てフライトコントローラ等7に伝送される。
The photodetectors 45 and 55 and the photodetectors 46 and 56 that have detected the transmitted light amount v in the abnormal state in this way output their detection signals to the control processors 4 and 5, respectively. The X-axis and Y-axis data processed by the control processors 4 and 5 are further transmitted to the flight controller 7 through the integrated processor 6.

【0022】なお、上述の実施形態1では凹曲面状の細
径部よりなる応力感応部を例示して説明したが、一定幅
の均一な細径部の両側に漸縮状と漸拡状のテーパで挟ま
れた応力感応部等を構成してもよい。また、光ファイバ
センサのマトリックスを翼の上面に設けた場合を図示し
て説明したが、翼の下面や胴体等の全機体の表層面また
は表層中に配置すれば一層効果的な検出装置を構成する
ことができる。
In the first embodiment described above, the stress-sensitive portion composed of the concave portion having a small diameter is exemplified, but the shape is gradually reduced or expanded on both sides of the uniform small diameter portion having a constant width. You may comprise the stress response part etc. which were pinched | interposed by the taper. Further, the case where the matrix of the optical fiber sensor is provided on the upper surface of the wing has been illustrated and described, but a more effective detection device can be configured by arranging the matrix on the lower surface of the wing or on the surface layer of the entire body such as the body can do.

【0023】[0023]

【発明の効果】この発明は、機体の表層面または表層中
に沿って光ファイバケーブルを設けた損傷・破損位置検
出装置を構成した。また、光ファイバケーブルをマトリ
ックス状に配置した損傷・破損位置検出装置を構成し
た。さらに、光ファイバケーブルのコアの肉厚を細径に
し歪に対する感度を上げるため応力感応部を形成した損
傷・破損位置検出装置を構成した。
According to the present invention, a damage / damage position detecting device is provided which is provided with an optical fiber cable along the surface of the body or along the surface thereof. In addition, a damage / damage position detection device was constructed by arranging optical fiber cables in a matrix. Furthermore, a damage / breakage position detection device was constructed in which the stress-sensitive portion was formed to reduce the thickness of the core of the optical fiber cable and increase the sensitivity to strain.

【0024】この結果、マトリックスを構成したX軸と
Y軸の光ファイバセンサの透過光の散乱や反射等に伴う
透過光量の変化を測定して、次に示すような航空機の故
障が判断される。 (1)機体が陥没損傷を受けたときは、損傷した位置と
損傷の範囲および凹み深さ等の損傷状況が明らかにな
る。 (2)機体の一部が剥離や脱落等の原因で破壊したとき
は、機体の破損の位置や範囲等の破壊状態が明らかにな
る。
As a result, the change in the amount of transmitted light due to scattering or reflection of the transmitted light of the X-axis and Y-axis optical fiber sensors forming the matrix is measured, and the following aircraft failure is judged. . (1) When the fuselage is damaged by depression, the damage condition such as the damaged position, the range of damage, and the depth of the recess is clarified. (2) When a part of the fuselage is destroyed due to peeling, dropping, etc., the state of destruction such as the position and range of damage of the fuselage becomes clear.

【0025】したがって、格納庫内等の地上における金
属の疲労度や損傷等の検査が正確になって事故を未然に
防止でき、検査に要する時間も著しく短縮されて航空機
の運用効率を向上させることができる。また、飛行中に
おいても機体の故障状況が明確に把握されて、統合処理
器の出力信号が航空機の全体の制御を司るフライト・コ
ントローラ等に伝達される。このため、損傷を受けない
正常な主翼等のフラップ,スポイラ,補助翼或いは胴体
後部の方向舵や昇降舵等の補正や左右エンジンの出力調
整等の緊急的な制御を行い、たとえ主翼に損傷や破損を
受けた場合でも正常に近い安全な飛行を続行することが
可能になる。
Therefore, the inspection of metal fatigue and damage on the ground in the hangar or the like can be made accurate, accidents can be prevented in advance, the time required for the inspection can be remarkably shortened, and the operational efficiency of the aircraft can be improved. it can. Further, even during flight, the failure status of the airframe is clearly grasped, and the output signal of the integrated processor is transmitted to a flight controller or the like which controls the entire aircraft. For this reason, normal flaps, spoilers, auxiliary wings, etc., which are not damaged, are corrected, and emergency control such as adjustment of the rudder and elevator of the rear part of the fuselage and output adjustment of the left and right engines is performed. It is possible to continue a safe flight close to normal even if you receive a.

【0026】よって、この発明によれば、地上における
整備中は勿論のこと、飛行中においても機体の損傷箇所
を即時に検出できる航空機における損傷・破損位置検出
装置を提供することができる。
Therefore, according to the present invention, it is possible to provide a damaged / damaged position detecting device for an aircraft which can immediately detect a damaged portion of the machine body not only during maintenance on the ground but also during flight.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施形態1を適用した航空機の構成
説明図である。
FIG. 1 is a configuration explanatory diagram of an aircraft to which a first embodiment of the present invention is applied.

【図2】図1の一部の拡大説明図である。FIG. 2 is an enlarged explanatory diagram of a part of FIG.

【図3】この発明の実施形態1の光ファイバケーブルの
構成説明図である。
FIG. 3 is a structural explanatory view of the optical fiber cable according to the first embodiment of the present invention.

【図4】図3の円部の拡大斜視図である。FIG. 4 is an enlarged perspective view of a circle portion of FIG.

【図5】応力と透過光量の特性図である。FIG. 5 is a characteristic diagram of stress and transmitted light amount.

【図6】この発明の実施形態1の構成を示すブロック図
である。
FIG. 6 is a block diagram showing the configuration of the first embodiment of the present invention.

【図7】Y成分の構成を示すブロック図である。FIG. 7 is a block diagram showing a configuration of a Y component.

【図8】この発明の実施形態1の動作説明図である。FIG. 8 is an operation explanatory diagram of the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 航空機 2 損傷・破損位置検出装置 3 光ファイバケーブル 4,5 制御処理器 6 統合処理器 7 フライトコントローラ等 10 胴体 11 主翼 31 コア 32 クラッド 33 境界層 34 応力感応部(応力センサ) 41,51 光源 42,52 光アンプ 43,53 分岐器 44,54 光カプラ 45,55 受光器 46,56 受光素子 C マトリックスの交点 L 光 M マトリックス S1 変形検出部 S2 破損検出部 V 透過光量 X1 ,X2 …Xm X成分 Y1 ,Y2 …Yn Y成分 σ 応力 1 Aircraft 2 Damage / Break Position Detection Device 3 Optical Fiber Cable 4, 5 Control Processor 6 Integrated Processor 7 Flight Controller etc. 10 Body 11 Main Wing 31 Core 32 Cladding 33 Boundary Layer 34 Stress Sensing Part (Stress Sensor) 41, 51 Light Source 42,52 Optical amplifier 43,53 Splitter 44,54 Optical coupler 45,55 Light receiver 46,56 Light receiving element C Matrix intersection point L Light M Matrix S1 Deformation detection section S2 Damage detection section V Transmitted light quantity X1, X2… Xm X Component Y1, Y2 ... Yn Y component σ stress

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 英二 東京都昭島市東町1−11−1−103 (72)発明者 ▲真▼野 邦彦 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 (72)発明者 中村 文夫 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 (72)発明者 久野 哲郎 名古屋市港区大江町10番地 三菱重工業株 式会社名古屋航空宇宙システム製作所内 (72)発明者 安井 久子 名古屋市港区大江町10番地 三菱重工業株 式会社名古屋航空宇宙システム製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Eiji Shimizu 1-1-11-103 Higashimachi, Akishima-shi, Tokyo (72) Inventor ▲ Kunihiko Mano 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd. Incorporated (72) Inventor Fumio Nakamura 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd. (72) Inventor Tetsuro Kuno 10 Oemachi, Minato-ku, Nagoya Mitsubishi Heavy Industries Ltd. (72) Inventor, Hisako Yasui, 10 Oemachi, Minato-ku, Nagoya City Mitsubishi Heavy Industries Ltd., Nagoya Aerospace Systems Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 機体の表層面または、表層中に光ファイ
バケーブルを設けたことを特徴とする航空機における損
傷・破損位置検出装置。
1. A damage / damage position detection device for an aircraft, characterized in that an optical fiber cable is provided on the surface layer of the airframe or in the surface layer.
【請求項2】 光ファイバケーブルをマトリックス状に
配置したことを特徴とする航空機における損傷・破損位
置検出装置。
2. A damage / damage position detecting device in an aircraft, wherein the optical fiber cables are arranged in a matrix.
【請求項3】 前記光ファイバケーブルのコアの肉厚を
細径にした応力感応部を形成したことを特徴とする請求
項1または2記載の航空機における損傷・破損位置検出
装置。
3. The damage / damage position detecting device for an aircraft according to claim 1, wherein the stress-sensitive portion is formed by reducing the wall thickness of the core of the optical fiber cable.
JP8347496A 1996-04-05 1996-04-05 Damage / breakage position detection device Expired - Lifetime JP2889952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8347496A JP2889952B2 (en) 1996-04-05 1996-04-05 Damage / breakage position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8347496A JP2889952B2 (en) 1996-04-05 1996-04-05 Damage / breakage position detection device

Publications (2)

Publication Number Publication Date
JPH09273906A true JPH09273906A (en) 1997-10-21
JP2889952B2 JP2889952B2 (en) 1999-05-10

Family

ID=13803473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8347496A Expired - Lifetime JP2889952B2 (en) 1996-04-05 1996-04-05 Damage / breakage position detection device

Country Status (1)

Country Link
JP (1) JP2889952B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215112A (en) * 2000-02-02 2001-08-10 Eads Airbus Gmbh Apparatus and method for detecting expansion, temperature and change therein of cover layer over carrier
JP2003515730A (en) * 1999-11-23 2003-05-07 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Diagnostic layers and methods for detecting structural integrity of composite and metallic materials
JP2007024527A (en) * 2005-07-12 2007-02-01 Fiberlabs Inc Optical fiber sensor and sensor system
JP2007505309A (en) * 2003-09-09 2007-03-08 キネテイツク・リミテツド Sensors and sensor arrays for structural monitoring
JP2011503601A (en) * 2007-11-14 2011-01-27 ロールス・ロイス・ピーエルシー Component monitoring device
JP2011057032A (en) * 2009-09-08 2011-03-24 Kawasaki Heavy Ind Ltd Laminated structure body, crack detection method, and crack detection structure
WO2010151453A3 (en) * 2009-06-25 2011-04-07 Tsi Technologies Llc Improved strain sensor
JP2016516204A (en) * 2013-03-21 2016-06-02 オスモ エスアーOsmos Sa Method for monitoring the deformation of a rotating element via a monitoring device using optical fibers, and a wind turbine provided with said device
WO2018047405A1 (en) * 2016-09-07 2018-03-15 株式会社Subaru Damage detection system and damage detection method
JP2018136324A (en) * 2018-03-22 2018-08-30 オスモ エスアーOsmos Sa Method for monitoring deformation of rotary element via monitoring device using optical fiber and wind force turbine having the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823459B2 (en) * 1999-11-23 2011-11-24 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ Diagnostic layer and method for detecting structural integrity of composite and metallic materials
JP2003515730A (en) * 1999-11-23 2003-05-07 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Diagnostic layers and methods for detecting structural integrity of composite and metallic materials
JP4610096B2 (en) * 2000-02-02 2011-01-12 エアバス・オペレーションズ・ゲーエムベーハー Apparatus and method for detecting expansion and temperature of a cover layer applied to a carrier and changes thereof
JP2001215112A (en) * 2000-02-02 2001-08-10 Eads Airbus Gmbh Apparatus and method for detecting expansion, temperature and change therein of cover layer over carrier
JP2007505309A (en) * 2003-09-09 2007-03-08 キネテイツク・リミテツド Sensors and sensor arrays for structural monitoring
JP2007024527A (en) * 2005-07-12 2007-02-01 Fiberlabs Inc Optical fiber sensor and sensor system
JP2011503601A (en) * 2007-11-14 2011-01-27 ロールス・ロイス・ピーエルシー Component monitoring device
US8286497B2 (en) 2009-06-25 2012-10-16 Tsi Technologies Llc Strain sensor
WO2010151453A3 (en) * 2009-06-25 2011-04-07 Tsi Technologies Llc Improved strain sensor
JP2011057032A (en) * 2009-09-08 2011-03-24 Kawasaki Heavy Ind Ltd Laminated structure body, crack detection method, and crack detection structure
JP2016516204A (en) * 2013-03-21 2016-06-02 オスモ エスアーOsmos Sa Method for monitoring the deformation of a rotating element via a monitoring device using optical fibers, and a wind turbine provided with said device
WO2018047405A1 (en) * 2016-09-07 2018-03-15 株式会社Subaru Damage detection system and damage detection method
JPWO2018047405A1 (en) * 2016-09-07 2018-09-06 株式会社Subaru Damage detection system and damage detection method
CN109564085A (en) * 2016-09-07 2019-04-02 株式会社斯巴鲁 Damage detection system and damage detecting method
US10451560B2 (en) 2016-09-07 2019-10-22 Subaru Corporation Damage detection system and damage detection method
EP3480551A4 (en) * 2016-09-07 2020-01-08 Subaru Corporation Damage detection system and damage detection method
JP2018136324A (en) * 2018-03-22 2018-08-30 オスモ エスアーOsmos Sa Method for monitoring deformation of rotary element via monitoring device using optical fiber and wind force turbine having the same

Also Published As

Publication number Publication date
JP2889952B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
JP2889952B2 (en) Damage / breakage position detection device
EP0066923A2 (en) Aircraft structural integrity assessment system
US4936649A (en) Damage evaluation system and method using optical fibers
US5118931A (en) Fiber optic microbending sensor arrays including microbend sensors sensitive over different bands of wavelengths of light
US7633052B2 (en) Impact detection system with three or more optical fiber sensors
US4928004A (en) Method and apparatus for sensing strain
EP0952446B1 (en) Monitoring
JPH07174527A (en) Method and device for measuring structural damage of structure body
US4636638A (en) Remote optical crack sensing system including fiberoptics
KR101273422B1 (en) Structural health monitoring system for aircraft
EP1607815B1 (en) Method and apparatus for detecting conditions in which aircraft vertical tail load limitations are exceeded
KR20130075065A (en) Structural health monitoring method for aircraft
JPS5830899A (en) Valueing system for safety of aircraft structure
JP2981562B1 (en) Damage / breakage detection device
US5072110A (en) Fiber optic strain and impact sensor system for composite materials
CN201828277U (en) Reflective optical fiber sensor device
US5513533A (en) Detection of vibrational energy via optical interference patterns
JP4878013B2 (en) Detection method of crack occurrence position
Takeda Fiber optic sensor-based SHM technologies for aerospace applications in Japan
EP3480551B1 (en) Damage detection system and damage detection method
US20080111053A1 (en) Apparatus for Detecting Radiation and Munition Incorporating Same
Akiyoshi et al. Development of integrated damage detection system for international America's Cup class yacht structures using a fiber optic distributed sensor
Ogisu et al. Damage growth detection of composite laminate using embedded FBG sensor/PZT actuator hybrid system
WO2019064032A1 (en) Support member for a load-bearing structure
CN215727889U (en) Double-faced reinforced flexible eddy current array sensor for monitoring hole edge cracks

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981222

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term