JPH09273822A - Capacity control device for thermal gas engine - Google Patents

Capacity control device for thermal gas engine

Info

Publication number
JPH09273822A
JPH09273822A JP10185996A JP10185996A JPH09273822A JP H09273822 A JPH09273822 A JP H09273822A JP 10185996 A JP10185996 A JP 10185996A JP 10185996 A JP10185996 A JP 10185996A JP H09273822 A JPH09273822 A JP H09273822A
Authority
JP
Japan
Prior art keywords
pressure
working
gas engine
chamber
hot gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10185996A
Other languages
Japanese (ja)
Inventor
Junji Matsue
準治 松栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10185996A priority Critical patent/JPH09273822A/en
Publication of JPH09273822A publication Critical patent/JPH09273822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a speedy capacity control by preventing lowering of a heating temperature while preventing an increase in the number of parts which require pressure resistance. SOLUTION: A thermal gas engine comprises operating chambers 13, 14 which are operated by an external heat and provide a thermal cycle by a pressure change of a working fluid and a machine chamber 63 which receives a small pressure change. In a capacity control device of this thermal engine, the operating chambers 13, 14 are communicated with the machine chamber 63 and means is provided for maintaining the pressure of the working medium in the machine chamber 63 at either an approximately lowermost pressure or an approximately highest pressure of the changing pressure in the operating chambers 13, 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱ガス機関の能力
制御装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a capacity control device for a hot gas engine.

【0002】[0002]

【従来の技術】一般に、低温熱交換器と高温熱交換器と
を有する熱ガス機関を備え、この熱ガス機関の低温熱交
換器と高温熱交換器とを通じて熱交換される熱媒体を、
熱源側熱交換器、及び利用側熱交換器に循環させて被調
和室を冷暖房するヒートポンプ式冷暖房装置は知られて
いる。この種のものでは熱ガス機関を駆動するための燃
焼器を備えており、冷暖房装置の能力制御に関してはこ
の燃焼器の燃焼量を制御して熱ガス機関の能力制御を行
なうのが一般的である。
2. Description of the Related Art Generally, a hot gas engine having a low temperature heat exchanger and a high temperature heat exchanger is provided, and a heat medium exchanged through the low temperature heat exchanger and the high temperature heat exchanger of the hot gas engine is
A heat pump type cooling and heating device that cools and heats a room to be conditioned by circulating the heat source side heat exchanger and the use side heat exchanger is known. This type of equipment is equipped with a combustor for driving the hot gas engine. With regard to the capacity control of the heating and cooling system, it is general to control the combustion amount of this combustor to control the capacity of the hot gas engine. is there.

【0003】しかしながら、上述した加熱温度を制御す
る方法では、燃焼量の制御のみであるため、アルゴリズ
ムは簡単であるが、燃焼量の変化と伝熱という、時間を
要する過程を経るため応答性に劣るという課題がある。
However, in the method for controlling the heating temperature described above, the algorithm is simple because it only controls the amount of combustion, but since the time-consuming process of changes in the amount of combustion and heat transfer is involved, the response is responsive. There is a problem of being inferior.

【0004】これに対して、特開平4−198671号
公報に記載のように、容量の大きな電動モータを設け、
この電動モータによって回転速度を変化させた後、上述
の加熱温度制御を行なうようにしたものが提案される。
これによれば、能力制御を速やかに行なうことができる
ものの、電動モータへの電力供給が必要になるので、全
体としてはエネルギ効率を低下させるという問題があ
る。
On the other hand, as described in Japanese Patent Laid-Open No. 4-198671, an electric motor having a large capacity is provided,
A method is proposed in which the heating temperature control described above is performed after the rotation speed is changed by this electric motor.
According to this, although capacity control can be performed promptly, it is necessary to supply electric power to the electric motor, so that there is a problem that energy efficiency is lowered as a whole.

【0005】また、上述した加熱温度を制御する方法で
は、低負荷の場合において、燃焼器による加熱温度を低
下させる制御を行なうことになるが、この加熱温度が低
いことは熱サイクルの効率が低いことを示すので、エネ
ルギ効率の観点からすると、好ましいことではないとい
う問題がある。
Further, in the above-mentioned method of controlling the heating temperature, the control for lowering the heating temperature by the combustor is performed in the case of a low load, but the low heating temperature results in low efficiency of the heat cycle. Therefore, there is a problem that it is not preferable from the viewpoint of energy efficiency.

【0006】更に、加熱温度の低下を防いで、速やかな
能力制御を行う方法として、特開昭58−104346
号公報、特開昭63−246453号公報に記載のよう
に、作動流体の作動圧力を変化させる方法が提案され
る。
Further, as a method for preventing a decrease in heating temperature and performing a quick capacity control, there is disclosed in Japanese Patent Laid-Open No. 58-104346.
As described in Japanese Patent Laid-Open No. 63-246453 and Japanese Patent Laid-Open No. 63-246453, a method of changing the working pressure of a working fluid is proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、この方
法によれば、作動流体を一時的に貯留するバッファータ
ンクが必要になるので、耐圧性を要する部品点数の増加
と、このタンクの設置のためのスペースが必要になる等
の問題がある。
However, according to this method, a buffer tank for temporarily storing the working fluid is required, so that the number of parts requiring pressure resistance is increased and the installation of this tank is required. There is a problem that space is required.

【0008】そこで、本発明の目的は、上記課題を解消
し、耐圧性を要する部品を増加させることなく、加熱温
度の低下を防いで、速やかな能力制御を行うことのでき
る熱ガス機関の能力制御装置を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, to prevent a decrease in heating temperature without increasing the number of parts that require pressure resistance, and to perform a quick capacity control of a hot gas engine. It is to provide a control device.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
外部からの熱により作動し、作動流体の圧力変動により
熱サイクルを形成する作動室と、圧力変動の少ない機械
室とを有する熱ガス機関の能力制御装置において、前記
作動室と前記機械室とをつなぎ、この機械室の作動流体
の圧力を前記作動室の変動圧力の略最低圧力、又は略最
高圧力に維持する手段を設けたことを特徴とするもので
ある。
According to the first aspect of the present invention,
In a capacity control device for a hot gas engine, which has a working chamber that is operated by heat from the outside and forms a heat cycle by pressure fluctuations of a working fluid, and a machine control chamber having a small pressure fluctuation, the working chamber and the machine chamber are A means for maintaining the pressure of the working fluid in the machine chamber at a substantially minimum pressure or a maximum pressure of the fluctuation pressure in the working chamber is provided.

【0010】請求項2記載の発明は、外部からの熱によ
り作動し、作動流体の圧力変動により熱サイクルを形成
する作動室と、圧力変動の少ない機械室とを有する熱ガ
ス機関の能力制御装置において、前記作動室と前記機械
室とを、夫々開閉弁と逆止弁を有する二つの通路でつな
ぎ、夫々の逆止弁は相反する向きに配置し、前記機械室
の作動流体の圧力を前記作動室の変動圧力の略最低圧
力、又は略最高圧力に維持する手段を設けたことを特徴
とするものである。
A second aspect of the present invention is a capacity control device for a hot gas engine having a working chamber that operates by heat from the outside and forms a heat cycle by pressure fluctuations of the working fluid, and a machine chamber with little pressure fluctuations. In, the working chamber and the machine chamber are connected by two passages each having an on-off valve and a check valve, the respective check valves are arranged in opposite directions, and the pressure of the working fluid in the machine chamber is It is characterized in that a means for maintaining the fluctuation pressure of the working chamber at the minimum pressure or the maximum pressure is provided.

【0011】請求項3記載の発明は、外部からの熱によ
り作動し、作動流体の圧力変動により熱サイクルを形成
する作動室と、圧力変動の少ない機械室とを有する熱ガ
ス機関の能力制御装置において、前記作動室と前記機械
室とを、作動室につながり中立点を持つ一つの切替え弁
と、この切替え弁から分岐して機械室につながり夫々逆
止弁を有する二つの通路とでつなぎ、夫々の逆止弁は相
反する向きに配置し、前記機械室の作動流体の圧力を前
記作動室の変動圧力の略最低圧力、又は略最高圧力に維
持する手段を設けたことを特徴とするものである。
A third aspect of the present invention is a capacity control device for a hot gas engine having a working chamber which is operated by heat from the outside and forms a heat cycle by a pressure fluctuation of a working fluid, and a machine room with little pressure fluctuation. In the above, the working chamber and the machine room are connected to each other by one switching valve which is connected to the working chamber and has a neutral point, and two passages which branch from the switching valve and are connected to the machine room and each have a check valve, The respective check valves are arranged in opposite directions, and a means for maintaining the pressure of the working fluid in the machine chamber at substantially the minimum pressure or the maximum pressure of the fluctuation pressure in the working chamber is provided. Is.

【0012】請求項4記載の発明は、請求項2又は3に
記載のものにおいて、開閉弁の開閉をアクチュエータで
行なうことを特徴とするものである。
According to a fourth aspect of the present invention, in the second or third aspect, the opening / closing valve is opened / closed by an actuator.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施の形態を添
付図面に従って説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0014】図1は、本発明に係るヴィルミエサイクル
を利用した熱ガス機関1を備える空気調和装置の一実施
の形態を示す回路図である。
FIG. 1 is a circuit diagram showing an embodiment of an air conditioner equipped with a hot gas engine 1 utilizing the Vilmier cycle according to the present invention.

【0015】このヴィルミエサイクル熱ガス機関1自体
は公知であり、詳細な説明は省略するが、互いに直交配
置された高温側ディスプレーサピストン2と低温側ディ
スプレーサピストン3とを備え、これらがヘリウム等の
作動ガスを封入した容器内に収納されている。容器内部
は、高温室12と、中温室13、14と、低温室15に
分かれている。また、加熱器16を有しており、加熱器
16は、燃焼器11により加熱される。
The Vilmier cycle hot gas engine 1 itself is publicly known, and a detailed description thereof will be omitted. However, the high temperature side displacer piston 2 and the low temperature side displacer piston 3 are arranged orthogonally to each other, and these are arranged such as helium. It is stored in a container in which the working gas is sealed. The inside of the container is divided into a high temperature chamber 12, middle greenhouses 13 and 14, and a low temperature chamber 15. Further, it has a heater 16, and the heater 16 is heated by the combustor 11.

【0016】両ディスプレーサピストン2,3は、例え
ば高温側ディスプレーサピストン2が下死点へ向かう中
間の位置へ到達するときには、低温側ディスプレーサピ
ストン3は、右死点に達する等のように、互いに90℃
位相をずらして動作可能に、モータ9で駆動されるクラ
ンク10を介してつながれている。高温側ディスプレー
サピストン2と低温側ディスプレーサピストン3とが動
作すると、封入された作動ガスが、高温再生器4と低温
再生器7を通って移動し、これらの再生器4,7を通過
する際に、加熱されたり冷却されたりすることで、作動
ガスが昇圧されたり減圧されたりする。例えば、高温室
12の作動ガスが高温再生器4を通って中温室13に移
動するときには、作動ガスは高温再生器4に熱を蓄え
る。また、作動ガスが高温再生器4から高温室12に戻
るとき、高温再生器4に蓄えられた熱が作動ガスに戻さ
れる。
The two displacer pistons 2 and 3 are positioned at 90 ° from each other, for example, when the high temperature side displacer piston 2 reaches an intermediate position toward the bottom dead center, the low temperature side displacer piston 3 reaches the right dead center. ℃
It is connected via a crank 10 driven by a motor 9 so that it can be operated out of phase. When the high-temperature side displacer piston 2 and the low-temperature side displacer piston 3 operate, the enclosed working gas moves through the high-temperature regenerator 4 and the low-temperature regenerator 7 and passes through the regenerators 4 and 7. The working gas is pressurized or depressurized by being heated or cooled. For example, when the working gas in the high temperature chamber 12 moves to the middle temperature chamber 13 through the high temperature regenerator 4, the working gas stores heat in the high temperature regenerator 4. Further, when the working gas returns from the high-temperature regenerator 4 to the high-temperature chamber 12, the heat stored in the high-temperature regenerator 4 is returned to the working gas.

【0017】また、外部との熱のやり取りは、加熱器1
6,中温室と接続する中温熱交換器5,6及び低温室と
接続する低温熱交換器8が行う。例えば、加熱器16が
高温室12の作動ガスに熱を与え、中温室13,14の
作動ガスが中温熱交換器5,6において放熱するととも
に、低温室15の作動ガスが低温熱交換器8において吸
熱する。すなわち、加熱器16と低温熱交換器8は熱ガ
ス機関1の吸熱部を構成し、中温熱交換器5,6は熱ガ
ス機関1の放熱部を構成する。
The exchange of heat with the outside is achieved by the heater 1
6, medium temperature heat exchangers 5 and 6 connected to the middle greenhouse and low temperature heat exchanger 8 connected to the low temperature chamber. For example, the heater 16 gives heat to the working gas in the high temperature chamber 12, the working gases in the middle greenhouses 13 and 14 radiate heat in the middle temperature heat exchangers 5 and 6, and the working gas in the low temperature chamber 15 cools the low temperature heat exchanger 8. Absorbs heat at. That is, the heater 16 and the low temperature heat exchanger 8 form the heat absorbing part of the hot gas engine 1, and the medium temperature heat exchangers 5 and 6 form the heat radiating part of the hot gas engine 1.

【0018】この実施の形態によれば、上述の熱ガス機
関1を利用して、ヒートポンプ式冷暖房装置(以下、
「空気調和機」という。)100が構成される。この空
気調和機100は、利用側ユニット200と、熱ガス機
関1を収容する熱源側ユニット300とからなる。利用
側ユニット200内には利用側熱交換器201が配設さ
れ、熱源側ユニット300内には、上記の熱ガス機関1
のほかに、熱源側熱交換器301が配設される。203
は室内ファン、303は室外ファンである。
According to this embodiment, a heat pump type cooling and heating device (hereinafter,
"Air conditioner". ) 100 is configured. The air conditioner 100 includes a usage side unit 200 and a heat source side unit 300 that houses the hot gas engine 1. A usage-side heat exchanger 201 is arranged in the usage-side unit 200, and the hot-gas engine 1 is installed in the heat-source-side unit 300.
Besides, a heat source side heat exchanger 301 is provided. 203
Is an indoor fan, and 303 is an outdoor fan.

【0019】例えば冷房時には、低温熱交換器(吸熱
部)8と利用側熱交換器201は、管路21と四方弁6
1と管路22によりつながれ、さらに利用側熱交換器2
01低温熱交換器(吸熱部)8は、管路23と四方弁6
2と管路24によりつながれる。また、中温熱交換器
(放熱部)5と熱源側熱交換器301は、管路31と四
方弁61と管路32によりつながれ、さらに熱源側熱交
換器301と中温熱交換器(放熱部)6は、管路33と
四方弁62と管路34によりつながれる。また、中温熱
交換器(放熱部)5と6は、管路35によりつながれ
る。管路を循環する熱媒体としては、例えば、水が用い
られる。
For example, at the time of cooling, the low-temperature heat exchanger (heat absorbing portion) 8 and the use-side heat exchanger 201 are connected to the pipe 21 and the four-way valve 6.
1 and a pipe 22, and further a use side heat exchanger 2
01 The low temperature heat exchanger (heat absorbing part) 8 includes a pipe line 23 and a four-way valve 6.
2 and the pipe 24. Further, the middle-temperature heat exchanger (radiator) 5 and the heat-source-side heat exchanger 301 are connected by a pipe 31, a four-way valve 61, and a pipe 32, and further, the heat-source-side heat exchanger 301 and the middle-temperature heat exchanger (radiator). 6 is connected by a pipe 33, a four-way valve 62 and a pipe 34. Further, the intermediate temperature heat exchangers (heat radiation parts) 5 and 6 are connected by a pipe line 35. As the heat medium circulating in the pipe, for example, water is used.

【0020】次に、冷暖房運転について説明する。Next, the cooling / heating operation will be described.

【0021】冷房運転時には、燃焼器11の点火により
熱ガス機関1が作動して、中温熱交換器(放熱部)5,
6から放熱されるとともに、低温熱交換器(吸熱部)8
が吸熱される。また、四方弁61,62は図1において
実線で示すように切り替えられる。この場合、低温熱交
換器(吸熱部)8で吸熱された冷水は、管路21、四方
弁61、管路22を通じて利用側熱交換器201に流
れ、そこで熱交換を行い、室内ファン203を回転させ
ることにより室内に冷風を送り出した(冷房)後、管路
23、四方弁62、管路24を通じて低温熱交換器(吸
熱部)8に戻る。
During the cooling operation, the hot gas engine 1 is activated by the ignition of the combustor 11, and the medium-temperature heat exchanger (radiating section) 5,
Heat is radiated from 6 and low temperature heat exchanger (heat absorbing part) 8
Is absorbed. The four-way valves 61 and 62 are switched as shown by the solid line in FIG. In this case, the cold water absorbed in the low temperature heat exchanger (heat absorbing section) 8 flows to the utilization side heat exchanger 201 through the pipe 21, the four-way valve 61, and the pipe 22, where heat is exchanged and the indoor fan 203 is operated. After the cooling air is blown out into the room by rotating (cooling), it returns to the low temperature heat exchanger (heat absorbing part) 8 through the pipe line 23, the four-way valve 62 and the pipe line 24.

【0022】このとき、中温熱交換器(放熱部)5で放
熱を受けた温水は、管路31、四方弁61、管路32を
通じて熱源側熱交換器301に流れ、そこで室外ファン
303を回転させることにより、熱交換を行った後に、
管路33、四方弁62、管路34を通じて中温熱交換器
(放熱部)6に流れ、さらに管路35を通じて中温熱交
換器5に戻る。
At this time, the hot water radiated by the intermediate-temperature heat exchanger (radiator) 5 flows through the pipe 31, the four-way valve 61, and the pipe 32 to the heat source side heat exchanger 301, where the outdoor fan 303 rotates. After performing the heat exchange,
It flows through the pipe 33, the four-way valve 62, and the pipe 34 to the middle-temperature heat exchanger (radiator) 6, and further returns to the middle-temperature heat exchanger 5 through the pipe 35.

【0023】暖房運転時には、燃焼器11の点火により
熱ガス機関1が作動して、中温熱交換器(放熱部)5,
6から放熱されるとともに、低温熱交換器(吸熱部)8
が吸熱される。また、四方弁61,62は図1において
点線で示すように切り替えられる。この場合、中温熱交
換器(放熱部)5で放熱を受けた温水は、管路31、四
方弁61、管路22を通じて利用側熱交換器201に流
れ、そこで室内ファン203を回転させることにより熱
交換を行い、室内に温風を送り出した(暖房)後、管路
23、四方弁62、管路34を通じて中温熱交換器(放
熱部)6に流れ、さらに管路35を通じて中温熱交換器
5に戻る。
During the heating operation, the hot gas engine 1 is activated by the ignition of the combustor 11, and the medium-temperature heat exchanger (radiating section) 5,
Heat is radiated from 6 and low temperature heat exchanger (heat absorbing part) 8
Is absorbed. Further, the four-way valves 61 and 62 are switched as shown by a dotted line in FIG. In this case, the hot water that has received heat radiation in the intermediate temperature heat exchanger (heat radiation section) 5 flows to the usage-side heat exchanger 201 through the pipe 31, the four-way valve 61, and the pipe 22, and the indoor fan 203 is rotated there. After exchanging heat and sending out warm air to the room (heating), it flows to the intermediate temperature heat exchanger (radiating section) 6 through the pipe 23, the four-way valve 62 and the pipe 34, and further through the pipe 35. Return to 5.

【0024】このとき、低温熱交換器(吸熱部)8で吸
熱された冷水は、管路21、四方弁61、管路32を通
じて熱源側熱交換器301に流れ、そこで室外ファン3
03を回転させることにより熱交換を行った後、管路3
3、四方弁62、管路24を通じて低温熱交換器(吸熱
部)8に戻る。
At this time, the cold water absorbed by the low-temperature heat exchanger (heat absorbing portion) 8 flows to the heat source side heat exchanger 301 through the pipe 21, the four-way valve 61, and the pipe 32, where the outdoor fan 3
After exchanging heat by rotating 03, pipe 3
It returns to the low temperature heat exchanger (heat absorbing part) 8 through the three, four-way valve 62 and the pipe line 24.

【0025】次に、本実施の形態に係る熱ガス機関1に
ついて説明する。
Next, the hot gas engine 1 according to this embodiment will be described.

【0026】この熱ガス機関1には、高温側ディスプレ
ーサピストン2、及び低温側ディスプレーサピストン3
の夫々のロッド側室に相当する中温室(以下、「作動
室」という。)13,14と、クランク10を収容する
クランク室(以下、「機械室」という。)63とをつな
ぐ二つの配管(通路)65a,65bが設けられる。夫
々の配管65a,65bには、電動弁(開閉弁)71
a,71bと逆止弁73a,73bとが設けられ、夫々
の逆止弁73a,73bは相反する向きに配置される。
尚、75a,75bは開閉弁を開閉するアクチュエータ
を構成する。
The hot gas engine 1 includes a high temperature side displacer piston 2 and a low temperature side displacer piston 3.
Two pipes (which connect the middle greenhouses (hereinafter, referred to as “working chambers”) 13 and 14 corresponding to the respective rod side chambers of the above and a crank chamber (hereinafter, referred to as “machine room”) 63 that houses the crank 10 ( Passages) 65a and 65b are provided. An electric valve (open / close valve) 71 is provided on each of the pipes 65a and 65b.
a and 71b and check valves 73a and 73b are provided, and the check valves 73a and 73b are arranged in opposite directions.
Incidentally, 75a and 75b constitute an actuator for opening and closing the on-off valve.

【0027】次いで、動作を説明する。Next, the operation will be described.

【0028】熱ガス機関1における作動ガスの圧力変化
について見ると、作動室13,14内の作動ガスの圧力
は、図2に示すように、クランク10の回転周期と同期
して、時間とともに変動する。一方、作動室13,14
と機械室63とは、シール100,101を介して分離
されるので、上述した作動室13,14の作動ガスの圧
力変動は機械室63に伝播されることはなく、この機械
室63の作動ガスの圧力変動は、図3に示すように、作
動室13,14の作動ガスの圧力変動に比べると極めて
小さくなる。この状態のままでは上述した冷暖房装置に
おいて能力を減少させる場合に、従来のように燃焼器1
1の燃焼量を減少させ、高温室温度を低下させることに
より、熱ガス機関1の能力を減少せざるを得ないという
問題が残る。
Looking at the pressure change of the working gas in the hot gas engine 1, the pressure of the working gas in the working chambers 13, 14 fluctuates with time in synchronization with the rotation cycle of the crank 10, as shown in FIG. To do. On the other hand, the working chambers 13, 14
Since the machine chamber 63 and the machine chamber 63 are separated via the seals 100 and 101, the pressure fluctuations of the working gas in the working chambers 13 and 14 described above are not propagated to the machine chamber 63, and the operation of the machine chamber 63 is performed. As shown in FIG. 3, the pressure fluctuation of the gas becomes extremely smaller than the pressure fluctuation of the working gas in the working chambers 13 and 14. If the capacity is reduced in the above-described cooling and heating apparatus if this state is left as it is, the combustor 1
There is a problem that the capacity of the hot gas engine 1 must be reduced by decreasing the combustion amount of No. 1 and decreasing the temperature of the high temperature chamber.

【0029】(A)この実施の形態によれば、空調負荷
が減少した場合には、熱ガス機関1の燃焼器11の燃焼
量を減少させることなく、電動弁71bを閉じたままの
状態にしておいて、電動弁71aの開度を開く。これが
開かれると、 (a) 作動室13,14の作動ガスの圧力が機械室6
3の作動ガスの圧力よりも高い場合、作動室13,14
の作動ガスは、配管65aを通じて機械室63に移動
し、この機械室63の作動ガスの圧力と作動室13,1
4の作動ガスの圧力とはほぼ等しくなる。
(A) According to this embodiment, when the air conditioning load is reduced, the electric valve 71b is kept closed without reducing the combustion amount of the combustor 11 of the hot gas engine 1. In advance, the opening degree of the electric valve 71a is opened. When this is opened, (a) the pressure of the working gas in the working chambers 13 and 14 becomes
3 is higher than the working gas pressure, the working chambers 13, 14
Of the working gas moves to the machine room 63 through the pipe 65a, and the pressure of the working gas in the machine room 63 and the working chambers 13, 1
It becomes almost equal to the pressure of the working gas of No. 4.

【0030】(b) 機械室63の作動ガスの圧力が作
動室13,14の作動ガスの圧力よりも高い場合、配管
65aには逆止弁73aが設けられているので、この配
管65aを通じての流入は有り得ず、仮に有るとすれ
ば、シール100,101を通じての流入であるが、こ
の流入量は配管65aを通じての流入量に比べると極め
て僅かである。
(B) When the pressure of the working gas in the machine chamber 63 is higher than the pressure of the working gas in the working chambers 13 and 14, the check valve 73a is provided in the pipe 65a. There is no inflow, and if there is, there is an inflow through the seals 100 and 101, but this inflow is extremely small compared to the inflow through the pipe 65a.

【0031】これによれば、作動ガスは、作動室13,
14から機械室63に移動するので、図4に示すよう
に、機械室63の圧力は、作動室13,14の変動圧力
の略最高圧力に維持され、作動室13,14の平均圧力
は低く抑えられるので、燃焼器11の燃焼量を減少させ
ることなく、空調負荷に見合うように、熱ガス機関1の
能力を減少させることができる。
According to this, the working gas is the working chamber 13,
Since it moves from 14 to the machine room 63, as shown in FIG. 4, the pressure of the machine room 63 is maintained at approximately the maximum pressure of the fluctuating pressure of the work rooms 13 and 14, and the average pressure of the work rooms 13 and 14 is low. Since it is suppressed, the capacity of the hot gas engine 1 can be reduced to meet the air conditioning load without reducing the combustion amount of the combustor 11.

【0032】(B)上記とは反対に、空調負荷が増大し
た場合には、熱ガス機関1の燃焼器11の燃焼量を増大
させることなく、今度は、電動弁71aを閉じて、電動
弁71bの開度を開く。これが開かれると、 (a) 機械室63の作動ガスの圧力が作動室13,1
4の作動ガスの圧力よりも高い場合、機械室63の作動
ガスは、配管65bを通じて作動室13,14に移動
し、機械室63の作動ガスの圧力と作動室13,14の
作動ガスの圧力とはほぼ等しくなる。
(B) Contrary to the above, when the air conditioning load increases, the electric valve 71a is closed and the electric valve is closed without increasing the combustion amount of the combustor 11 of the hot gas engine 1. Open the opening of 71b. When this is opened, (a) the pressure of the working gas in the machine chamber 63 changes the working chambers 13, 1
4 is higher than the pressure of the working gas of the machine chamber 63, the working gas of the machine chamber 63 moves to the working chambers 13 and 14 through the pipe 65b, and the pressure of the working gas of the machine chamber 63 and the pressure of the working gas of the working chambers 13 and 14 are increased. Is almost equal to.

【0033】(b) 作動室13,14の作動ガスの圧
力が機械室63の作動ガスの圧力よりも高い場合、配管
65bには逆止弁73bが設けられているので、この配
管65bを通じての流入は有り得ず、仮に有るとすれ
ば、シール100,101を通じての流入であるが、こ
の流入量は配管65bを通じての流入量に比べると極め
て僅かである。
(B) When the pressure of the working gas in the working chambers 13 and 14 is higher than the pressure of the working gas in the machine chamber 63, the check valve 73b is provided in the pipe 65b. There is no inflow, and if there is, there is an inflow through the seals 100 and 101, but this inflow is extremely small compared to the inflow through the pipe 65b.

【0034】これによれば、作動ガスは、機械室63か
ら作動室13,14に移動するので、図5に示すよう
に、機械室63の圧力は、作動室13,14の変動圧力
の略最低圧力に維持され、作動室13,14の平均圧力
は高くなるので、燃焼器11の燃焼量を増大させること
なく、空調負荷に見合うように、熱ガス機関1の能力を
増大させることができる。
According to this, since the working gas moves from the machine chamber 63 to the work chambers 13 and 14, the pressure in the machine chamber 63 is approximately the fluctuation pressure of the work chambers 13 and 14 as shown in FIG. Since the minimum pressure is maintained and the average pressure of the working chambers 13 and 14 becomes high, the capacity of the hot gas engine 1 can be increased to meet the air conditioning load without increasing the combustion amount of the combustor 11. .

【0035】この実施の形態によれば、上述のように、
まず電動弁71a,71bを開閉させることにより、作
動室13,14の平均圧力を増減し、熱ガス機関1の能
力を増減させる。次いで、必要に応じて、燃焼器11の
燃焼量を増減し、熱ガス機関1の能力を増減させる。
According to this embodiment, as described above,
First, by opening and closing the motor-operated valves 71a and 71b, the average pressure of the working chambers 13 and 14 is increased or decreased, and the capacity of the hot gas engine 1 is increased or decreased. Next, if necessary, the combustion amount of the combustor 11 is increased / decreased, and the capacity of the hot gas engine 1 is increased / decreased.

【0036】これによれば、特に低負荷の場合において
燃焼器11による加熱温度を極端に低下させる必要がな
いので、熱サイクルの効率を低下させることなく、熱ガ
ス機関1の能力を増減させることができる。
According to this, the heating temperature by the combustor 11 does not need to be extremely lowered particularly when the load is low, so the capacity of the hot gas engine 1 can be increased or decreased without lowering the efficiency of the heat cycle. You can

【0037】(C)二つの電動弁71a,71bを閉じ
た場合には、配管65a,65bを通じての作動ガスの
移動がないので、作動室13,14の作動ガスの平均圧
力と機械室63の作動ガスの平均圧力とは略等しくな
り、前記(A)(B)の二つの状態の中間的な状態にな
る。
(C) When the two motor-operated valves 71a and 71b are closed, since the working gas does not move through the pipes 65a and 65b, the average pressure of the working gases in the working chambers 13 and 14 and the machine chamber 63 It becomes almost equal to the average pressure of the working gas, and becomes an intermediate state between the two states (A) and (B).

【0038】(D)二つの電動弁71a,71bを開い
た場合には、二本の配管65a,65bを通じて、作動
室13,14と機械室63とが連通する。この状態は、
熱ガス機関1の起動時に効果を発揮する。
(D) When the two electric valves 71a, 71b are opened, the working chambers 13, 14 and the machine chamber 63 communicate with each other through the two pipes 65a, 65b. This state is
The effect is exhibited when the hot gas engine 1 is started.

【0039】即ち、熱ガス機関1はモータ9の始動によ
り起動し、燃焼器11の点火により自立運転を開始する
が、このモータ9の始動時に所定のタイミングで電動弁
71a,71bを開いて、作動室13,14と機械室6
3とを連通させると、起動時に作動室13,14のガス
を圧縮する仕事量等を減じることができるので、運転始
動時のモータ9の負荷低減をはかることができる。従っ
て、モータ9の小型化を図ることができる等の効果を奏
する。
That is, the hot gas engine 1 starts by starting the motor 9 and starts self-sustaining operation by igniting the combustor 11. When the motor 9 starts, the motor-operated valves 71a and 71b are opened at a predetermined timing. Working rooms 13 and 14 and machine room 6
By connecting 3 with 3, it is possible to reduce the amount of work for compressing the gas in the working chambers 13 and 14 at the time of startup, so that it is possible to reduce the load on the motor 9 at the start of operation. Therefore, the motor 9 can be downsized.

【0040】図6は別の実施の形態を示している。FIG. 6 shows another embodiment.

【0041】この実施の形態では、作動室13,14と
機械室63とが、以下のようにつながれる。即ち、作動
室13,14には、中立点(図6c)を持つ一つの切替
え弁80がつながれ、この切替え弁80には、夫々相反
する向きに配置される逆止弁81a,81bを有する二
本の配管83,85がつながれ、これら二本の配管8
3,85は、機械室63につながれる。
In this embodiment, the working chambers 13 and 14 and the machine chamber 63 are connected as follows. That is, one switching valve 80 having a neutral point (Fig. 6c) is connected to the working chambers 13 and 14, and the switching valve 80 has check valves 81a and 81b arranged in opposite directions. The two pipes 83 and 85 are connected, and these two pipes 8
3, 85 are connected to the machine room 63.

【0042】これによれば、切替え弁80が図6aに示
す位置に切り替えられると、作動室13,14から機械
室63に作動ガスが移動し、図6bに示す位置に切り替
えられると、機械室63から作動室13,14に作動ガ
スが移動する。また、図6cに示す位置(中立点)に切
り替えられると、作動室13,14と機械室63との間
での作動ガスの移動が阻止される。図6a〜図6cの状
態は、夫々、図1の実施形態の前記(A)(B)(C)
に相当する。図6dに示すように、切替え弁80が切り
替えられる場合には、作動室13,14と機械室63と
が連通する。この図6dの状態は、図1の実施形態の前
記(D)に相当する。
According to this, when the switching valve 80 is switched to the position shown in FIG. 6a, working gas moves from the working chambers 13 and 14 to the machine chamber 63, and when switched to the position shown in FIG. The working gas moves from 63 to the working chambers 13 and 14. Further, when the position is switched to the position (neutral point) shown in FIG. 6c, the movement of the working gas between the working chambers 13 and 14 and the machine chamber 63 is blocked. The states of FIGS. 6a to 6c are the same as those of the embodiment of FIG. 1 (A), (B), and (C), respectively.
Is equivalent to As shown in FIG. 6d, when the switching valve 80 is switched, the working chambers 13 and 14 communicate with the machine chamber 63. The state of FIG. 6d corresponds to the above (D) of the embodiment of FIG.

【0043】要するに、この実施の形態によれば、前述
の実施の形態に比べ、二つの電動弁71a,71bの代
わりに単一の切替え弁80を用いるだけで済むので、構
造が簡素化され、製造コストを低減することができる。
In short, according to this embodiment, as compared with the above-mentioned embodiments, only the single switching valve 80 is used instead of the two electric valves 71a and 71b, so that the structure is simplified, The manufacturing cost can be reduced.

【0044】以上、実施の形態に基づいて本発明を説明
したが、この発明は、これに限定されるものでないこと
は明らかである。
Although the present invention has been described based on the embodiment, it is obvious that the present invention is not limited to this.

【0045】例えば、以上はヴィルミエサイクル熱ガス
機関1について説明したが、スターリングサイクルを応
用するものであれば、スターリング冷凍機や、複エリク
ソンサイクルヒートポンプなどにも適用できる。
For example, the Vilmier cycle hot gas engine 1 has been described above, but if the Stirling cycle is applied, the Stirling refrigerator, the multiple Ericsson cycle heat pump and the like can also be applied.

【0046】[0046]

【発明の効果】本発明によれば、機械室の作動流体の圧
力を作動室の変動圧力の略最低圧力、又は略最高圧力に
維持することにより、作動室の平均圧力を増減させるよ
うにしているので、燃焼器の燃焼量を増減させることな
く、熱ガス機関の能力を増減させることができる。
According to the present invention, the average pressure of the working chamber is increased or decreased by maintaining the pressure of the working fluid in the machine chamber at the minimum pressure or the maximum pressure of the fluctuation pressure in the working chamber. Therefore, the capacity of the hot gas engine can be increased or decreased without increasing or decreasing the combustion amount of the combustor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る空気調和装置の冷媒回路図であ
る。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to the present invention.

【図2】熱ガス機関の作動室の圧力変化を示す図であ
る。
FIG. 2 is a diagram showing a pressure change in a working chamber of a hot gas engine.

【図3】熱ガス機関の機械室の圧力変化を示す図であ
る。
FIG. 3 is a diagram showing a pressure change in a machine room of a hot gas engine.

【図4】本発明に係る熱ガス機関の能力を低減させる時
の、熱ガス機関の作動室、及び機械室の圧力変化を示す
図である。
FIG. 4 is a diagram showing pressure changes in a working chamber and a machine chamber of the hot gas engine when the capacity of the hot gas engine according to the present invention is reduced.

【図5】本発明に係る熱ガス機関の能力を増加させる時
の、熱ガス機関の作動室、及び機械室の圧力変化を示す
図である。
FIG. 5 is a diagram showing pressure changes in the working chamber and the machine chamber of the hot gas engine when the capacity of the hot gas engine according to the present invention is increased.

【図6】別の実施の形態を示す図である。FIG. 6 is a diagram showing another embodiment.

【符号の説明】[Explanation of symbols]

1 熱ガス機関 2 高温側ディスプレーサピストン 3 低温側ディスプレーサピストン 4 高温再生器 5,6 中温熱交換器(放熱部) 7 低温再生器 8 低温熱交換器(吸熱部) 10 クランク 11 燃焼器 12 高温室 13,14 中温室(作動室) 15 低温室 16 加熱器 63 機械室 71a,71b 電動弁(開閉弁) 80 切替え弁 100 空気調和機 200 利用側ユニット 300 熱源側ユニット 1 Hot Gas Engine 2 High Temperature Side Displacer Piston 3 Low Temperature Displacer Piston 4 High Temperature Regenerator 5,6 Medium Temperature Heat Exchanger (Radiation Section) 7 Low Temperature Regenerator 8 Low Temperature Heat Exchanger (Heat Absorption Section) 10 Crank 11 Combustor 12 High Greenhouse 13, 14 Medium greenhouse (working room) 15 Low greenhouse 16 Heater 63 Machine room 71a, 71b Motorized valve (open / close valve) 80 Switching valve 100 Air conditioner 200 Usage side unit 300 Heat source side unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 外部からの熱により作動し、作動流体の
圧力変動により熱サイクルを形成する作動室と、圧力変
動の少ない機械室とを有する熱ガス機関の能力制御装置
において、 前記作動室と前記機械室とをつなぎ、この機械室の作動
流体の圧力を前記作動室の変動圧力の略最低圧力、又は
略最高圧力に維持する手段を設けたことを特徴とする熱
ガス機関の能力制御装置。
1. A capacity control device for a hot gas engine, comprising: a working chamber that is operated by heat from the outside and forms a heat cycle by a pressure fluctuation of a working fluid; and a working chamber for a hot gas engine, wherein: A capacity control device for a hot gas engine, comprising means for connecting to the machine chamber and maintaining the pressure of the working fluid in the machine chamber at a substantially minimum pressure or a maximum pressure of the fluctuation pressure in the working chamber. .
【請求項2】 外部からの熱により作動し、作動流体の
圧力変動により熱サイクルを形成する作動室と、圧力変
動の少ない機械室とを有する熱ガス機関の能力制御装置
において、 前記作動室と前記機械室とを、夫々開閉弁と逆止弁を有
する二つの通路でつなぎ、夫々の逆止弁は相反する向き
に配置し、前記機械室の作動流体の圧力を前記作動室の
変動圧力の略最低圧力、又は略最高圧力に維持する手段
を設けたことを特徴とする熱ガス機関の能力制御装置。
2. A capacity control device for a hot gas engine, comprising: a working chamber which is operated by heat from the outside and forms a heat cycle by pressure fluctuation of a working fluid; The machine chamber is connected with two passages each having an on-off valve and a check valve, and the respective check valves are arranged in opposite directions, and the pressure of the working fluid in the machine chamber is set to the fluctuation pressure of the working chamber. A capacity control device for a hot gas engine, characterized in that it is provided with means for maintaining a substantially minimum pressure or a substantially maximum pressure.
【請求項3】 外部からの熱により作動し、作動流体の
圧力変動により熱サイクルを形成する作動室と、圧力変
動の少ない機械室とを有する熱ガス機関の能力制御装置
において、 前記作動室と前記機械室とを、作動室につながり中立点
を持つ一つの切替え弁と、この切替え弁から分岐して機
械室につながり夫々逆止弁を有する二つの通路とでつな
ぎ、夫々の逆止弁は相反する向きに配置し、前記機械室
の作動流体の圧力を前記作動室の変動圧力の略最低圧
力、又は略最高圧力に維持する手段を設けたことを特徴
とする熱ガス機関の能力制御装置。
3. A capacity control device for a hot gas engine, comprising: a working chamber that is operated by heat from the outside and forms a heat cycle by pressure fluctuation of a working fluid; The machine chamber is connected to one switching valve that is connected to the working chamber and has a neutral point, and is connected to two passages that branch from this switching valve and that are connected to the machine chamber and each have a check valve. A capacity control device for a hot gas engine, which is arranged in opposite directions and is provided with means for maintaining the pressure of the working fluid in the machine chamber at a substantially minimum pressure or a substantially maximum pressure of the fluctuation pressure in the working chamber. .
【請求項4】 前記開閉弁の開閉をアクチュエータで行
なうことを特徴とする請求項2又は3に記載の熱ガス機
関の能力制御装置。
4. The capacity control device for a hot gas engine according to claim 2, wherein the on-off valve is opened and closed by an actuator.
JP10185996A 1996-04-01 1996-04-01 Capacity control device for thermal gas engine Pending JPH09273822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10185996A JPH09273822A (en) 1996-04-01 1996-04-01 Capacity control device for thermal gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10185996A JPH09273822A (en) 1996-04-01 1996-04-01 Capacity control device for thermal gas engine

Publications (1)

Publication Number Publication Date
JPH09273822A true JPH09273822A (en) 1997-10-21

Family

ID=14311747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10185996A Pending JPH09273822A (en) 1996-04-01 1996-04-01 Capacity control device for thermal gas engine

Country Status (1)

Country Link
JP (1) JPH09273822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871526A1 (en) * 2004-06-14 2005-12-16 Toyota Motor Co Ltd ENGINE STIRLING

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871526A1 (en) * 2004-06-14 2005-12-16 Toyota Motor Co Ltd ENGINE STIRLING
US7644581B2 (en) 2004-06-14 2010-01-12 Toyota Jidosha Kabushiki Kaisha Stirling engine

Similar Documents

Publication Publication Date Title
JP2566736B2 (en) Bullmeier heat pump air conditioner
JPH09273822A (en) Capacity control device for thermal gas engine
JP2584415B2 (en) Cooling and heating water circulation system for Bulmeier heat pump
JP3276853B2 (en) Heat source machine
JPH08327180A (en) Heat pump type cooling or heating device
JP2667487B2 (en) Air conditioning
JPH0949649A (en) Heat pump type air conditioning apparatus
JPH0424474A (en) Heat driving type heat pump device
JPH0953841A (en) Heat pump type cooling-heating equipment
JPH03181756A (en) Cooling and heating device
JPH09210486A (en) Heat pump type cooling or heating device
JPH0953843A (en) Heat pump type cooling-heating equipment
JPH0972575A (en) Heat pump type heating/cooling apparatus
JPH09280682A (en) Air conditioner
JP2000213416A (en) External combustion type heat gas engine and starting method thereof
JPH09145102A (en) Air conditioner
JPH0949648A (en) Heat pump type air conditioning apparatus
JP2000220898A (en) Heat pump system and method for finishing its operation
JPH08303893A (en) Heat pump type air conditioning apparatus
JPH09196439A (en) Air conditioner
JPH03244968A (en) Freezing device
JPH067026B2 (en) Air conditioner
JPH10122678A (en) Heat pump type hot water supply device
JPH1019404A (en) External-combustion hot gas engine
JPH0953845A (en) Heat pump type cooling-heating equipment